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Sampling Theory and

Parallel-Beam Tomography

Adel Faridani

ABSTRACT This arti
le 
ontains a tutorial on the intera
tion between sampling

theory and tomography as well as some new results. We explore how sampling theorems

are used in tomography to identify eÆ
ient data a
quisition s
hemes; fa
ilitate an

error analysis for re
onstru
tion algorithms; and provide a qualitative understanding

of some image artifa
ts. On the other hand, appli
ations in tomography have stimulated

resear
h on new estimates for the aliasing error and in non-equidistant sampling theory.

New results are in
luded in an analysis of artifa
ts 
aused by undersampling.

1 Introdu
tion

Computed tomography (CT) entails the re
onstru
tion of a fun
tion f from a

�nite number of line integrals of f . A natural question to ask is how many and

whi
h line integrals should be measured in order to a
hieve a 
ertain a

ura
y

in the re
onstru
tion. Sampling theory 
omes naturally into play when trying

to answer this question. It turns out that sampling theory is not only useful in

identifying eÆ
ient sampling s
hemes for tomographi
 data, but also provides a

qualitative understanding of 
ertain artifa
ts and fa
ilitates the numeri
al analy-

sis of re
onstru
tion algorithms. We will explore these themes in the subsequent

se
tions. On the other hand, appli
ations in tomography have stimulated re-

sear
h in sampling theory, for example on estimates for the aliasing error and on

non-equidistant sampling.

The arti
le is organized as follows. In the next se
tion we begin by introdu
-

ing the two-dimensional Radon transform, the mathemati
al model underlying

tomography, and brie
y des
ribe how it arises. In x 3 we present the relevant


lassi
al sampling theorem and prove the standard estimate for the aliasing er-

ror. The se
tion 
on
ludes with an improved estimate and an outline of key ideas

for its proof. In se
tions 4 and 5 we des
ribe how to apply the sampling theory of

x 3 to tomography in order to identify eÆ
ient sampling s
hemes. A key theme

here is that we have a two-dimensional sampling problem and that the parti
ular

shape of the support of the Fourier transform of the data must be exploited in

order to �nd eÆ
ient sampling s
hemes.

x 6 is 
on
erned with re
onstru
tion from eÆ
iently sampled data. This re-
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quires some 
are, and the ne
essary insights are provided by an error analysis of a

re
onstru
tion algorithm. While these �rst six se
tions are expository in nature,

new results are in
luded in x 7 where we investigate the 
onsequen
es of under-

sampling. We �rst show that elementary sampling theory provides a qualitative

understanding why some sampling s
hemes are more sensitive to undersampling

than others. We then present a numeri
al analysis of the �ltered ba
kproje
tion

algorithm whi
h reveals the lo
ation and relative strength of some artifa
ts.

The arti
le 
on
ludes with referen
es to further developments.

2 The two-dimensional Radon transform

The two-dimensional Radon transform maps a density fun
tion f into its line

integrals.

Let Z;R; C denote the integers, real and 
omplex numbers, respe
tively.

Throughout this paper we will assume that f 2 C

1

0

(
), i.e., f is in�nitely

di�erentiable and vanishes outside the unit disk 
 of R

2

. This assumption sim-

pli�es the mathemati
al proofs, and although the density fun
tions o

urring

in pra
ti
e are not ne
essarily smooth, we will see that our theoreti
al results

des
ribe the phenomena observed in pra
ti
e well.

Let � = (
os'; sin') be the unit ve
tor in R

2

with polar angle ', and �

?

=

(� sin'; 
os'). For f 2 C

1

0

(
) de�ne its Radon transform Rf by

Rf('; s) =

Z

1

�1

f(s 
os'� t sin'; s sin'+ t 
os')dt

=

Z

R

f(s� + t�

?

)dt; (2.1)

i.e., Rf('; s) is the integral of f over the line in dire
tion �

?

with signed distan
e

s from the origin. Sometimes Rf is 
onsidered as a fun
tion of s for �xed '. In

this 
ase we write R

'

f(s) for Rf('; s).

In x-ray tomography the Radon transform arises as follows. The fun
tion f(x)

to be re
onstru
ted is the so-
alled x-ray absorption 
oeÆ
ient. Sin
e it varies

for di�erent materials and tissues, it does provide an image of the interior of an

obje
t. We 
on�ne ourselves to two dimensions so that the goal is to image a


rosse
tion of the obje
t under investigation. Assume a very thin x-ray beam is

sent through su
h a 
rosse
tion, traveling along a segment of the line x = s�+t�

?

