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Abstract

The polychromatic energy spectrum of common x-ray sources causes

so-called beam hardening artifacts in x-ray computed tomography im-

ages. The artifacts typically contain dark streaks and overall cupping.

In this paper we compare two methods for reducing such artifacts. A

correction method proposed by Herman and Trivedi in 1985, and an

iterative correction method by G. Van Gompel et al. in 2011. We de-

scribe and implement both correction methods and provide numerical

experiments for comparison.
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Chapter 1

Introduction

1.1 X-ray computed tomography

Over the past 45 years, the problem of image reconstruction from projec-
tions has taken a large space among many different research fields such as
science, medicine and technology. This problem is referred to as computed
tomography. 1979 Nobel Prize for Physiology or Medicine was awarded to
A. Cormack and G. Hounsfield for the development of x-ray computed to-
mography(CT) [6]. X-ray CT is an x-ray modality used to generate a two
dimensional cross sectional image of the human body from two dimensional
x-ray projections. Later, the method has been extended to generate a three
dimensional image. In this paper, we consider the two dimensional case.
Mathematically, tomography means reconstruction of a function from it’s
line integrals.

There are different types of artifacts that may corrupt the x-ray image.
Some artifacts are caused by the patient itself. For example, the motion
artifact which occurs when the patient moves during the acquisition, and the
metal artifact which results from having metallic dental fillings or implants.
Another type of artifact results from an x-ray source that emits x-rays of
multiple energies. This is called a beam hardening artifact.
Reducing beam hardening artifacts has become an active research field in x-
ray CT. As a result, a variety of methods have been proposed for correction.
Some methods do not require prior knowledge of the material properties, for
example [7, 8]. The scope of this paper is to present a comparative study of
two methods for the correction of beam hardening artifact in CT images .

This paper is organized as follows. In this chapter, we introduce the
physics of beam hardening and analyze the problem. In chapter 2, we de-
scribe a correction method presented by Herman and Trivedi [3]. Chapter
3 presents an iterative correction method developed by G. Van Gompel et
al. in [4]. A concluding chapter contains a comparison and discussion of the
methods.

3



1.2 The problem of beam hardening

The goal of tomography is to reconstruct the density function inside an
object from the rays which pass through the object. This density function
µ is the linear x-ray attenuation coefficient and depends on the spatial co-
ordinates (x, y) in the cross section and on the x-ray energy distribution
(spectrum) E, so it can be denoted as µ(x, y, E).

Under the assumption of an ideal monochromatic ray source, i.e, a spec-
trum of only one level of energy Ē, the physical effect of attenuation is
described by Beer’s law

ID = I0 e
−
�
L
µ(x,y) ds (1)

where L represents the straight line which is the path of the ray, I0 is the
initial intensity of the ray at the source, and ID is the detected intensity of
the ray after going through the object. For this beam, we can define the
monochromatic ray sum, the measurement, M , as

M = − ln
ID
I0

. (2)

We can estimate the line integral of µ from the measurement, if we assume
that the photons of the ray have the same level of energy. We get a linear
relationship between the measurement and the line integral and equation (1)
implies that,

M =
�

L
µ(x, y) ds (3)

The first image shown in Figure 1 is a 200 × 200 density phantom used
to illustrate the problem of beam hardening. The phantom is produced at
61 keV with a large disk of brain and four disks of bone. The location of
each disk is described by two variables, the center of the disk (X, Y ), and
the radius R as shown in Table 1. The energy spectrum and the correspond-
ing linear attenuation coefficient for each material are described in Table 2
obtained from [2]. We denote the grey scale window by an interval [a, b].
By this we mean that values in the image that are less than or equal to a
are displayed as black, and values greater than or equal to b are displayed as
white. Values in the interval are displayed with a corresponding scale of grey.
We will use the interval [0.15,0.22] unless otherwise noted. All the pictures
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display the function in the square [−1, 1]2.

The reconstruction shown in the bottom left of Figure 1 is created from
the ideal monochromatic data at 61 keV by exactly computing the line inte-
gral in equation (3). By comparison, the reconstruction looks similar to the
original phantom with no artifact. So if we plot a line through the image,
the resultant density profile appears as a constant as shown in the bottom
right of Figure 1.

Figure 1: Illustration of the reconstruction from the ideal monochromatic
data at 61 keV. The grey window scale is [0.17,0.24]. Top: True image
of 200 × 200 pixels for a cross sectional mathematical phantom made of a
large disc of brain and four small discs of bone, the density values are in
Table 1. Bottom left: A reconstruction from the ideal monochromatic data
at 61 keV which looks similar to the original phantom. Bottom right:
The corresponding density profile of row number 120 for the monochromatic
reconstruction which is nearly constant. The grey scale window is [0.15,0.22].
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However, in reality we have a polychromatic ray source where the x-ray
beam is made up of photons of different energies. So the relationship between
the initial intensity and the detected intensity will be modeled by the more
complicated equation,

ID = I0
� ∞

0
τ(E) e−

�
L
µ(x,y,E) ds dE (4)

where τ(E) is the probability density that the detected photon is at energy E.

