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Sampling Theory and

Parallel-Beam Tomography

Adel Faridani

ABSTRACT This artile ontains a tutorial on the interation between sampling

theory and tomography as well as some new results. We explore how sampling theorems

are used in tomography to identify eÆient data aquisition shemes; failitate an

error analysis for reonstrution algorithms; and provide a qualitative understanding

of some image artifats. On the other hand, appliations in tomography have stimulated

researh on new estimates for the aliasing error and in non-equidistant sampling theory.

New results are inluded in an analysis of artifats aused by undersampling.

1 Introdution

Computed tomography (CT) entails the reonstrution of a funtion f from a

�nite number of line integrals of f . A natural question to ask is how many and

whih line integrals should be measured in order to ahieve a ertain auray

in the reonstrution. Sampling theory omes naturally into play when trying

to answer this question. It turns out that sampling theory is not only useful in

identifying eÆient sampling shemes for tomographi data, but also provides a

qualitative understanding of ertain artifats and failitates the numerial analy-

sis of reonstrution algorithms. We will explore these themes in the subsequent

setions. On the other hand, appliations in tomography have stimulated re-

searh in sampling theory, for example on estimates for the aliasing error and on

non-equidistant sampling.

The artile is organized as follows. In the next setion we begin by introdu-

ing the two-dimensional Radon transform, the mathematial model underlying

tomography, and briey desribe how it arises. In x 3 we present the relevant

lassial sampling theorem and prove the standard estimate for the aliasing er-

ror. The setion onludes with an improved estimate and an outline of key ideas

for its proof. In setions 4 and 5 we desribe how to apply the sampling theory of

x 3 to tomography in order to identify eÆient sampling shemes. A key theme

here is that we have a two-dimensional sampling problem and that the partiular

shape of the support of the Fourier transform of the data must be exploited in

order to �nd eÆient sampling shemes.

x 6 is onerned with reonstrution from eÆiently sampled data. This re-



2 Adel Faridani

quires some are, and the neessary insights are provided by an error analysis of a

reonstrution algorithm. While these �rst six setions are expository in nature,

new results are inluded in x 7 where we investigate the onsequenes of under-

sampling. We �rst show that elementary sampling theory provides a qualitative

understanding why some sampling shemes are more sensitive to undersampling

than others. We then present a numerial analysis of the �ltered bakprojetion

algorithm whih reveals the loation and relative strength of some artifats.

The artile onludes with referenes to further developments.

2 The two-dimensional Radon transform

The two-dimensional Radon transform maps a density funtion f into its line

integrals.

Let Z;R; C denote the integers, real and omplex numbers, respetively.

Throughout this paper we will assume that f 2 C

1

0

(
), i.e., f is in�nitely

di�erentiable and vanishes outside the unit disk 
 of R

2

. This assumption sim-

pli�es the mathematial proofs, and although the density funtions ourring

in pratie are not neessarily smooth, we will see that our theoretial results

desribe the phenomena observed in pratie well.

Let � = (os'; sin') be the unit vetor in R

2

with polar angle ', and �

?

=

(� sin'; os'). For f 2 C

1

0

(
) de�ne its Radon transform Rf by

Rf('; s) =

Z

1

�1

f(s os'� t sin'; s sin'+ t os')dt

=

Z

R

f(s� + t�

?

)dt; (2.1)

i.e., Rf('; s) is the integral of f over the line in diretion �

?

with signed distane

s from the origin. Sometimes Rf is onsidered as a funtion of s for �xed '. In

this ase we write R

'

f(s) for Rf('; s).

In x-ray tomography the Radon transform arises as follows. The funtion f(x)

to be reonstruted is the so-alled x-ray absorption oeÆient. Sine it varies

for di�erent materials and tissues, it does provide an image of the interior of an

objet. We on�ne ourselves to two dimensions so that the goal is to image a

rossetion of the objet under investigation. Assume a very thin x-ray beam is

sent through suh a rossetion, traveling along a segment of the line x = s�+t�

?

,

t 2 R. Then its initial intensity I

0

and its intensity I

1

after passing through the

objet are related by

I

0

= I

1

e

�Rf(�;s)

:

Sending many suh rays through the rossetion under investigation and mea-

suring eah time I

0

and I

1

yields a number of sampled values of Rf . The goal is

then to reonstrut an approximation to f(x) from these values. Naturally, one

would like to ahieve high resolution with a minimal amount of measured data.

Thus sampling theory omes into play.



1. Sampling Theory and Parallel-Beam Tomography 3

The Fourier transform of a funtion g 2 C

1

0

(R

n

) is de�ned by

ĝ(�) = (2�)

�n=2

Z

R

n

g(x)e

�ihx;�i

dx

and is extended to larger lasses of funtions or distributions by ontinuity or

duality. Here hx; �i denotes the usual inner produt in R

n

.

In partiular, the Fourier transform of R

'

f is given by

(R

'

f)

^

(�) = (2�)

�1=2

Z

R

R

'

f(s)e

�is�

ds:

The following relation between the Fourier transforms of R

'

f and f is easy to

verify but very useful:

(R

'

f)

^

(�) = (2�)

1=2

^

f(��): (2.2)

Equation (2.2) is alled the projetion-slie theorem.

For readers inteersted in a more detailed introdution to tomography we re-

ommend the monographs [19, 23℄ or the introdutory surveys [10, 13℄ and the

referenes given there.

3 Sampling latties for the Radon Transform

From (2.1) we see that Rf is a funtion with domain [0; 2�) � R. The sub-

sequent analysis of sampling and resolution will make use of Fourier analysis.

This requires both the domain of Rf as well as the sampling sets to have a

group struture. Equipped with addition modulo 2� the interval [0; 2�) beomes

a group, alled the irle group, whih we denote by T. Then the domain of Rf

may be identi�ed with the group T� R. The addition on T� R an be viewed

as the usual addition in R

2

but modulo 2� in the �rst omponent.

The task of tomography is to reonstrut f from �nitely many measurements

of Rf . In the parallel-beam sampling geometry a set of angles f'

j

; j = 0; : : : ; P�

1g is seleted and for eah angle '

j

a number of line integrals Rf('

j

; s

jl

) are

measured. We require the set f'

j

; s

jl

g of all points where Rf is measured to

be a subgroup of T� R, and for pratial reasons there should be more than

one measured line for eah ourring angle '

j

. A sampling set satisfying these

two requirements is alled an admissible sampling lattie. The admissible latties

may be parameterized as follows [12℄:

Lemma 1. Let L be an admissible sampling lattie. Then there is d > 0 and

integers N;P , suh that 0 � N < P and

L = L(d;N; P )

= f('

j

; s

jl

) : '

j

= 2�j=P; s

jl

= d(l + jN=P );

j = 0; : : : ; P � 1; l 2 Zg: (3.3)
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From (3.3) we see that there are P diretions �

j

orresponding to the equidis-

tant angles '

j

= 2�j=P . For eah diretion integrals over an equidistant set of

lines with spaing d are measured. This olletion of equidistant parallel lines is

shifted by an amount djN=P whih varies with the angle '

j

.

The most important latties are the standard lattie

L

S

= f('

j

; s

l

) : '

j

= 2�j=P; s

l

= d l; j = 0; : : : ; P � 1; l 2 Zg

whih is obtained by letting N = 0, and the interlaed lattie

L

I

= f('

j

; s

jl

) : '

j

= 2�j=P; s

jl

= d(l + j=2); j = 0; : : : ; P � 1; l 2 Zg :

where P is even and N = P=2. We see that for the standard lattie the values

s

l

= dl do not hange with the angle '

j

. For the interlaed lattie the set of

values s

jl

= dl + dj=2 is shifted by d=2 when going from one angle '

j

to the

next.