,

t 2 R. Then its initial intensity I

0

and its intensity I

1

after passing through the

obje
t are related by

I

0

= I

1

e

�Rf(�;s)

:

Sending many su
h rays through the 
rosse
tion under investigation and mea-

suring ea
h time I

0

and I

1

yields a number of sampled values of Rf . The goal is

then to re
onstru
t an approximation to f(x) from these values. Naturally, one

would like to a
hieve high resolution with a minimal amount of measured data.

Thus sampling theory 
omes into play.
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The Fourier transform of a fun
tion g 2 C

1

0

(R

n

) is de�ned by

ĝ(�) = (2�)

�n=2

Z

R

n

g(x)e

�ihx;�i

dx

and is extended to larger 
lasses of fun
tions or distributions by 
ontinuity or

duality. Here hx; �i denotes the usual inner produ
t in R

n

.

In parti
ular, the Fourier transform of R

'

f is given by

(R

'

f)

^

(�) = (2�)

�1=2

Z

R

R

'

f(s)e

�is�

ds:

The following relation between the Fourier transforms of R

'

f and f is easy to

verify but very useful:

(R

'

f)

^

(�) = (2�)

1=2

^

f(��): (2.2)

Equation (2.2) is 
alled the proje
tion-sli
e theorem.

For readers inteersted in a more detailed introdu
tion to tomography we re
-

ommend the monographs [19, 23℄ or the introdu
tory surveys [10, 13℄ and the

referen
es given there.

3 Sampling latti
es for the Radon Transform

From (2.1) we see that Rf is a fun
tion with domain [0; 2�) � R. The sub-

sequent analysis of sampling and resolution will make use of Fourier analysis.

This requires both the domain of Rf as well as the sampling sets to have a

group stru
ture. Equipped with addition modulo 2� the interval [0; 2�) be
omes

a group, 
alled the 
ir
le group, whi
h we denote by T. Then the domain of Rf

may be identi�ed with the group T� R. The addition on T� R 
an be viewed

as the usual addition in R

2

but modulo 2� in the �rst 
omponent.

The task of tomography is to re
onstru
t f from �nitely many measurements

of Rf . In the parallel-beam sampling geometry a set of angles f'

j

; j = 0; : : : ; P�

1g is sele
ted and for ea
h angle '

j

a number of line integrals Rf('

j

; s

jl

) are

measured. We require the set f'

j

; s

jl

g of all points where Rf is measured to

be a subgroup of T� R, and for pra
ti
al reasons there should be more than

one measured line for ea
h o

urring angle '

j

. A sampling set satisfying these

two requirements is 
alled an admissible sampling latti
e. The admissible latti
es

may be parameterized as follows [12℄:

Lemma 1. Let L be an admissible sampling latti
e. Then there is d > 0 and

integers N;P , su
h that 0 � N < P and

L = L(d;N; P )

= f('

j

; s

jl

) : '

j

= 2�j=P; s

jl

= d(l + jN=P );

j = 0; : : : ; P � 1; l 2 Zg: (3.3)
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From (3.3) we see that there are P dire
tions �

j


orresponding to the equidis-

tant angles '

j

= 2�j=P . For ea
h dire
tion integrals over an equidistant set of

lines with spa
ing d are measured. This 
olle
tion of equidistant parallel lines is

shifted by an amount djN=P whi
h varies with the angle '

j

.

The most important latti
es are the standard latti
e

L

S

= f('

j

; s

l

) : '

j

= 2�j=P; s

l

= d l; j = 0; : : : ; P � 1; l 2 Zg

whi
h is obtained by letting N = 0, and the interla
ed latti
e

L

I

= f('

j

; s

jl

) : '

j

= 2�j=P; s

jl

= d(l + j=2); j = 0; : : : ; P � 1; l 2 Zg :

where P is even and N = P=2. We see that for the standard latti
e the values

s

l

= dl do not 
hange with the angle '

j

. For the interla
ed latti
e the set of

values s

jl

= dl + dj=2 is shifted by d=2 when going from one angle '

j

to the

next.