For this beam, we define the measured uncorrected polychromatic data Pmeas,
along a line L, as

Pmeas = − ln
ID
I0

(5)

Pmeas = − ln
� ∞

0
τ(E) e−

�
L
µ(x,y,E) ds dE (6)

and for each pair of source and detector we use Pmeas to denote the line
integral of µ along the line L, i.e, the measured polychromatic data.
Clearly, taking the logarithm as before does no longer give a linear rela-
tionship between the unknown µ and the measurement Pmeas. So if we
reconstruct using these nonlinear data by the inversion algorithm for the
monoenergetic data, we will get an artifact caused by the nonlinearity. This
artifact is called beam hardening artifact.

Physically a harder beam contains a higher proportion of high energy
photons. The x-ray beam used in CT is composed of photons with different
levels of energy (polyenergetic). When the x-ray passes through the object
of interest, the photons of higher energy will be attenuated less than the
lower energy photons. As a result, the beam becomes harder when it reaches
the detector. Two types of artifacts can result from this phenomenon as
seen in Figure 2. Dark streaks appear between high density objects such as
bone as shown in the bottom left of Figure 2. Cupping artifact where we get
lower values inside as shown in the right of Figure 2. So if we plot a cross
line through the image instead of getting a constant it will look like a cup,
because the beam becomes harder in the center of the object (see Figure 2.)
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Figure 2: Illustration of beam hardening artifacts. Top: The original phan-
tom as in Figure 1. Bottom left: A reconstruction from the uncorrected
polychromatic data with beam hardening artifact: dark streaks can be found
between the four disks of bone, and lower values inside (cupping artifact).
Bottom right: The density profile of row number 120 in the uncorrected
image shows the cupping artifact. The grey scale window is [0.17,0.20].
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1.3 Simulation for polychromatic projection data

In our simulation, we use a mathematical phantom made up of ellipses as
shown in Figure 1. We generate the measured polychromatic data, Pmeas, by
approximately replacing the outer integral for the continuous energy spec-
trum in equation (6) by a discrete spectrum consisting of k energies E1,
E2,....., Ek. We can compute the exact inner integral

�
L µ(x, y, Ek) ds since

µ(x, y, Ek) is a linear combination of characteristic functions of ellipses. Thus
equation (6) is replaced by,

Pmeas = − ln
�

k

τ(Ek) e
−
�
L
µ(x,y,Ek) ds ∆Ek (7)

where τ(Ek)∆Ek is the probability that the detected photon is at energy Ek.

Table 1: Description of the location parameters used to produce the original
phantom in Figure 1

Disk No. X Y R

1 0 0 0.9
2 -0.45 0.45 0.15
3 0.45 0.45 0.15
4 -0.45 -0.45 0.15
5 0.45 -0.45 0.15

Table 2: The x-ray spectrum and attenuation values used in the experiments

Ek τ(Ek) Bone Brain Metastatic breast Soft Tissue 1 Soft Tissue 2
(keV) carcinoma

41 0.1 0.999 0.265 0.288 0.357 0.448
52 0.3 0.595 0.226 0.241 0.272 0.3182
61 0.3 0.416 0.210 0.220 0.236 0.261
80 0.2 0.265 0.183 0.190 0.193 0.203
100 0.1 0.208 0.174 0.179 0.178 0.182
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Chapter 2

A Correction Method by Herman and Trivedi

Several techniques have been proposed to eliminate beam hardening ar-
tifacts in x-ray images. In this chapter we describe a post-reconstruction
method which was first developed by Joseph and Spital [10], but we follow
a presentation by Herman and Trivedi [3]. The method aims to generate
artificial monochromatic data from the polyenergetic ray sum. This method
requires prior knowledge of the x-ray spectrum and identification of the bone
pixels from an initial reconstruction, for example by the filtered back projec-
tion algorithm, (FBP). The method consists of two stages of correction. The
first stage of correction assumes that only soft tissue is present in the image.
The second stage is the final correction and allows for the presence of both
soft tissue and bone. The two stages are working well in certain conditions.
We conduct some numerical experiments to test the efficiency of each stage.