In pratie one hooses P = 2p for both latties, and for the interlaed lattie

one lets p be even. Then, beause of the symmetry relation

Rf('; s) = Rf('+ �;�s); (3.4)

only the angles '

j

2 [0; �) need to be measured. It turns out [12℄ that among all

admissible latties the standard and interlaed latties are the only ones whih

fully exploit this symmetry.

The parameterization given in Lemma 1 is not unique. Alternative parame-

terizations of admissible sampling latties have been used in [8℄ and [11℄.

We now wish to apply Shannon sampling theory in order to �nd the best

sampling latties. In order to do this we need some Fourier analysis for funtions

de�ned on the group T� R . The Fourier transform on T� R is de�ned by

ĝ(k; �) = (2�)

�1

Z

2�

0

Z

R

g('; s)e

�i(k'+�s)

d' ds; k 2 Z; � 2 R:

Using the notation z = ('; s), � = (k; �), hz; �i = k' + �s, this an be written

as

ĝ(�) = (2�)

�1

Z

T�R

g(z)e

�ihz;�i

dz; � 2 Z� R:

The inverse Fourier transform in this setting is given by

~

G('; s) = (2�)

�1

X

k2Z

Z

R

G(k; �)e

i(k'+�s)

d�

= (2�)

�1

Z

Z�R

G(�)e

ihz;�i

d�;

with z = ('; s) 2 T� R and � = (k; �) 2 Z� R. Very useful tools for our

purpose are the Poisson summation formulas for R and T� R:



1. Sampling Theory and Parallel-Beam Tomography 5

Theorem 3.1. (Poisson summation formula for R) Let h > 0 be �xed, and

g 2 C(R) suh that jg(x)j � C(1 + jxj)

�1��

, and jĝ(�)j � C(1 + j�j)

�1��

for

some C; � > 0. Then

(2�)

�1=2

h

X

l2Z

g(x+ hl)e

�i�(x+hl)

=

X

l2Z

ĝ(� + 2�l=h)e

ix2�l=h

: (3.5)

For a proof see, e.g., [14, Theorem (8.36)℄.

The result holds also under less restritive hypotheses: Let g 2 L

2

(R) suh

that

P

l2Z

jg(hl)j

2

<1, and ĝ 2 L

1

(R). Then (3.5) with x = 0 holds for almost

every � and the sums onverge in L

2

([��=h; �=h℄). This is a speial ase of a

very general result given in [15, p. 217℄.

In order to state the Poisson summation formula for T� R we note that an

admissible sampling lattie L has a orresponding \reiproal lattie" L

?

in the

Fourier domain. L

?

is the set of all � 2 Z� R suh that hy; �i 2 2�Z for all

y 2 L. From (3.3) it follows that

L

?

(d;N; P ) = f(Pk

1

�Nk

2

; 2�k

2

=d) ; k

1

; k

2

2 Zg : (3.6)

Theorem 3.2. (Poisson summation formula for T� R) Let z 2 T� R and

� 2 Z� R be �xed, L = L(d;N; P ) be a an admissible lattie and g 2 C

1

0

(T� R).

De�ne the lattie onstant 

L

by 

L

= d=P . Then



L

X

y2L

g(z + y)e

�ihz+y;�i

=

X

�2L

?

ĝ(� + �)e

ihz;�i

: (3.7)

We are now ready to state the lassial sampling theorem for this setting; f.

[24℄.

Theorem 3.3. Let g 2 C

1

0

(T� R), L = L(d;N; P ) an admissible sampling

lattie and K be a ompat subset of Z�R suh that its translates K+�; � 2 L

?

are disjoint. Let �

K

denote the harateristi funtion of K, i.e., �

K

(�) = 1 if

� 2 K and �

K

(�) = 0 otherwise. For z 2 T� R de�ne

Sg(z) =

d

P

X

y2L

~�

K

(z � y)g(y): (3.8)

Then

jg(z)� Sg(z)j � �

�1

Z

(Z�R)nK

jĝ(�)jd�: (3.9)

Observe that if ĝ vanishes outside of K then g = Sg, i.e., g an be reovered

exatly from its samples on the lattie L. The meaning of Sg and ~�

K

may

beome more lear by a omparison with the better known ase of sampling

on R. A lattie is then an equidistant set L = dZ= fdl; l 2 Zg. Assume that K

is an interval, say K = [�1; 1℄. Then

~�

K

(x) = (2�)

�1=2

Z

1

�1

e

ix�

d� =

r

2

�

sinx

x

=

r

2

�

sin(x);
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with the \sinus ardinalis" sin(x) = sin(x)=x. In this ase Sg is the so-alled

ardinal series

Sg(x) =

d

�

X

l2Z

g(dl) sin(x� dl):

The main idea of the proof of Theorem 3.3 is as follows: Using the Poisson

summation formula (3.7) we may ompute the Fourier transform of Sg as follows.



Sg(�) =

d

P

X

y2L

g(y)

1

2�

Z

T�R

~�

K

(z � y)e

�ihz;�i

dz

= �

K

(�)

d

P

X

y2L

g(y)e

�ihy;�i

= �

K

(�)

X

�2L

?

ĝ(� + �): (3.10)

From the Fourier inversion formula it follows that

j(g � Sg)(z)j � (2�)

�1

Z

Z�R

j(ĝ �



Sg)(�)jd�:

Now we use (3.10) and observe that

(ĝ �



Sg)(�) =

X

0 6=�2L

?

ĝ(� + �) for � 2 K;

and



Sg(�) = 0 for � 62 K. Hene

2�j(g � Sg)(z)j �

Z

K

j(ĝ �



Sg)(�)jd� +

Z

(Z�R)nK

j(ĝ �



Sg)(�)jd�

�

X

0 6=�2L

?

Z

K

jĝ(� + �)j d� +

Z

(Z�R)nK

jĝ(�)jd�

=

X

0 6=�2L

?

Z

K+�

jĝ(�)jd� +

Z

(Z�R)nK

jĝ(�)jd�

� 2

Z

(Z�R)nK

jĝ(�)jd� (3.11)

where the last estimate follows from the disjointness of the sets K + �, � 2 L

?

.

For a omplete proof see, e.g., [8℄ or [19, pp. 62{64℄.

We see from (3.10) that



Sg(�) vanishes outsideK. On the other hand the terms

with � 6= 0 in the sum ause high frequenies in ĝ to ontribute to



Sg(�) for � 2

K. This e�et is alled aliasing. The right-hand side of (3.9) provides an estimate

for the so-alled aliasing error. If g is the Radon transform of a funtion with

ompat support, then the Fourier transform ĝ annot have ompat support
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and an aliasing error will always be present. Thus tomography provides reasons

to seek sharper estimates for the aliasing error than the lassial estimate (3.9).

In the remainder of this setion we will report on a way to improve the estimate

(3.9). These results were derived in [11℄ and are presented here for their relevane

to sampling theory but will not be used further on, so that readers not interested

in this topi may safely proeed to the next setion.

De�nition 3.1. For g : T� R ! C and ' 2 T let g

'

: R ! C be given by

g

'

(s) = g('; s). De�ne

�

�

(g; �) = (2�)

�1=2

sup

'2T

Z

j�j>�

jg

'

(�)j d�: (3.12)

For K 2 Z� R ompat let k

1

= maxfjkj : (k; �) 2 Kg, �

1

= maxfj�j :

(k; �) 2 Kg, and M

1

= f(k; �) 2 Z� R : j�j � �

1

gnK; see Figure 1.