In pra
ti
e one 
hooses P = 2p for both latti
es, and for the interla
ed latti
e

one lets p be even. Then, be
ause of the symmetry relation

Rf('; s) = Rf('+ �;�s); (3.4)

only the angles '

j

2 [0; �) need to be measured. It turns out [12℄ that among all

admissible latti
es the standard and interla
ed latti
es are the only ones whi
h

fully exploit this symmetry.

The parameterization given in Lemma 1 is not unique. Alternative parame-

terizations of admissible sampling latti
es have been used in [8℄ and [11℄.

We now wish to apply Shannon sampling theory in order to �nd the best

sampling latti
es. In order to do this we need some Fourier analysis for fun
tions

de�ned on the group T� R . The Fourier transform on T� R is de�ned by

ĝ(k; �) = (2�)

�1

Z

2�

0

Z

R

g('; s)e

�i(k'+�s)

d' ds; k 2 Z; � 2 R:

Using the notation z = ('; s), � = (k; �), hz; �i = k' + �s, this 
an be written

as

ĝ(�) = (2�)

�1

Z

T�R

g(z)e

�ihz;�i

dz; � 2 Z� R:

The inverse Fourier transform in this setting is given by

~

G('; s) = (2�)

�1

X

k2Z

Z

R

G(k; �)e

i(k'+�s)

d�

= (2�)

�1

Z

Z�R

G(�)e

ihz;�i

d�;

with z = ('; s) 2 T� R and � = (k; �) 2 Z� R. Very useful tools for our

purpose are the Poisson summation formulas for R and T� R:
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Theorem 3.1. (Poisson summation formula for R) Let h > 0 be �xed, and

g 2 C(R) su
h that jg(x)j � C(1 + jxj)

�1��

, and jĝ(�)j � C(1 + j�j)

�1��

for

some C; � > 0. Then

(2�)

�1=2

h

X

l2Z

g(x+ hl)e

�i�(x+hl)

=

X

l2Z

ĝ(� + 2�l=h)e

ix2�l=h

: (3.5)

For a proof see, e.g., [14, Theorem (8.36)℄.

The result holds also under less restri
tive hypotheses: Let g 2 L

2

(R) su
h

that

P

l2Z

jg(hl)j

2

<1, and ĝ 2 L

1

(R). Then (3.5) with x = 0 holds for almost

every � and the sums 
onverge in L

2

([��=h; �=h℄). This is a spe
ial 
ase of a

very general result given in [15, p. 217℄.

In order to state the Poisson summation formula for T� R we note that an

admissible sampling latti
e L has a 
orresponding \re
ipro
al latti
e" L

?

in the

Fourier domain. L

?

is the set of all � 2 Z� R su
h that hy; �i 2 2�Z for all

y 2 L. From (3.3) it follows that

L

?

(d;N; P ) = f(Pk

1

�Nk

2

; 2�k

2

=d) ; k

1

; k

2

2 Zg : (3.6)

Theorem 3.2. (Poisson summation formula for T� R) Let z 2 T� R and

� 2 Z� R be �xed, L = L(d;N; P ) be a an admissible latti
e and g 2 C

1

0

(T� R).

De�ne the latti
e 
onstant 


L

by 


L

= d=P . Then




L

X

y2L

g(z + y)e

�ihz+y;�i

=

X

�2L

?

ĝ(� + �)e

ihz;�i

: (3.7)

We are now ready to state the 
lassi
al sampling theorem for this setting; 
f.

[24℄.

Theorem 3.3. Let g 2 C

1

0

(T� R), L = L(d;N; P ) an admissible sampling

latti
e and K be a 
ompa
t subset of Z�R su
h that its translates K+�; � 2 L

?

are disjoint. Let �

K

denote the 
hara
teristi
 fun
tion of K, i.e., �

K

(�) = 1 if

� 2 K and �

K

(�) = 0 otherwise. For z 2 T� R de�ne

Sg(z) =

d

P

X

y2L

~�

K

(z � y)g(y): (3.8)

Then

jg(z)� Sg(z)j � �

�1

Z

(Z�R)nK

jĝ(�)jd�: (3.9)

Observe that if ĝ vanishes outside of K then g = Sg, i.e., g 
an be re
overed

exa
tly from its samples on the latti
e L. The meaning of Sg and ~�

K

may

be
ome more 
lear by a 
omparison with the better known 
ase of sampling

on R. A latti
e is then an equidistant set L = dZ= fdl; l 2 Zg. Assume that K

is an interval, say K = [�1; 1℄. Then

~�

K

(x) = (2�)

�1=2

Z

1

�1

e

ix�

d� =

r

2

�

sinx

x

=

r

2

�

sin
(x);
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with the \sinus 
ardinalis" sin
(x) = sin(x)=x. In this 
ase Sg is the so-
alled


ardinal series

Sg(x) =

d

�

X

l2Z

g(dl) sin
(x� dl):

The main idea of the proof of Theorem 3.3 is as follows: Using the Poisson

summation formula (3.7) we may 
ompute the Fourier transform of Sg as follows.