2.1 The First Stage of Correction- Soft Tissue Correc-

tion

The first stage of correction is a soft tissue correction which partially
corrects for beam hardening. It is carried out under the assumption that
the body consists of only soft-tissue material. It is assumed that the pixels
contain soft tissue with known linear attenuation coefficient µsoft(E) for all
energies in the spectrum. In this stage, the goal is to reconstruct an initial re-
construction µsoft(Ē) which has been corrected partially for beam hardening
from the uncorrected data Pmeas. For that we find the length of intersec-
tion of each ray with the soft tissue Ts to generate artificial monochromatic
data M , where

M = µsoft(Ē) Ts . (8)

Since we assume that the body is made of uniformly soft tissue,

µ(x, y, E) =

�
µsoft(E) if (x,y) in the object

0 if (x,y) out the object
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so we can simplify the line integral of µ as,

−
�

L
µ(x, y, E) ds = −µsoft(E) Ts . (9)

Now Ts is determined such that the simulated data computed by using equa-
tion (9) match the measured data.
Inserting equation (9) in equation (7) gives a non-linear equation for Ts that
we can solve numerically:

− ln
�

k

τ(Ek) e
−µsoft(Ek) Ts ∆Ek = Pmeas.

This equation has to be solved for every line L for which measured data
are available. After finding Ts we can compute the artificial monochromatic
data M according to equation (8) and reconstruct the image of the first stage
correction.

Figure 3 illustrates the result after applying the first stage of correction
on the uncorrected polychromatic data. The energy level Ē has chosen to
be 61 keV (see Table 2). The corresponding density profile of the corrected
image shows that the soft-tissue correction works well in reducing the cupping
artifact, however, the dark streaks are still present between the four disks of
bone. Therefore, we can say that the first stage of correction sufficiently
corrects the cupping artifact but not the streaks.
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Figure 3: Top left: Illustration for the first stage correction. The origi-
nal phantom as in Figure 1. Top center: Uncorrected reconstruction from
polychromatic data with beam hardening: dark streaks and cupping arti-
fact. Top right: The corresponding density profile of row number 120 for
the uncorrected image shows the cupping artifact. Bottom center: A re-
constructed image by the first stage correction shows reducing the cupping
artifact while the dark streaks are present, where µs(Ē) = 0.19. The grey
window scale is [0.17,0.20]. Bottom right: The first stage reduced the
cupping artifact as shown in the density profile of row number 120.

2.2 The Second Stage of Correction

The second stage is the final stage of correction which allows for the
presence of both soft tissue and bone in the image. As we see, the first
stage works well with the assumption of one material, but in reality the
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human body is made up of different layers and tissues so the first stage is not
sufficient for a full correction. In the second stage, we assume that the body
consists of soft tissue and bone with known linear attenuation coefficients
µs(E) and µb(E) respectively for all energies in the spectrum. The goal of
the second stage is to find the lengths of intersection Tb and Ts of each ray
with the bone and soft tissue, respectively, in order to generate artificial
monochromatic data M where

M = µs(Ē)Ts + µb(Ē)Tb (10)

In order to estimate Tb, we segment the reconstructed image from the first
stage by thresholding. To perform the segmentation, we choose the pixels
from the first stage image whose values are above 0.210. These pixels are
assumed to contain bone. Figure 4 shows the segmented bone image. This
is a binary image where the pixels assumed to contain bone have the values
1 and the other pixels are set to zero. Then we estimate Tb by taking the

Figure 4: The segmented bone image

line integrals for this segmented bone image. In the method of Herman and
Trivedi, Tb was computed by finding the actual length of intersection of the
ray with each pixel. However, in our implementation, we apply MATLAB’s
Radon command to approximate the X-ray transform of the image [5]. The
idea to use this algorithm is adapted from N. Resvani’s recent Ph.D. thesis [8].
It is a fast and direct way to compute the simulated polychromatic data. The
algorithm is described by the MathWorks as follows ”The radon transform of
an image in MATLAB is the sum of the radon transform for all the pixels in
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Figure 5: MATLAB’s radon function divides each pixel into four sub-
pixels and projects each sub-pixel separately. This picture is taken from
http://www.mathworks.com/help/images/ref/radon.html.

the image. The algorithm first divides each pixel in the image into four sub-
pixels and projects each sub-pixel separately as shown in Figure 5. Each sub-
pixel’s contribution is proportionally split into the two nearest bins, according
to the distance between the projected location and the bin centers. If the
sub-pixel projection hits the center point of a bin, the bin on the axes gets
the full value of the sub-pixel, or one-fourth the value of the pixel. If the
sub-pixel projection hits the border between two bins, the sub-pixel value is
split evenly between the bins.”
After finding Tb, we solve this nonlinear equation for the unknown Ts,

Pmeas = − ln
� ∞

0
τ(E) e−µs(E)Ts−µb(E)Tb dE

� − ln
�

k

τ(Ek) e
−µs(Ek)Ts−µb(Ek)Tb ∆Ek

Then we combine these values to get the artificial monochromatic data ac-
cording to equation (10).