Finally, for a 2 R let ba and dae denote the largest integer � a and the

smallest integer � a, respetively.

We �rst state a simpli�ed version of the sharper estimate; f. [11, Proposi-

tion 5℄:

Proposition 3.1. Let K be a ompat subset of Z� R satisfying the ondition

that if (k; �) 2 K, then (k

0

; �) 2 K for all k

0

with jk

0

j � jkj. Let L = L(d;N; P )

be an admissible sampling lattie suh that the translated sets K + �, � 2 L

?

are disjoint, g 2 C

1

0

(T� R), Sg as in (3.8), z 2 T� R, and k

1

; �

1

;M

1

; �

�

as in

De�nition 3.1. Then

jg(z)� Sg(z)j � �

�1

Z

M

1

jĝ(�)jd� + C(k

1

; P ) �

�

(g; �

1

)

with C(k

1

; P ) = 1 +

�

1 +

6k

1

+3

P

+

2

�

ln(4k

1

+ 2)

� �

�

1

d

�

�

.

Proposition 3.1 is a orollary of Theorem 3.4 below. The key idea of the proof

the Theorem is as follows. The Fourier inversion formula gives

jg(z)� Sg(z)j =

1

2�

�

�

�

�

Z

Z�R

(ĝ(�) �



Sg(�)) e

ihz;�i

d�

�

�

�

�

�

1

2�

�

�

�

�

Z

K

(ĝ(�)�



Sg(�)) e

ihz;�i

d�

�

�

�

�

+

1

2�

�

�

�

�

�

Z

(Z�R)nK

ĝ(�)e

ihz;�i

d�

�

�

�

�

�

(3.13)

where we have used that aording to (3.10)



Sg vanishes outside K. The more
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diÆult term to estimate is the integral over K. By (3.10) we have

1

2�

�

�

�

�

Z

K

(ĝ(�)�



Sg(�))e

ihz;�i

d�

�

�

�

�

=

1

2�

�

�

�

�

�

�

Z

K

X

0 6=�2L

?

ĝ(� + �)e

ihz;�i

d�

�

�

�

�

�

�

(3.14)

Now we use (3.6)to write

X

0 6=�2L

?

ĝ(� + �) =

X

(k

1

;k

2

)6=(0;0)

ĝ(�

1

+ Pk

1

�Nk

2

; �

2

+ 2�k

2

=d):

The key idea is now to use the one-dimensional Poisson summation formula for

the sum over k

1

. This is possible for those � 2 K and k

2

suh that j�

2

+2�k

2

=dj >

�

1

, whih guarantees that � + � 2 M

2

for all k

1

. The detailed proof is given in

[11℄.

We onlude by stating the more general result.

Theorem 3.4. ([11℄) Let g 2 C

1

0

(T� R), K � Z� R ompat and L =

L(d; P;M;N) an admissible sampling lattie suh that the translated sets K + �,

� 2 L

?

are disjoint. Let k

1

; �

1

;M

1

as in De�nition 3.1, �

�

= maxf�

1

;

2�

d

��

1

g,

and '

j

= 2�j=P , j = 0; : : : P � 1. Then

jg('; s)� Sg('; s)j

� �

�1

Z

M

1

jĝ(�)jd� + (2�)

�1=2

Z

�>�

1

jg

'

(�)j d�

+

C(K;P; ')

p

2�

�

�

1

d

�

�

max

j=0;:::;P�1

Z

j�j>�

�

jg

'

j

(�)jd� (3.15)

with

C(K;P; ') =

1

P

P�1

X

j=0

max

j�j��

1

�

�

�

�

�

�

X

k2N(�)

e

ik('�'

j

)

�

�

�

�

�

�

:

where N(�) = fk : (k; �) 2 Kg.

4 The support of



Rf

Theorem 3.3 indiates what needs to be done in order to �nd eÆient sampling

shemes for tomography, i.e., when g = Rf . First we need to �nd a suitable

set K so that the right-hand side of (3.9) is suÆiently small. Then we need to

identify latties L(d;N; P ) as sparse as possible but suh that the translated sets

K + �, � 2 L

?

are disjoint.
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The set K will of ourse depend on the funtion f . The ruial parameter

turns out to be a ut-o� frequeny b suh that j

^

f(�)j is suÆiently small for

j�j > b. The parameter b may be viewed as an \essential bandwidth" of f . A

suitable set K was �rst found by Lindgren and Rattey [18, 26℄. Natterer [19℄

gave the following rigorous estimate.

Theorem 4.1. [19, p. 71℄ For b > 0 and 0 < # < 1 let

K(#; b) =

�

(k; �) 2 Z� R : j�j < b; jkj < #

�1

max(j�j; (1� #)b)

	

; (4.16)

see Figure 2. Let f 2 C

1

0

(
). Then

Z

(Z�R)nK

j



Rf(�)j d� �

8

�

2

#

Z

j�j>b

j

^

f(�)jd� + k f k

L

1

�(#; b); (4.17)

where �(#; b) dereases exponentially with b, satisfying an estimate

0 � �(#; b) � C(#)e

��(#)b

(4.18)

with onstants C(#); �(#) > 0.

The set K(#; b) is depited in Figure 2. What will turn out to be ruial for

�nding eÆient sampling latties is the bow-tie like shape of K. We will briey

sketh the derivation to illustrate how this shape arises. We have



Rf(k; �) = (2�)

�1

Z

2�

0

Z

R

Rf('; s)e

�i(k'+�s)

d' ds

= (2�)

�1=2

Z

2�

0

d

R

'

f(�) e

�ik'

d'

=

Z

2�

0

^

f(��) e

�ik'

d' (4.19)

= (2�)

�1

Z

R

2

f(x)

Z

2�

0

e

�ihx;��i�ik'

d' dx (4.20)

In deriving (4.19) we used the projetion-slie theorem (2.2). From (4.19) we see

that j



Rf(k; �)j will be small for j�j > b if b is the \essential bandwidth" of f ,

i.e., if j

^

f(�)j is suÆiently small for j�j > b. This explains the upper and lower

boundaries of the set K; f. Figure 2. To explain the bow-tie shape we ontinue

by writing x = jxj(os ; sin ). This gives



Rf(k; �) = (2�)

�1

Z

R

2

f(x)

Z

2�

0

e

�i�jxj os('� )�ik'

d'

= i

k

Z

R

2

f(x)e

�ik 

J

k

(��jxj) dx (4.21)

where we have used the integral representation

J

k

(t) =

i

�k

2�

Z

2�

0

e

it os'�ik'

d' (4.22)
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for the Bessel funtions of the �rst kind J

k

(t), whih an be found in [19, p. 197℄.

Let 0 � # < 1. Combining an upper bound for the Bessel funtions found in

[1, 9.1.63℄ with a derivation given in [19, p. 198℄ one obtains the estimate

jJ

k

(#k)j � e

�(jkj=3)(1�#

2

)

3=2

: (4.23)

It shows that jJ

k

(t)j deays exponentially as jkj inreases beyond jtj.

Sine f(x) is assumed to vanish for jxj > 1 we now see from (4.21) and (4.23)

that j



Rf(k; �)j will deay rapidly as soon as jkj > j�j. This explains the bow-

tie shape of the set K. We see that it omes from the ompat support of the

funtion f and the deay properties of the Bessel funtions. For a omplete

derivation see [19, pp. 71-73℄. One an also hoose to eliminate the parameter #

by setting it equal to 1, as was done in [23, x4.3℄. On the one hand this simpli�es

the presentation. On the other, it is apparent from the estimate (4.23) that the

result may be somewhat optimisti for situations where both jkj and j�j are small

and jkj only slightly exeeds j�j.