Sg(�) =

d

P

X

y2L

g(y)

1

2�

Z

T�R

~�

K

(z � y)e

�ihz;�i

dz

= �

K

(�)

d

P

X

y2L

g(y)e

�ihy;�i

= �

K

(�)

X

�2L

?

ĝ(� + �): (3.10)

From the Fourier inversion formula it follows that

j(g � Sg)(z)j � (2�)

�1

Z

Z�R

j(ĝ �




Sg)(�)jd�:

Now we use (3.10) and observe that

(ĝ �




Sg)(�) =

X

0 6=�2L

?

ĝ(� + �) for � 2 K;

and




Sg(�) = 0 for � 62 K. Hen
e

2�j(g � Sg)(z)j �

Z

K

j(ĝ �




Sg)(�)jd� +

Z

(Z�R)nK

j(ĝ �




Sg)(�)jd�

�

X

0 6=�2L

?

Z

K

jĝ(� + �)j d� +

Z

(Z�R)nK

jĝ(�)jd�

=

X

0 6=�2L

?

Z

K+�

jĝ(�)jd� +

Z

(Z�R)nK

jĝ(�)jd�

� 2

Z

(Z�R)nK

jĝ(�)jd� (3.11)

where the last estimate follows from the disjointness of the sets K + �, � 2 L

?

.

For a 
omplete proof see, e.g., [8℄ or [19, pp. 62{64℄.

We see from (3.10) that




Sg(�) vanishes outsideK. On the other hand the terms

with � 6= 0 in the sum 
ause high frequen
ies in ĝ to 
ontribute to




Sg(�) for � 2

K. This e�e
t is 
alled aliasing. The right-hand side of (3.9) provides an estimate

for the so-
alled aliasing error. If g is the Radon transform of a fun
tion with


ompa
t support, then the Fourier transform ĝ 
annot have 
ompa
t support
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and an aliasing error will always be present. Thus tomography provides reasons

to seek sharper estimates for the aliasing error than the 
lassi
al estimate (3.9).

In the remainder of this se
tion we will report on a way to improve the estimate

(3.9). These results were derived in [11℄ and are presented here for their relevan
e

to sampling theory but will not be used further on, so that readers not interested

in this topi
 may safely pro
eed to the next se
tion.

De�nition 3.1. For g : T� R ! C and ' 2 T let g

'

: R ! C be given by

g

'

(s) = g('; s). De�ne

�

�

(g; �) = (2�)

�1=2

sup

'2T

Z

j�j>�

j
g

'

(�)j d�: (3.12)

For K 2 Z� R 
ompa
t let k

1

= maxfjkj : (k; �) 2 Kg, �

1

= maxfj�j :

(k; �) 2 Kg, and M

1

= f(k; �) 2 Z� R : j�j � �

1

gnK; see Figure 1.

Finally, for a 2 R let ba
 and dae denote the largest integer � a and the

smallest integer � a, respe
tively.

We �rst state a simpli�ed version of the sharper estimate; 
f. [11, Proposi-

tion 5℄:

Proposition 3.1. Let K be a 
ompa
t subset of Z� R satisfying the 
ondition

that if (k; �) 2 K, then (k

0

; �) 2 K for all k

0

with jk

0

j � jkj. Let L = L(d;N; P )

be an admissible sampling latti
e su
h that the translated sets K + �, � 2 L

?

are disjoint, g 2 C

1

0

(T� R), Sg as in (3.8), z 2 T� R, and k

1

; �

1

;M

1

; �

�

as in

De�nition 3.1. Then

jg(z)� Sg(z)j � �

�1

Z

M

1

jĝ(�)jd� + C(k

1

; P ) �

�

(g; �

1

)

with C(k

1

; P ) = 1 +

�

1 +

6k

1

+3

P

+

2

�

ln(4k

1

+ 2)

� �

�

1

d

�

�

.