Figure 6 shows a comparison between the polychromatic image before
the correction and after the second stage of correction. The second stage
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works successfully in reducing the dark streaks and the cupping artifact.
The resultant density profile from the second stage shows an improvement
in making the line more constant. Indeed, the two stages of Herman and
Trivedi works well in reducing beam hardening artifact for an object of two
uniform materials (soft tissue and bone.)
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Figure 6: Illustration of the second stage correction. Top left: The origi-
nal phantom as in Figure 1. Top center: Uncorrected reconstruction from
polychromatic data where beam hardening can be found: dark streaks and
cupping artifact. Top right: The corresponding density profile of row num-
ber 120 of the uncorrected image shows the cupping artifact. Bottom left:
The segmented bone image is obtained by thresholding the first stage re-
constructed image. The threshold value is 0.210. Bottom center: A re-
constructed image by the second stage correction shows removing the dark
streaks, where µs(Ē) = 0.19 and µb(Ē) = 0.23. The grey scale window is
[0.17,0.21]. Bottom right: The corresponding density profile of row number
120 of the second stage image shows reduction of the cupping artifacts.
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2.3 Experiments and Results

Is the first stage necessary? Our phantom is perhaps too simple to de-
termine that but we might try to do the correction without the first stage.
Figure 7 shows the performance of the second stage without using the first
stage correction. In this experiment, we segment our initial uncorrected poly-
chromatic image for bone. Because of cupping the values near the boundary
of the large disc are elevated and appear in the segmentation as bone. How-
ever, using the first stage of correction helps in removing the cupping which
gives a better chance to accurately identify the bone. Thus, using the first
stage is helpful to get a better segmentation for the bone and then a correct
result.

The method of Herman and Trivedi removed the beam hardening artifact
successfully on a phantom of two materials. So, one possible experiment is
to test the quality of the method on a phantom made of more than two
materials. For examination, we use our original phantom as in Figure 1,
but we add a small disk of a third different material (Metastatic breast
carcinoma in Table 2) in the center of the phantom. Figure 8 shows that
when we run the reconstruction algorithm without any correction, the new
soft tissue becomes invisible since the dark streaks intersect in the middle
where the third material is. The cupping artifact is also shown when we plot
a line through the uncorrected image. However, if we run the two stages
for correction, the beam hardening artifact is successfully suppressed which
makes the third material more visible. The result indicates that the method
of Herman and Trivedi works well on more than two materials.
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Figure 7: The performance of the second stage correction without using the
first stage for segmentation. Top left: The original phantom as in Fig-
ure 1. Top center: Uncorrected reconstruction from polychromatic data.
Top right: The corresponding density profile of row number 120 of the
uncorrected image shows the cupping artifact. Bottom left: Poor segmen-
tation results from segmenting the uncorrected polychromatic image where
a white ring can be found. The threshold value is 0.210. Bottom center:
A reconstruction for the second stage correction, where µs(Ē) = 0.19 and
µb(Ē) = 0.23. The grey scale window is [0.17,0.21]. Bottom left: The
corresponding density profile of row number 120 of the second stage.
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Figure 8: Illustration of the method of Herman and Trivedi on three mate-
rials. Top left: Our original phantom with an additional small disk for a
third different material placed in the center. Top center: A reconstruction
from the uncorrected polychromatic data with beam hardening artifact. Top
right: The density profile of row number 120 in the uncorrected image shows
the cupping artifact. Bottom left: A segmented bone image by threshold-
ing. The threshold value is 0.210. Bottom center: A reconstruction after
applying the two stages of correction, where µs(Ē) = 0.19 and µb(Ē) = 0.23.
Streaks are removed which make the third material in the middle more visi-
ble. Bottom right: The corresponding density profile of row number 120 of
the second stage image shows reducing the cupping artifact. The grey scale
window is [0.17,0.21]
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Chapter 3

Iterative Correction Method

Recently, G. Van Gompel, K. Slambrouck, M. Defrise, K. Batenburg, J.
Mey, J. Sijbers, and J. Nuyts proposed an iterative correction method for
beam hardening artifacts [4]. The method does not require prior knowledge
about spectrum or materials. This is considered to be a practical advantage
compared to many other correction algorithms which require information
about spectrum and materials. Herman and Trivedi’s method, although our
experiment indicates that the method may work if there are more than two
materials, is designed to handle only two different materials except air. There
is bone and everything else is soft tissue. However, the present method does
not have this limitation. It can handle an arbitrary number of materials. It
assumes that the object consists of a known number of materials. It requires
segmentation of an initial FBP image which is usually obtained from uncor-
rected polychromatic data. It does not require the materials to be uniform,
unlike Herman and Trivedi’s method and some other methods which do as-
sume uniform materials [9, 10]. This method aims to reconstruct an image
where simulated polychromatic data which are computed from this image
match the measured polychromatic data as closely as possible.
Three iterative algorithms based on this approach are presented by G. Van
Gompel et al. in [4]. In this paper we describe two of these algorithms: the
iterative filtered back projection approach (IFR), and the sinogram prepro-
cessing method (ISP).