5 Sampling onditions

The next step in applying Theorem 3.3 is to �nd onditions for the lattie pa-

rameters d;N; P suh that the translated sets K(#; b) + �, � 2 L

?

(d;N; P ) are

disjoint. This is a requirement for the reiproal lattie to be sparse whih means

that the sampling lattie itself must be suÆiently dense.

We begin with the standard lattie, i.e., N = 0. In order to exploit the sym-

metry (3.4) we assume P to be even. Aording to (3.6) the reiproal lattie is

given by

L

?

S

= L

?

(d; 0; P ) = f(Pk

1

; 2�k

2

=d) ; k

1

; k

2

2 Zg :

From this we readily onlude that for K = K(#; b) the sets K + � = K +

(Pk

1

; 2�k

2

=d) will be disjoint if and only if

d < �=b; P > 2b=#; (5.24)

see Figure 3.

The translated sets in Figure 3 do not appear to be paked as densely as

possible. Another arrangement orresponding to a di�erent lattie may result

in a denser paking, giving a denser reiproal lattie and therefore a sparser

sampling lattie. However, it is apparent from letting k

1

= 1; k

2

= 0 in (3.6) that

the point � = (P; 0) always belongs to L

?

(d;N; P ). For K and K + (P; 0) not

to overlap we need P > 2b=#. Hene the standard lattie is optimal in the sense

that it does require only a minimal number of diretions. Other latties an only

be more eÆient overall by allowing values of d greater than �=b. This turns out

to be the ase for the interlaed lattie. The reiproal lattie is now given by

L

?

I

= f((2k

1

� k

2

)P=2; 2�k

2

=d) ; k

1

; k

2

2 Zg ;
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where for reasons of making use of the symmetry (3.4) we assume P to be

a multiple of 4. Now the translated sets K(#; b) + � will be disjoint if either

onditions (5.24) are satis�ed, or if

�

b

< d �

2�

b

; p > max

�

2�

#d

;

(2� #)b

#

�

; p even, P = 2p: (5.25)

Figure 4 shows the ase of optimally sparse sampling with the interlaed lattie,

i.e., d = 2�=b, P = 2b(2� #)=#. We see that the interlaed lattie allows for a

maximal detetor spaing of d = 2�=b whih is twie as large as the maximum

allowed for standard lattie, with only a moderate inrease in P , sine # an

often be hosen very lose to 1. Hene we obtain the same theoretial resolution

(as determined by the bandwidth b) with only little more than half the amount

of data required for the standard lattie.

Sampling onditions for a general admissible sampling lattie L(d;N; P ) have

been given in [11℄.

6 The �ltered bakprojetion algorithm

Having identi�ed eÆient sampling shemes the question remains how best to

reonstrut from eÆiently sampled data. In this setion whih is based on the

presentations given in [8℄ and [12℄, we desribe the most popular tomographi

reonstrution algorithm and present an error analysis whih indiates how to

ahieve good reonstrutions. The �ltered bakprojetion algorithm is based on

the following approximate inversion formula.

Theorem 6.1. Let e 2 L

2

(R

2

) be a radial funtion suh that j�j

1=2

ê(�) 2 L

2

(R

2

),

and  the even funtion of one variable given by ê(�) = (2�)

�1

 (j�j). Let the

assoiated onvolution kernel k be given by

^

k(�) =

1

2

(2�)

�3=2

j�j (�). Then

e � f(x) =

Z

2�

0

Z

R

k(hx; �i � s)Rf('; s) ds d': (6.26)

Proof. The relation (6.26) an be veri�ed by writing e � f as e � f(x) =

R

ê(�)

^

f (�)e

ihx;�i

d�, expressing the integral in polar oordinates, and using the

relation (2.2); see, e.g., [10℄.

If e is an approximate Æ-funtion then (6.26) gives an approximate reonstru-

tion formula for f .

Disretizing the integrals in equation (6.26) by using the trapezoidal rule yields

the �ltered bakprojetion algorithm. We derive the algorithm assuming the data

are values Rf('

j

; s

jl

) of the Radon transform of f , sampled on an admissible

sampling lattie L(d;N; P ) as desribed in (3.3).
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Disretizing (6.26) with the trapezoidal rule gives

e � f(x) '

2�

P

P�1

X

j=0

Q

j

(hx; �

j

i);

Q

j

(t) = d

X

l

k(t� s

jl

)Rf('

j

; s

jl

);

with '

j

; s

jl

as in (3.3), and �

j

= (os'

j

; sin'

j

). The reonstrution is usually

omputed for values of x on a retangular grid x

m

1

m

2

= (m

1

=M

1

;m

2

=M

2

). Sine

omputing the disrete onvolution Q

j

(hx; �

j

i) for eah ourring value of hx; �

j

i

would take too long, one �rst omputes Q

j

(iH), jij � 1=H , and then obtains an

approximation I

H

Q

j

(hx; �

j

i) for Q

j

(hx; �

j

i) by linear interpolation with stepsize

H . We assume that

H = d=(N

0

m); with 0 < m;N

0

2 Z; and N

0

N=P 2 Z: (6.27)

This gives H = d=m for the standard lattie (N

0

= 1) and H = d=(2m) for the

interlaed lattie (N

0

= 2). Then the e�et of interpolating the onvolution is

the same as replaing the kernel k with the pieewise linear funtion I

H

k whih

interpolates k at the points Hl, l 2 Z; see, e.g., [8, p.84℄. Hene the algorithm

omputes the funtion

f

R

(x) =

2�

P

P�1

X

j=0

I

H

Q

j

(hx; �

j

i)

=

2�d

P

P�1

X

j=0

X

l2Z

I

H

k (hx; �

j

i � s

jl

)Rf ('

j

; s

jl

) (6.28)

A popular hoie for the onvolution kernel k is the so-alled Shepp-Logan

kernel whose Fourier transform is given by

^

k(�) =

1

2

(2�)

�3=2

j�j sin(��=(2b))�

[�b;b℄

(�); (6.29)

f. [19, pp.110-111℄. Here we used the notation �

M

to denote the harateristi

funtion of a set M , i.e, �

M

(x) = 1 for x 2M and �

M

(x) = 0 otherwise.

In [12℄ the following error estimate was given. It builds on pioneering work in

[16℄ and extensions in [8℄. For an alternative estimate yielding onvergene rates

depending on the smoothness of f see [27℄.

Theorem 6.2. Let f 2 C

1

0

(
), g = Rf , f

R

be as in (6.28) with e and k as in

Theorem 6.1 and in addition suh that

^

k 2 L

1

(R) and

P

l2Z

jk(Hl)j

2

< 1. Let

M � Z� R be ompat and let g be sampled on an admissible sampling lattie

L with parameters d;N; P suh that the translates M + �, � 2 L

?

are disjoint.