Proposition 3.1 is a 
orollary of Theorem 3.4 below. The key idea of the proof

the Theorem is as follows. The Fourier inversion formula gives

jg(z)� Sg(z)j =

1

2�

�

�

�

�

Z

Z�R

(ĝ(�) �




Sg(�)) e

ihz;�i

d�

�

�

�

�

�

1

2�

�

�

�

�

Z

K

(ĝ(�)�




Sg(�)) e

ihz;�i

d�

�

�

�

�

+

1

2�

�

�

�

�

�

Z

(Z�R)nK

ĝ(�)e

ihz;�i

d�

�

�

�

�

�

(3.13)

where we have used that a

ording to (3.10)




Sg vanishes outside K. The more
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diÆ
ult term to estimate is the integral over K. By (3.10) we have

1

2�

�

�

�

�

Z

K

(ĝ(�)�




Sg(�))e

ihz;�i

d�

�

�

�

�

=

1

2�

�

�

�

�

�

�

Z

K

X

0 6=�2L

?

ĝ(� + �)e

ihz;�i

d�

�

�

�

�

�

�

(3.14)

Now we use (3.6)to write

X

0 6=�2L

?

ĝ(� + �) =

X

(k

1

;k

2

)6=(0;0)

ĝ(�

1

+ Pk

1

�Nk

2

; �

2

+ 2�k

2

=d):

The key idea is now to use the one-dimensional Poisson summation formula for

the sum over k

1

. This is possible for those � 2 K and k

2

su
h that j�

2

+2�k

2

=dj >

�

1

, whi
h guarantees that � + � 2 M

2

for all k

1

. The detailed proof is given in

[11℄.

We 
on
lude by stating the more general result.

Theorem 3.4. ([11℄) Let g 2 C

1

0

(T� R), K � Z� R 
ompa
t and L =

L(d; P;M;N) an admissible sampling latti
e su
h that the translated sets K + �,

� 2 L

?

are disjoint. Let k

1

; �

1

;M

1

as in De�nition 3.1, �

�

= maxf�

1

;

2�

d

��

1

g,

and '

j

= 2�j=P , j = 0; : : : P � 1. Then

jg('; s)� Sg('; s)j

� �

�1

Z

M

1

jĝ(�)jd� + (2�)

�1=2

Z

�>�

1

j
g

'

(�)j d�

+

C(K;P; ')

p

2�

�

�

1

d

�

�

max

j=0;:::;P�1

Z

j�j>�

�

j
g

'

j

(�)jd� (3.15)

with

C(K;P; ') =

1

P

P�1

X

j=0

max

j�j��

1

�

�

�

�

�

�

X

k2N(�)

e

ik('�'

j

)

�

�

�

�

�

�

:

where N(�) = fk : (k; �) 2 Kg.

4 The support of




Rf

Theorem 3.3 indi
ates what needs to be done in order to �nd eÆ
ient sampling

s
hemes for tomography, i.e., when g = Rf . First we need to �nd a suitable

set K so that the right-hand side of (3.9) is suÆ
iently small. Then we need to

identify latti
es L(d;N; P ) as sparse as possible but su
h that the translated sets

K + �, � 2 L

?

are disjoint.
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The set K will of 
ourse depend on the fun
tion f . The 
ru
ial parameter

turns out to be a 
ut-o� frequen
y b su
h that j

^

f(�)j is suÆ
iently small for

j�j > b. The parameter b may be viewed as an \essential bandwidth" of f . A

suitable set K was �rst found by Lindgren and Rattey [18, 26℄. Natterer [19℄

gave the following rigorous estimate.

Theorem 4.1. [19, p. 71℄ For b > 0 and 0 < # < 1 let

K(#; b) =

�

(k; �) 2 Z� R : j�j < b; jkj < #

�1

max(j�j; (1� #)b)

	

; (4.16)

see Figure 2. Let f 2 C

1

0

(
). Then

Z

(Z�R)nK

j




Rf(�)j d� �

8

�

2

#

Z

j�j>b

j

^

f(�)jd� + k f k

L

1

�(#; b); (4.17)

where �(#; b) de
reases exponentially with b, satisfying an estimate

0 � �(#; b) � C(#)e

��(#)b

(4.18)

with 
onstants C(#); �(#) > 0.