3.1 Assumption and Concepts

Let N be the known number of different materials in the object. Let D
denote the total number of x-ray projection lines, and J the number of pixels
in the image. The method assumes that each pixel contains only one mate-
rial. Let sn,j be the jth pixel of the segmented image for material number n,
that is sn,j = 1 if pixel j is occupied by material n, and sn,j = 0 otherwise.
Let define µn(Ek) to be an approximation of the average linear attenuation
coefficient of material n at energy Ek. Since the method can deal with slightly
non-uniform materials, let us introduce a relative density parameter, dj which
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models the small variation in x-ray attenuation within one class of material
for pixel j. The attenuation at pixel j for energy Ek is then given by:

Rj,k = dj
N�

n=1

µn(Ek) sn,j (11)

The line integral of the discretized image along line i at energy Ek is given
by

Li,k =
J�

j=1

li,j Rj,k

=
N�

n=1

µn(Ek)
J�

j=1

dj li,j sn,j (12)

where li,j denotes the length of intersection of line i with the jth pixel. There-
fore, the simulated polychromatic data for line i are given by:

P sim
i = P sim

i (µ, τ, d, s)

= − ln
K�

k=1

τ(Ek) e
−Li,k∆Ek

= − ln
K�

k=1

τ(Ek) e
−

N�
n=1

µn(Ek)
J�

j=1

li,j dj sn,j

∆Ek (13)

The approach aims to compute an image where the discrepancy between
the measured polychromatic data, Pmeas

i and the simulated polychromatic
data, P sim

i is minimized, i.e, it aims to iteratively minimize a cost function,
φ(µ, τ, d, s) to produce an image with reduced beam hardening artifacts.
The cost function is given by:

φ(µ, τ, d, s) =
1

D

D�

i=1

( Pmeas
i − P sim

i )2

=
1

D

D�

i=1



ln
ID
I0

− ln




�

k

τ(Ek) e
−

N�
n=1

µn(Ek)
J�

j=1

li,jdj sn,j

∆Ek









2
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In our implementation, we apply MATLAB’s Radon command [5] to ap-

proximate the quantity
J�

j=1
li,j dj sn,j occurs in the expression (12) for the line

integral Li,k.

3.2 Iterative filtered back projection (IFR)

The IFR approach follows an optimization procedure to minimize the cost
function iteratively. The IFR starts with an initial reconstruction that is
obtained from the measured polychromatic data, R0 = FBP (Pmeas), where
FBP (Pmeas) denotes an image that is computed from the data Pmeas with
the filtered back projection algorithm. It assumes that the object consists of
N materials. In each iteration w, the following steps are performed:

3.2.1 Update of the segmentation

We estimate the parameter swn,j by thresholding the current image Rw−1 into
N segments in a way that minimizing the cost function. Since the gradient
of the cost function with respect to the threshold is often near zero, we en-
countered difficulties using the standard optimization software in MATLAB
for finding the threshold values that minimize the cost function. The cost
function only changes significantly at points where the threshold is near a
density of one of the materials. Then if we change the threshold a little
bit, the segmentation changes. But if the threshold is away from one of the
material’s densities then by changing the threshold a little bit, the segmen-
tation and therefore the cost function remains the same. For that reason,
we used an ad hoc method devised by A. Faridani for finding a reasonable
initial threshold where the gradient of the cost function is not zero. Let F (x)
be the number of pixels in the current image with density less than or equal
to x. As x increases, we get more pixels where the image is less than x
so F (x) is increasing. F (x) changes most rapidly when x is near the density
of one of the materials. Therefore we set the maxima of F �(x) to find good
starting values for the thresholds. Here F �(x) denotes a numerical derivative.
Then we use a simple gradient descent method to find threshold values that
decreases the cost function by searching along the direction of the negative
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gradient.

3.2.2 Update of the relative density

In the first iteration w = 1 we initialize the relative density by one, i.e, dj = 1
for all the pixels. For the next iteration, w > 1 we compute the updated
relative density by:

dw = dw−1 + ωw.FBP ( Pmeas − P sim(µw−1, τw−1, dw−1, sw))

where ωw is a relaxation factor with elements

ωw
j =

1
N�

n=2
µw
IFR,n sn,j

where µw
IFR,n = max {µw−1

n (E1), ..., µw−1
n (Ek)}, and P sim is computing ac-

cording to equation (13).

3.2.3 Attenuation and the fractional Intensity

The updated s and d are fixed and the optimization procedure is performed
for the unknowns µ and τ to minimize the cost function. This is done in the
paper by G. Van Gompel et al., but in our implementation we use the actual
values in our simulation as shown in Table 2.