Then, for b > 0,

f

R

(x) = G

H

� e � f(x) + E

1

(x) + E

2

(x) + E

3

(x) + E

4

(x)
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with

b

G

H

(�) = (2�)

�1

sin

2

(H j�j=2)�

[0;b℄

(j�j);

jE

1

(x)j �

p

2�

d

P

X

y2L

jg(y)j

Z

Z�RnM

jF (�; x)jd�;

jE

2

(x)j � 2

p

2�

�

max

j�j�b

�

�

�

sin

2

(H�=2)

^

k(�)

�

�

�

�

Z

(Z�R)nM

jĝ(�)j d�;

jE

3

(x)j � (2�)

3

2

sup

�

Z

b

�b

�

1� sin

2

(H�=2)

�

j

^

k(�)j

X

l2Z

�

�

�

�

^

f

��

� +

2�l

d

�

�

�

�

�

�

�

d�

jE

4

(x)j � 2(2 + d)

p

2� k f k

1

Z

j�j>b

j

^

k(�)jd�;

where sin(s) = sin(s)=s and for � = (l; �) 2 Z� R,

F (�; x) = J

l

(�jxj) sin

2

(H�=2)

^

k(�)�

[�b;b℄

(�) (6.30)

with J

l

denoting the Bessel funtions of the �rst kind.

The parameter b is a ut-o� frequeny and should be hosen suh that j

^

f(�)j

is suÆiently small for j�j > b. G

H

has bandwidth b and so G

H

� e � f is a low-

pass �ltered approximation to f with bandwidth b. Appliation of the theorem

to the standard and interlaed latties requires to speify an appropriate set

M ; to �nd sampling onditions for the lattie parameters d;N; P whih ensure

that the translated sets M + �, � 2 L

?

are disjoint; and to �nd estimates for

R

Z�RnM

jF (�; x)jd� and for

R

(Z�R)nM

jĝ(�)j d�. We will �rst onsider the standard

lattie.

For the standard lattie we let M be the retangle M

1

(#; b) = f(k; �) : j�j �

b; jkj � b=#g. Note that M

1

ontains the set K(#; b) of Theorem 4.1, so we

know that



Rf(�) will be small outside of M

1

if b is hosen as the essential

bandwidth of f . The larger setM

1

an be hosen here sine it turns out that the

onditions for the translates M

1

+ � to be disjoint are the same as for the sets

K+� to be disjoint. As we will see, having a larger set allows for a sharper error

estimate. For the standard lattie we have N = 0 in (3.3), and the reiproal

lattie L

?

equals L

?

= f(Pk

1

; 2�k

2

=d); k

1

; k

2

2 Zg. For reasons of eÆieny

as disussed earlier we let P = 2p be even. It is obvious that the translated sets

M

1

(#; b) + �, � 2 L

?

are disjoint if and only if the sampling onditions (5.24)

are satis�ed. Sine M

1

(#; b) � K(#; b) the estimate of Theorem 4.1 an be used

for

R

(Z�R)nM

1

jĝ(�)j d�:

Z

(Z�R)nM

1

jĝ(�)j d� �

Z

(Z�R)nK

jĝ(�)j d�

�

8

�

2

#

Z

j�j>b

j

^

f(�)jd� + k f k

L

1

�(#; b): (6.31)
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Hene the error E

2

will be small if f is \essentially bandlimited" with bandwidth

b in the sense that

R

j�j>b

j

^

f(�)jd� is suÆiently small.

It was shown in [12℄ that for the standard lattie

Z

Z�RnM

1

(#;b)

jF (�; x)jd� � 4b (max

j�j�b

j

^

k(�)j)

e

��b=#

1� e

��

;

� = (1� #

2

jxj

2

)

3=2

=3 (6.32)

Hene the error E

1

will deay exponentially with inreasing b.

The error E

3

is aused by the interpolation step and usually not a onern

when using the standard lattie. This an be explained as follows: Consider the

ommon parameter hoie d = H = �=b. Sine

^

f(�) is assumed to be small for

j�j > b, only the term with l = 0 in the sum will be signi�ant, i.e., we have for

j�j � b

X

l2Z

�

�

�

^

f((� + 2�l=d)�)

�

�

�

=

X

l2Z

�

�

�

^

f((� + 2bl)�)

�

�

�

' j

^

f(��)j:

Usually the density funtion f is non-negative so that j

^

f(��)j has a sharply

peaked maximum at � = 0 and is very small for j�j lose to b. In suh a ase the

error E

3

will be small sine the fator 1 � sin

2

(H�=2) is small exatly where

j

^

f(��)j is large.

The last error E

4

an be kept small by hosing the onvolution kernel k suh

that

R

j�j>b

j

^

k(�)jd� is small. Often one an use bandlimited k so that E

4

vanishes

entirely. This is for example the ase for the Shepp-Logan kernel (6.29).

In summary, for the standard lattie we expet a good reonstrution as long as

the sampling onditions (5.24) are met. The interpolation stepsize H may be as

large as d. The piture in the upper left of Figure 5 demonstrates this onlusion.

It shows a reonstrution of the so-alled Shepp-Logan phantom with p = 420,

d = H = 1=128, and b = �=d. The phantom models the rossetion of a human

head by a superposition of 11 ellipses whose parameters an be found in [28℄.

The phantom has values between 0 and 1 but the display is suh that values

greater 0:07 are rendered white and values less than �0:07 are rendered blak.

This hoie is made beause we are interested mainly in the small di�erenes

of the features inside the \head". Note that the reonstrution is very smooth

inside the head but not outside. This omes from the fat that the strongest

artifats tend to appear along tangents to boundaries with large density jumps.

In this ase the only large density jumps are assoiated with the \skull", and no

tangent to a boundary of the skull passes through the interior of the head. Sine

we are interested only in the interior, this reonstrution is quite satisfatory.

For the interlaed lattie we let M = K(#; b) as in (4.16). For this lattie

P = 2p and N = P=2 = p. We always let p be even, so that beause of the

symmetry relation (3.4) only the angles '

j

2 [0; �) need to be measured. The

reiproal lattie is L

?

= f(p(2k

1

� k

2

); 2�k

2

=d); k

1

; k

2

2 Zg. We have already

seen that the sets K(#; b) + �, � 2 L

?

are disjoint if either (5.24) or (5.25) are

satis�ed. Comparison of (5.24) and (5.25) shows that the interlaed lattie allows
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to double the detetor spaing d with only a small inrease of p. It is therefore

potentially up to almost twie as eÆient as the standard lattie. An estimate

for

R

(Z�R)nK

jĝ(�)j d� whih ontrols the error term E

2

has already been given in

(6.31). It was shown in [12℄ that for the interlaed lattie

Z

Z�RnK(#;b)

jF (�; x)jd� � (max

j�j�b

j

^

k(�)j) 4#e

��b

0

�

1 + b

0

1� e

��

+

e

��

(1� e

��

)

2

�

b

0

= (1� #)b=#; � = (1� #

2

jxj

2

)

3=2

=3: (6.33)

As in the ase of the standard lattie, the error E

1

dereases exponentially with

b, although at a slower rate. Also, for #jxj lose to 1 we expet this error to

be signi�antly larger than for the standard lattie, due to the term involving

(1� e

��

)

2

.

As before the error E

4

is kept small by hosing the onvolution kernel k ap-

propriately.

Of greater onern, however, is the error E

3

, whih unlike as in the ase of

the standard lattie is now ritial. Consider the hoie of parameters d = 2�=b,

H = �=b. Now the sum over l in the estimate for E

3

in Theorem 6.2 may have

3 signi�ant terms for j�j < b:

X

l2Z

�

�

�

^

f((� + 2�l=d)�)

�

�

�

=

X

l2Z

j

^

f((�+bl)�)j ' j

^

f((��b)�)j+j

^

f(��)j+j

^

f ((�+b)�)j:

As disussed earlier, the ontribution of the term j

^

f(��)j is strongly attenu-

ated by the fator (1 � sin

2

(H�=2)). However, this is not the ase for the

other two terms. E.g., let � be lose to b. Then, assuming again that

^

f is large

near the origin, j

^

f((� � b)�)j will be large and is not attenuated by the fator

(1 � sin

2

(H�=2)) whih will be lose to 1. Therefore we expet onsiderable

reonstrution errors for this hoie of parameters. That this is indeed the ase

is demonstrated in [16, 8℄ and in the upper right image of Figure 5. Compared to

the upper left image we used the interlaed lattie with d = 1=64 and as before

reonstruted with an interpolation stepsize H = 1=128. Strong high-frequeny

errors render the image useless.