3.2.4 Image Update

After estimating all the reconstruction parameters(µ, τ, d, s), we compute
the updated image, Rw to find the segmentation for the next iteration:

Rw = dwj
�

N

µw(Ek)s
w
n,j

Thus, the iteration is terminated if the simulated polychromatic data are
sufficiently close to the measured data. Then G. Van. Gompel et al. suggest
the following stopping criterion:

�w + �w−1

�w−2 + �w−3
> t
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where the polychromatic model error �w is the value of the cost function
φ(µw, τw, dw, sw). For the next iterations w > 1, we compute the new thresh-
old from the updated image that minimizes the cost function.
for segmentation and display purposes, we choose

Rw = dwj
�

N

µ̄w
IGR,ns

w
n,j

where µ̄w
IGR,n is chosen to be the median of {µw

n (E1), ..., µw
n (Ek)}.

3.3 Sinogram Preprocessing Method (ISP)

In the IFR, the relative density is estimated in each iteration for each pixel
and the image is updated by minimizing the discrepancy between the simu-
lated data and the measured data. In the ISP algorithm, the authors of [4]
suggest to set the relative density to one in all the pixels to eliminate the pres-
ence of noise. The ISP algorithm starts with an initial reconstruction which
is obtained from the measured polychromatic data, R0 = FBP (Pmeas). In
each iteration w, we perform the following steps:

3.3.1 Update of the segmentation

We follow the IFR algorithm to update the parameters sn,j.

3.3.2 Attenuation and the fractional Intensity

The updated s and d are fixed and the optimization procedure is performed
for the unknowns µ and τ to minimize the cost function. In in our imple-
mentation we use the actual values in our simulation as shown in Table 2.

3.3.3 Mono- and polychromatic simulation

The monochromatic and polychromatic simulated data are computed as the
follows, respectively

M sim, w
i =

N�

n=1

µ̄w
ISP,n

J�

j=1

li,j s
w
n,j (14)
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P sim, w
i = − ln

K�

k=1

τ(Ek) e
−

N�
n=1

µw
n (Ek)

J�
j=1

li,j swn,j

∆Ek (15)

where the reference attenuation coefficients µ̄w
ISP,n in (14) are determined

below.

3.3.4 Sinogram Correction and Image Update

The corrected monochromized sinogram, M corr, w is obtained by adding the
correction term (M sim, w

i − P sim, w) to the original polychromatic data Pmeas

M corr, w = Pmeas + (M sim, w − P sim, w) (16)

Then, for the next iteration, the updated image will be Rw = FBP (M corr, w).

Reference Attenuation

In order to generate monochromatic data, the authors suggest to choose
attenuation values that minimize the magnitude of the correction term in
equation (16). The theoretical reason is that when the segmentation consid-
ers two low contrast materials as one material, the information that allows
to discriminate there materials is contained only in the measured data. A
smaller correction here may be less likely to obscure this information. Thus,
to better visualize the discrimination in the updated image, the reference
attenuation coefficient µ̄w

ISP,n has to minimize the function Ψ(µ̄w
ISP ),
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Thus, the minimum of Ψ(µ̄w
ISP ) is given by,

µ̄w
ISP = Bw+vw
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where Bw+ is the pseudo inverse of the matrix B with elements,

bn,m =
D�

i

twn,it
w
m,i

for n,m = 1,...,N, and vw is the vector with entries:

vwm = −
D�

i

twm,i ln
K�

k=1

τ(Ek) e
−

N�
n=1

µw
n (Ek) twn,i

for m = 1,...,N.
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3.4 Experiments and Results

Figure 9 shows an image of 200× 200 pixels of the original phantom that
we used to test the algorithms on more than two uniform materials. The
phantom is produced at 61 keV with 5 different materials (N = 5): air,
a large disk of brain, two small upper disks of bone, and two small lower
disks with two low contrast materials of soft tissues, soft tissue 1 and soft
tissue 2. The location parameters for each disc and the attenuation values
of each material are provided in Tables 1 and 2 respectively. This phantom
is similar to the one that we used in the method of Herman and Trivedi, but
we used two low contrast soft tissues instead of the two lowest disks of bone,
since the iterative algorithm allows for more than two materials.

Figure 9: True image of 200× 200 pixels for a cross sectional mathematical
phantom made of (5 materials including air) a large disc of soft brain, two
small upper discs of bone, and two small disks with low contrast materials
of soft tissues, disc number 4 of soft tissue 1 and disc number 5 of soft tissue
2. The location of each disk and the attenuation values are described in
Tables 1 and 2 respectively. The grey scale window is [0.13,0.35].
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Figure 10 illustrates the performance of the iterative algorithms IFR and
ISP using four iterations. It can be observed from the updated images that
the iterative algorithms significantly reduce the beam hardening artifacts
relative to the uncorrected polychromatic image. IFR and ISP successfully
remove the dark streaks between bones. IFR produces a sharper but more
noisy image than the low resolution ISP. A white ring at the outer boundary
of the object is present in IFR and ISP . The corresponding profile plots
of the corrected images further show the difference in performance between
the two methods. We insert a horizontal line through the lower two discs
to compare how each method can deal with two low contrast materials of
soft tissues. In comparison, IFR gives a better contrast between the two low
contrast soft tissues than ISP due to the relative density parameter in IFR.
In addition, we quantify the performance of the two iterative algorithms us-
ing the cost function values after each iteration as shown in Table 3. Both
IFR and ISP tend to decrease the cost function although with the ISP there
is occasional increase. Indeed, ISP does not guarantee to decrease the cost
function when we update the image. After further iterations, the IFR con-
tinues to decrease the cost function but this results in producing a noisy
picture. Figure 11 shows an updated image of the IFR after 12 iterations
which show more increased noise. This problem is known if we have an it-
erative solution algorithm and is called the semi-convergence phenomenon.
It is similar to the semi-convergence phenomenon in algebraic reconstruction
technique (ART), shown in Figure V.12 in [1]. It is a fundamental issue with
methods that reproduce the measured data. The picture which best approxi-
mates the measured data may be a very noisy picture which is not the picture
one wants. Thus, the best simulated data can come from a very noisy picture.
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Figure 10: Illustration the performance of the two iterative algorithms IFR
and ISP after 4 iterations. Top left: The original phantom as in Figure 9.
Top center: A reconstruction image of the IFR algorithm. Top right: The
corresponding density profile of row number 135 in the IFR image. Bottom

center: A reconstruction image of the ISP algorithm. Bottom right: The
corresponding density profile of row number 135 in the ISP reconstruction
image. The grey scale window is [0.15,0.28] for IFR, [0.14,0.22] for ISP.
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Table 3: Cost function results of IFR and ISP

Iteration IFR ISP

1 0.0411 0.0488
2 0.0231 0.0574
3 0.0180 0.0497
4 0.0158 0.0430
5 0.145 0.0414
6 0.0115 0.0460
7 0.0105 0.0358
8 0.0097 0.0395
9 0.0093 0.0354
10 0.0088 0.0270
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Figure 11: Illustration of semi-convergence phenomenon for the IFR after
12 iterations. Top: The original phantom as in Figure 9. Bottom right:
A high noise reconstruction of the IFR algorithm after 12 iterations. The
grey scale window is [0.16,0.25]. Bottom left : The density profile of row
number 100 in the IFR image where high noise can be found.
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Furthermore, we carried out an experiment to examine if the first stage
of Herman and Trivedi improves the result of ISP algorithm. Figure 12
shows a comparison between the reconstruction from the ISP method and
the corresponding image after running the first stage on that image. As
shown in the density profile of the first stage, the overshoot in the boundary
has been reduced but there is a bulge in the interior.

Figure 12: Illustration of using the first stage of correction after the ISP
method. Top left: The original phantom as in Figure 9. Top center:
ISP reconstruction after 4 iterations. Top right: The density profile of row
number 120 in the ISP image shows overshoot in the boundary. Bottom

center: The reconstruction after running the first stage on the ISP image,
where µs(Ē) = 0.19. Bottom right: The density profile of row number 120
where the overshoot at the boundary is reduced but there is a bulge in the
interior. The grey scale window is [0.14,0.22]
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Chapter 4

Comparison and discussion

Figure 13 illustrates the performance of the three different methods on a
phantom of 5 materials including air. The method of Herman and Trivedi
strongly reduces the beam hardening artifacts but the dark streaks are still
faintly visible. The corrected image has not much noise, sharp boundaries
and it resolves all the tissues. On the other hand, IFR and ISP successfully
remove the dark streaks between bones. IFR produces a more noisy image
than the low resolution ISP and the image of Herman and Trivedi. A white
ring at the outer boundary of the object is present in IFR and ISP but not in
Herman and Trivedi’s image. The corresponding profile plots of the corrected
images in Figure 14 further show the difference in performance between the
three methods. We insert a horizontal line through the lower two discs to
compare how each method can deal with two low contrast materials of soft
tissues. In comparison, IFR gives a better contrast between the two low
contrast soft tissues than the two other methods.

Figure 15 shows the results of applying all the three methods on the sim-
ple brain and bone phantom that we used for Herman and Trivedi’s method.
All the three methods are significantly reducing the beam hardening arti-
facts. The corresponding profile plots for each image are shown in Figure 16.
We insert a horizontal line through the two lower discs of bone. The results
from the plots indicate that the IFR method preserves the contrast between
the bone and the brain, while the contrast is reduced in the other two meth-
ods.