A omplementary explanation for this strong sensitivity with respet to H

was given in [8℄. The sums with respet to j and l in (6.28) an be viewed as

disretizations of the integrals with respet to ' and s in (6.26), respetively. If

the sampling onditions (5.24) are satis�ed, then both the inner and outer inte-

gral are approximated aurately by the respetive sum. But in ase of (5.25) the

stepsize dmay be too large for an aurate approximation of the inner integral. In

this ase the auray of the reonstrution depends on the anellation of these

errors during the subsequent summation with respet to j. If the interpolation

is not aurate, this anellation is prevented.

Hene when using the interlaed lattie one should hoose H � �=b, so that

(1�sin

2

(H�=2)) is small for j�j < b. Typial hoies in pratie areH = �=(16b)

or smaller. This hoie has been made in the lower left image of Figure 5. The
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high-frequeny errors are indeed removed, but it turns out that we also removed

a welome smoothing e�et of the interpolation with larger stepsize and are left

with an unwelome high-frequeny pattern stemming from the disontinuity of

the Fourier transform (6.29) of the onvolution kernel k at the ut-o� frequeny.

This error an be removed by hosing a di�erent kernel k whose Fourier trans-

form tapers of to zero at � = �b. However, this entails a ertain loss of resolution

as was demonstrated in [8℄. A better possibility is to �rst interpolate the data

onto the standard lattie and then perform the reonstrution from the inter-

polated data. This was done in [7℄ using the interpolation from the sampling

theorem with very good results. In the lower right of Figure 5 we interpolated

the data onto the standard lattie using bilinear interpolation. The reonstru-

tion is omparable to the one in the upper left, although now we used only half

as many sampled data. However, we will see in the next setion that part of

the advantage of the interlaed lattie is lost due to inreased sensitivity with

respet to undersampling in the ' variable.

In summary, we expet good reonstrutions for the interlaed lattie for d

lose to the optimal value 2�=b if the sampling onditions (5.25) are satis�ed and

if either H is suÆiently small or the data are interpolated onto the standard

lattie prior to reonstrution.

7 Analysis of the e�ets of undersampling

In this setion we use sampling theory to analyze some e�ets of undersam-

pling. By undersampling we mean a violation of the sampling onditions (5.24)

or (5.25). First we present a qualitative disussion of why the interlaed lattie

is more sensitive to undersampling than the standard lattie. Then we perform

a more detailed analysis and gain insight into the loation and strength of un-

dersampling artifats when using the �ltered bakprojetion algorithm.

Let us begin by noting an intriguing di�erene in the struture of the sampling

onditions (5.24) and (5.25) for the standard lattie and the interlaed lattie,

respetively. The onditions for d and P in (5.24) are independent of eah other

and indeed ould be derived by applying one-dimensional sampling theory to

eah of the variables separately. On the other hand the onditions (5.25) ome

from genuinely two-dimensional sampling theory, whih is reeted in the fat

that the ondition for P involves d. This has the intriguing onsequene that in

some ases the ondition an be violated by dereasing d, in spite of the fat that

this makes the sampling lattie more dense. So we would have undersampling in

spite of having sampled more data. Figure 6 illustrates suh a ase. Compared

to Figure 4 we dereased d without hanging P . This has the e�et of moving

the translated sets K + � further apart in the vertial diretion. As the �gure

shows the translated sets are no longer disjoint. Numerial experiments in [8, p.

97℄ on�rmed that this results in inferior tomographi reonstrutions. This an

also be seen from a omparison of the top and bottom pitures in the right half
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of Figure 10, whih are disussed further in the next setion. On the other hand,

sampling more data by leaving d �xed and inreasing P does not violate (5.25).

In this ase the translated sets K + � in Figure 4 move further apart from eah

other in the horizontal diretion and remain disjoint.

It turns out that part of the advantage of the interlaed lattie is lost due to

inreased sensitivity with respet to undersampling in the ' variable. This an be

qualitatively explained as follows (f. [23, p. 89, Remark 3℄): Figure 7 shows the

translated sets K+� in ase of the standard lattie with P = 2b=#, d = �=b. For

illustrative purposes we have marked the point � = (�0:85b=#;�0:99b) 2 K and

its translates � + � with a �. Assume we wish to ompute an approximation for

the Fourier transform ĝ(�) from the values of g on a sampling lattie L by means

of taking the disrete Fourier transform with respet to L. The result would

be ĝ(�) ' (d=P )

P

y2L

g(y)e

�ihy;�i

, i.e., just the left-hand side of the Poisson

summation formula (3.7) for z = 0. Aording to the Poisson summation formula

this is equal to

X

�2L

?

ĝ(� + �) = ĝ(�) +

X

0 6=�2L

?

ĝ(� + �):

If the translated points � + � lie outside K for � 6= 0 we may assume that their

ontribution is small, so that we obtain a good approximation for ĝ(�). This will

be the ase if the sampling onditions (5.24) are satis�ed, as an be seen from

Figure 7. In Figure 8 we have dereased P to P = 0:8(2b=#), so that the sets

K + � are no longer disjoint. We see that one of translated points � + �, � 6= 0

now lies within K, ausing an aliasing error. However, it turns out that in most

appliations of tomography this error will be small. This is due to the fat that

in most ases f(x) � 0 for all x, so that the Fourier transform

^

f(�) is maximal

at the origin and deays quikly away from the origin. Beause of the projetion-

slie theorem (2.2) the same is true for ĝ(k; �) =



Rf(k; �). Sine the only one

of the translated points � + �, � 6= 0 whih lies in K lies near the lower right

orner of K, i.e., far away from the origin, the resulting error is likely to be small

in most ases. This explains the observation that for the standard lattie P an

often be hosen smaller than required by (5.24) without signi�ant degradation

in the reonstruted images. For example, in order to obtain the visible artifats

in the middle left piture of Figure 10, whih is disussed further below, we had

to redue P very signi�antly.

This situation is di�erent for the interlaed lattie as Figure 9 shows. Com-

pared to Figure 4 we have dereased P to 4=5 of its required value. We have

again marked the point � = (�0:85b=#;�0:99b) 2 K and its translates. Again

one of the translated points lies inside K, but this time very lose to the origin,

where j



Rf(k; �)j is large. This auses a large error for the approximate value of



Rf(�), indeed the error an be expeted to be muh larger than the exat value.

Hene we expet to inur large high-frequeny errors whih may signi�antly

degrade the reonstruted images; f. the middle right piture in Figure 10. This

onludes our qualitative disussion.
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In the remainder of this setion we build on results in [19, p. 105℄ and [12℄ by

giving a quantitative disussion of artifats aused by undersampling in the '

variable for the standard and interlaed latties when using the �ltered bakpro-

jetion algorithm.

For the following disussion it suÆes to neglet the e�et of the interpolation

and to assume that the onvolution kernel k from Theorem 6.1 is bandlimited

with bandwidth b, i.e.,

^

k(�) = 0 for j�j > b. This is possible sine it was shown in

[12℄ that the ontributions from the interpolation and from the high-frequeny

part of k an be estimated separately. Hene we assume that we reonstrut the

funtion

f

R

(x) =

2�d

P

P�1

X

j=0

X

l2Z

k(hx; �

j

i � s

jl

)Rf('

j

; s

jl

):

For x 2 
 de�ne the auxiliary funtion q

x

2 L

2

(T� R) suh that q

x

(�';�s) =

k(hx; �i � s), i.e., q

x

('; s) = k(hx; !i + s) with ! = (os';� sin'). As before

we use the notation '

j

= 2�j=P and �

j

= (os'

j

; sin'

j

), write g('; s) for

Rf('; s), and in ases were we onsider operations ating on the s-variable alone

we may write g

'

(s), q

x;'

(s) for g('; s) and q

x

('; s), respetively. For the following

disussion we will also assume that f is essentially bandlimited with bandwidth

b in the sense that jg

'

(�)j is negligibly small for j�j > b.

Using s

jl

= dl + dNj=P , expressing q

x;'

as the inverse Fourier transform of

q̂

x;'

and using the one-dimensional Poisson summation formula (3.5) we obtain

f

R

(x) =

2�d

P

P�1

X

j=0

X

l2Z

q

x

(�'

j

;�s

jl

)g('

j

; s

jl

)

=

p

2�d

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�)

X

l2Z

g

'

j

(dl + dNj=P )e

�i�(dl+dNj=P )

d�

=

2�

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�)

X

l2Z

g

'

j

(� + 2�l=d)e

iNl'

j

d�: (7.34)

On the other hand we have from Theorem 6.1

e � f(x) =

Z

2�

0

Z

R

k(hx; �i � s) g('; s)ds d'

=

Z

2�

0

Z

R

q̂

x;�'

(�)g

'

(�) d� d':

Treating the term with l = 0 in (7.34) separately gives the following deom-
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position of the reonstrution error.

E(x) = f

R

(x) � e � f(x) = E

1

(x) +E

2

(x);

E

1

(x) =

2�

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�) g

'

j

(�) d�

�

Z

2�

0

Z

R

q̂

x;�'

(�)g

'

(�) d� d'; (7.35)

E

2

(x) =

X

l6=0

2�

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�)g

'

j

(� + 2�l=d)e

iNl'

j

d�: (7.36)

Clearly E

1

an be viewed as the error stemming from disretizing the integral

with respet to '. In order to proeed further we need the Poisson summation

formula for T whih reads

2�

P

P�1

X

j=0

G('

j

)e

�im'

j

=

p

2�

X

l2Z

b

G(m+ P l); (7.37)

b

G(l) =

1

p

2�

Z

2�

0

G(')e

�il'

d'

for suÆiently smooth funtions G. Using (7.37) for the funtion

G

l

(') =

Z

R

q̂

x;�'

(�)g

'

(� + 2�l=d) d�

gives

E

1

(x) =

p

2�

X

k2Z



G

0

(Pk) �

Z

2�

0

G

0

(') d'

=

p

2�

X

k 6=0



G

0

(Pk) (7.38)

E

2

(x) =

p

2�

X

l6=0

X

k2Z



G

l

(Pk �Nl): (7.39)

The next task is to ompute the Fourier oeÆients



G

l

(m). We have

q̂

x;�'

(�) =

^

k(�) e

i�hx;�i

g

'

(� + 2�l=d) =

1

p

2�

Z

R

2

f(y) e

�i(�+2�l=d)hy;�i

dy:

The seond equation is lear from the projetion-slie theorem (2.2). This leads

to



G

l

(m) =

1

p

2�

Z

2�

0

Z

R

q̂

x;�'

(�)g

'

(� + 2�l=d) d� e

�im'

d' (7.40)

=

1

2�

Z

R

2

f(y)

Z

R

^

k(�)

Z

2�

0

e

ih�x�(�+2�l=d)y; �i�im'

d' d� dy:
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Writing z = �x�(�+2�l=d)y as z = jzj(os ; sin ) and using the representation

(4.22) for the Bessel funtion we obtain

j



G

l

(m)j =

�

�

�

�

Z

R

2

f(y)

Z

R

^

k(�)J

m

(j�x� (� + 2�l=d)yj)e

�im 

d� dy

�

�

�

�

�

Z

b

�b

j

^

k(�)j

Z




jf(y)J

m

(j�x � (� + 2�l=d)yj)j dy d�: (7.41)

We now ombine (7.40) and (7.41) to �nd onditions for j



G

l

(m)j to be small.

First we observe from (7.40) that the integrand may not be negligible only for

those values of � for whih both

j�j � b and j� + 2�l=dj � b: (7.42)

Combining this with the estimate (4.23) we �nd that



G

l

(m) will be negligibly

small if

j�x � (� + 2�l=d)yj � #jmj (7.43)

for all x 2 
, all y 2 supp(f), and all values of � satisfying (7.42).

We are now ready to disuss the errors for spei� latties and begin with

the standard lattie. We assume that the sampling ondition for d is satis�ed,

i.e., d � �=b. It follows that the onditions (7.42) are only satis�ed if l = 0 and

j�j � b. Hene E

2

will be small. The leading terms in the expansion (7.38) for

E

1

are



G

0

(�P ). Aording to (7.43) these terms will be small if

j�(x � y)j � #P

for all x 2 
, all y 2 supp(f), and all j�j � b. Sine the maximum value for

jx � yj, x; y 2 
 equals 2, this ondition leads bak to the sampling ondition

P � 2b=#. If f is supported in a region jyj � r < 1, then we have jx�yj � (1+r)

and (7.43) holds for P � (1 + r)b=#.

We also obtain some information about the loation of artifats in ase (7.43)

is violated. Assume that f(y) is onentrated near a point y

0

. Then j�(x � y)j

is maximal for j�j = b and x as far away from y

0

as possible. So we expet the

artifats to be strongest and to appear �rst near the part of the boundary of


 whih is opposite y

0

. However, we see from (7.40) that the ontribution to



G

0

(�P ) from values j�j lose to b will not be large, sine g

'

(�) an be expeted

to be small for j�j near b if f(x) is a non-negative funtion. These expetations

are onsistent with pratial experiene. With the standard lattie P an often be

hosen signi�antly smaller than 2b=# without muh degradation in the image.

This is also demonstrated by the following numerial experiment. Figure 10 shows

various reonstrutions of the funtion

f(y) =

�

1� 100jy � y

0

j

2

�

3

+

; y

0

= (0:4; 0:7)
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where the + symbol indiates that f(y) = 0 whenever (1 � 100jy � y

0

j

2

) <

0. Hene f is supported in the region jy � y

0

j � 0:1. For all reonstrutions

of Figure 10 we hose b = 32� and the interpolation stepsize H = �=(8b) =

1=256. We have to hoose very small H beause our goal is to obtain aurate

reonstrutions in the sense of a small l

2

-error. In ase of H = d the additional

�ltering aused by the funtion G

H

from Theorem 6.2 auses additional error.

This situation is di�erent from Figure 5. There the goal was not so muh to

minimize the l

2

-error but to obtain optially pleasing images, so the additional

smoothing aused by G

H

was welome. The reonstrutions are omputed on

a 256 � 256 grid. Sine we want to study small artifats the display is suh

that values below �0:01 are rendered blak and values above 0:01 are rendered

white. The upper left piture shows a reonstrution with the standard lattie

with d = �=b = 1=32 and p = 112. Here we let p = P=2 and only used the p

diretions overing a 180 degree range. Clearly the sampling onditions (5.24)

are satis�ed. The relative l

2

-error of this reonstrution is 4:8%. Slight redution

of p does not lead to a visible distortion in the image. The middle left piture in

Figure 10 shows a reonstrution where p is signi�antly redued to p = 50. As

predited, the resulting artifats are strongest near the boundary of 
 opposite

y

0

. The relative error is now 7:4%. The artifats are still not very strong. While

the maximum of the funtion f(y) equals 1, the maximum value of the artifat

equals only 0:0107.