One of the main drawbacks of Herman and Trivedi’s method is the longer
computational time that it takes when compared to the two iterative algo-
rithms. The two stages take 111 seconds to perform the full correction, while
the IFR takes only 21 seconds, and the ISP takes 14 seconds.
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Figure 13: Reconstructions for all the three methods on the 5 materials
phantom. Top left: The original phantom as in Figure 9 with (5 materials
including air). Top center: Uncorrected polychromatic data with beam
hardening artifacts with grey scale window [0.17, 0.20]. Top right: Herman
and Trivedi correction with grey scale window [0.17,0.21]. Bottom cen-

ter: The reconstruction from the IFR algorithm after 4 iterations with grey
scale window [0.15,0.28]. Bottom right: The reconstruction from the ISP
algorithm after 4 iterations with grey scale window [0.15,0.21].
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Figure 14: Density profiles for row number 135 in the reconstruction im-
ages shown in Figure 13. Top left: The density profile corresponds to the
uncorrected polychromatic image where cupping artifact can be found. Top
right: The density profile corresponds to the corrected image by Herman and
Trivedi’s method. Bottom left: The density profile for the IFR method.
Bottom right: The density profile for the ISP method.
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Figure 15: Reconstructions for all the three methods on the first phantom
used in Figure 1. Top left: The original phantom as in Figure 1 with 2 ma-
terials (brain and bone). Top center: Uncorrected polychromatic data with
beam hardening artifacts with grey scale window [0.17, 0.20]. Top right:
Herman and Trivedi correction with grey scale window [0.17,0.21]. Bottom

center: The reconstruction from the IFR algorithm after 4 iterations with
grey scale window [0.15,0.28]. Bottom right: The reconstruction from the
ISP algorithm after 4 iterations with grey scale window [0.15,0.21].
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Figure 16: Density profiles for row number 150 in the reconstruction im-
ages shown in Figure 15. Top left: The density profile for the uncorrected
polychromatic image where cupping artifact can be found. Top right: The
density profile for the image corrected by Herman and Trivedi’s method.
Bottom left: The density profile for the IFR method. Bottom right: The
density profile for the ISP method.
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In this paper, the three methods that we presented aim to reduce beam
hardening artifacts based on a discretized model for polychromatic data. All
are post-reconstruction approaches. They all need an initial reconstruction
and the original polychromatic data. In Herman and Trivedi’s method, the
goal is to generate artificial monochromatic data from the measured poly-
chromatic data. It is initialized with an uncorrected image from the measured
polychromatic data which is used to estimate the length of intersection of
each material with each ray. It requires a segmentation of a preliminary im-
age. The method is not iterative and has a two stage process. The image is
obtained by reconstruction from the artificial monochromatic data. The nu-
merical expiremnts indicated that the method successfully reduced cupping
and dark streaks artifacts for an object of two materials (refer to Figure 6).
For more than two materials, both artifacts are still reduced but not as well
as for two materials as shown in Figures 13 and 14. The method does not
seem to introduce much noise. The corrected image is sharper than ISP and
about as sharp as IFR. A limitation of the method is that it needs more
computational time than the other two methods since it requires to solve
two nonlinear equations in one variable for each ray.

The two iterative algorithms IFR and ISP are designed for an arbitrary
but known number of materials. Both require segmentation in every itera-
tion. The IFR aims to find an image whose simulated polychromatic data
are close in the l2-sense to the measured polychromatic data. The image
is obtained from the segmentation by assigning suitably chosen density val-
ues to each material. These values are then multiplied for each pixel by
the corresponding relative density value. IFR allows for non-uniformities
in a material’s density which is considered a practical advantage compared
to the other two methods. Our result illustrated that the IFR sufficiently
reduced beam hardening artifacts. The corrected image is sharp. The rel-
ative density parameter appeared to be able to compensate somewhat for
misclassifications in the segmentation. After further iterations, the semi-
convergence phenomenon was observed where images become more noisy.
The authors recommend to smooth the image before segmentation to control
this noise. Numerical challenges were encountered with minimizing the cost
function with respect to thresholds for segmentation. To avoid that, we used
a heuristic method but further refinements may be needed. TISPhe IFR is
fast but not guaranteed to decrease the cost function. We did not implement
the much slower method that updates the relative density by minimizing the
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cost function. The ISP is a sinogram preprocessing method and aims to find
artificial monochromatic data. Unlike the IFR method, the ISP assumes the
materials to be uniform. The image is obtained from a reconstruction from
the artificial monochromatic data. Information about low-contrast materials
that may be misclassified in the segmentation is contained in the contribu-
tion of the original measured data to the artificial monochromatic data. The
results indicated that the ISP works well on two materials. It produced sharp
images. Cupping and dark streaks were removed. For five materials (includ-
ing air), the ISP also removes cupping and streaks but the image is not as
sharp as for the other two methods. It introduced a new ring-shaped artifact
near the boundary of the object. The other two methods have also such an
artifact but the ring is much thinner. The ISP is the fastest compared to the
other two methods.
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