We now turn to the interlaed lattie. If d � �=b we have the same situation

as disussed above for the standard lattie. More interesting is the ase �=b �

d � 2�=b as permitted by (5.25). In this ase the onditions (7.42) are satis�ed

by the following values of l and �.

l = 0; �b � � � b

l = 1; �b � � � b�

2�

d

l = �1;

2�

d

� b � � � b

The terms with l = 0 lead to the same disussion as above, sine the parameter

d does not our in (7.38). In the following we investigate the terms with l = 1.

The terms with l = �1 lead to the same onlusions. For l = 1 the leading

terms in the expansion (7.39) for E

2

are



G

1

(�P=2). Reall that N = P=2 for

the interlaed lattie. For these terms to be small we need

j�x� (� + 2�=d)yj � #P=2

all x 2 
, all y 2 supp(f), and �b � � � b � 2�=d. For these values of � we

obtain

j�x� (� + 2�=d)yj � j�j jxj +

�

�

�

�

� +

2�

d

�

�

�

�

jyj

= j�j jxj +

�

2�

d

� j�j

�

jyj �

2�

d

: (7.44)
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where we have used that b � 2�=d � 2b beause of (5.25). This leads to the

ondition P � 4�=(#d) for P whih is onsistent with the sampling ondition

(5.25). The upper right piture in Figure 10 shows a reonstrution using the

interlaed lattie with p = 112 and d = 2�=b = 1=16. The sampling onditions

(5.25) are satis�ed and with a relative l

2

-error of 4:7% the reonstrution is of

equal auray as the one from the standard lattie in the upper left piture,

although now we have only half as many sampled data.

Again we obtain some information about the magnitude and loation of arti-

fats aused by hoosing P too small. Assume again that f(y) is onentrated

near a point y

0

. Then we have that M(�) = max

x2


j�x � (� + 2�=d)y

0

j will be

maximal as � runs through [�b; b� 2�=d℄ if � = �b. If d is hosen very lose to

2�=b, then for � near �b we have

j�x� (� + 2�=d)yj ' bjxj

sine the term (� + 2�=d)y ' (� + b)y will be negligible for � lose to �b.

Hene for P too small we expet an artifat to appear in the ring-like region

#P=(2b) < jxj � 1. This is indeed observed in the middle right piture of Figure

10, where we redued p = P=2 slightly to p = 100.

The geometry of the artifats is di�erent when d is not very lose to 2�=b,

so that the term (� + 2�=d)y is not negligible for � lose to �b. In this ase

j�x� (� + 2�=d)y

0

j will be maximal for � = �b and x = y

0

=jy

0

j. Hene we

expet the strongest artifats at the part of the boundary of 
 whih is nearest y

0

.

This is shown in the bottom right piture of Figure 10 where we used p = 112 and

dereased d to d = 1=18 so that the sampling ondition p > 2�=(#d) is violated.

Clearly, the strongest artifats are at the boundary of 
 near the support of f .

We also see from (7.40) that the ontribution from values of � near �b to



G

1

(�P=2) is not neessarily small. For example, if d = 2�=b and � = �b, then

g

'

(� + 2�=d) = g

'

(0) whih is usually large. Hene the errors from hoosing P

too small an be expeted to be muh larger as in ase of the standard lattie.

This is indeed observed in pratie, as an be seen by omparing the relative

errors in Figure 10.

8 Further developments

In this artile we have only onsidered two dimensions and the so-alled parallel-

beam geometry. The results reported in the �rst six setions are a summary of

researh whih has developed over a period of time, beginning with Cormak [3℄

and Lindgren and Rattey [26℄, and being further developed by Natterer [19, 20,

21, 22, 23℄, Kruse [16℄, Desbat [4℄ and the author [7, 8, 10, 11, 12℄.

Of great pratial importane is also the so-alled fan-beam geometry. EÆient

sampling shemes for the fan-beam geometry have been derived by Natterer [20℄;

see also [19, 23℄.



1. Sampling Theory and Parallel-Beam Tomography 23

Of growing interest are questions of sampling in three-dimensional tomogra-

phy. For work in this area see, e.g., [5, 6, 22, 25℄.

Finally, in this artile we only disussed appliations of the lassial sampling

theorem. Some tomographi appliations all for non-equidistant sampling and

have stimulated researh in this area, e.g., [2, 7, 9, 29℄.
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FIGURE 2. The set K(#; b) for # = 0:8.
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FIGURE 3. The translated sets K + � for the standard lattie in ase of d = �=b,

P = 2b=#. The points � of the reiproal lattie are indiated by an `x`.



1. Sampling Theory and Parallel-Beam Tomography 29

k

σ

x

x

x x

x

x x

x

P/2

4pi/d

FIGURE 4. The translated sets K + � for the interlaed lattie in ase of d = 2�=b,

P = 2b(2� #)=#. The points � of the reiproal lattie are indiated by an `x`.
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Standard, H = 1/128
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Interlaced, H = 1/2048
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FIGURE 5. Reonstrutions of the Shepp-Logan phantom. All reonstrutions were

omputed with p = 420, b = 128�, and the Shepp-Logan onvolution kernel (6.29).

Upper left: Standard lattie, d = H = 1=128. Upper right: Interlaed lattie, d = 1=64,

H = 1=128. Lower left: Interlaed lattie, d = 1=64, H = 1=2048. Lower right: Data

sampled on interlaed lattie with d = 1=64 and then interpolated onto standard lattie

with d = 1=128 using bilinear interpolation. Reonstrution from the interpolated data

with H = 1=128.
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4pi/d

FIGURE 6. The translated sets K + � for the interlaed lattie in ase of d = 1:45�=b,

P = 2b(2 � #)=#, # = 0:8. In spite of denser sampling than in the ase d = 2�=b

depited in Figure 4, the sets K + � are no longer disjoint, resulting in aliasing error.
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FIGURE 7. The translated sets K + � for the standard lattie in ase of d = �=b,

P = 2b=#, # = 0:8. The point � = (�0:85b=#;�0:99b) 2 K and its translates � + �,

� 2 L

?

are marked with a �.
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FIGURE 8. The translated sets K + � for the standard lattie in ase of d = �=b,

P = 0:8(2b=#), # = 0:8. The point � = (�0:85b=#;�0:99b) 2 K and its translates

� + �, � 2 L

?

are marked with a �.
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FIGURE 9. The translated sets K + � for the interlaed lattie in ase of d = �=b,

P = 0:8(2b(2�#)=#), # = 0:8. The point � = (�0:85b=#;�0:99b) 2 K and its translates

� + �, � 2 L

?

are marked with a �.
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Standard lattice

 p=112, d=1/32, Rel. error = 0.0480
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Interlaced lattice
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FIGURE 10. Artifats resulting from P being too small. The funtion to be reon-

struted is f(y) =

�

1� 100jy � y

0

j

2

�

3

+

, y

0

= (0:4; 0:7). Reonstrutions from the stan-

dard lattie are in the left olumn and from the interlaed lattie in the right olumn.

All reonstrutions are omputed with b = 32� and an interpolation stepsizeH = 1=256

and displayed on a 256� 256 grid suh that values less than �0:01 are rendered blak

and values greater than 0:01 are rendered white.
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