The set K(#; b) is depi
ted in Figure 2. What will turn out to be 
ru
ial for

�nding eÆ
ient sampling latti
es is the bow-tie like shape of K. We will brie
y

sket
h the derivation to illustrate how this shape arises. We have




Rf(k; �) = (2�)

�1

Z

2�

0

Z

R

Rf('; s)e

�i(k'+�s)

d' ds

= (2�)

�1=2

Z

2�

0

d

R

'

f(�) e

�ik'

d'

=

Z

2�

0

^

f(��) e

�ik'

d' (4.19)

= (2�)

�1

Z

R

2

f(x)

Z

2�

0

e

�ihx;��i�ik'

d' dx (4.20)

In deriving (4.19) we used the proje
tion-sli
e theorem (2.2). From (4.19) we see

that j




Rf(k; �)j will be small for j�j > b if b is the \essential bandwidth" of f ,

i.e., if j

^

f(�)j is suÆ
iently small for j�j > b. This explains the upper and lower

boundaries of the set K; 
f. Figure 2. To explain the bow-tie shape we 
ontinue

by writing x = jxj(
os ; sin ). This gives




Rf(k; �) = (2�)

�1

Z

R

2

f(x)

Z

2�

0

e

�i�jxj 
os('� )�ik'

d'

= i

k

Z

R

2

f(x)e

�ik 

J

k

(��jxj) dx (4.21)

where we have used the integral representation

J

k

(t) =

i

�k

2�

Z

2�

0

e

it 
os'�ik'

d' (4.22)
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for the Bessel fun
tions of the �rst kind J

k

(t), whi
h 
an be found in [19, p. 197℄.

Let 0 � # < 1. Combining an upper bound for the Bessel fun
tions found in

[1, 9.1.63℄ with a derivation given in [19, p. 198℄ one obtains the estimate

jJ

k

(#k)j � e

�(jkj=3)(1�#

2

)

3=2

: (4.23)

It shows that jJ

k

(t)j de
ays exponentially as jkj in
reases beyond jtj.

Sin
e f(x) is assumed to vanish for jxj > 1 we now see from (4.21) and (4.23)

that j




Rf(k; �)j will de
ay rapidly as soon as jkj > j�j. This explains the bow-

tie shape of the set K. We see that it 
omes from the 
ompa
t support of the

fun
tion f and the de
ay properties of the Bessel fun
tions. For a 
omplete

derivation see [19, pp. 71-73℄. One 
an also 
hoose to eliminate the parameter #

by setting it equal to 1, as was done in [23, x4.3℄. On the one hand this simpli�es

the presentation. On the other, it is apparent from the estimate (4.23) that the

result may be somewhat optimisti
 for situations where both jkj and j�j are small

and jkj only slightly ex
eeds j�j.

5 Sampling 
onditions

The next step in applying Theorem 3.3 is to �nd 
onditions for the latti
e pa-

rameters d;N; P su
h that the translated sets K(#; b) + �, � 2 L

?

(d;N; P ) are

disjoint. This is a requirement for the re
ipro
al latti
e to be sparse whi
h means

that the sampling latti
e itself must be suÆ
iently dense.

We begin with the standard latti
e, i.e., N = 0. In order to exploit the sym-

metry (3.4) we assume P to be even. A

ording to (3.6) the re
ipro
al latti
e is

given by

L

?

S

= L

?

(d; 0; P ) = f(Pk

1

; 2�k

2

=d) ; k

1

; k

2

2 Zg :

From this we readily 
on
lude that for K = K(#; b) the sets K + � = K +

(Pk

1

; 2�k

2

=d) will be disjoint if and only if

d < �=b; P > 2b=#; (5.24)

see Figure 3.

The translated sets in Figure 3 do not appear to be pa
ked as densely as

possible. Another arrangement 
orresponding to a di�erent latti
e may result

in a denser pa
king, giving a denser re
ipro
al latti
e and therefore a sparser

sampling latti
e. However, it is apparent from letting k

1

= 1; k

2

= 0 in (3.6) that

the point � = (P; 0) always belongs to L

?

(d;N; P ). For K and K + (P; 0) not

to overlap we need P > 2b=#. Hen
e the standard latti
e is optimal in the sense

that it does require only a minimal number of dire
tions. Other latti
es 
an only

be more eÆ
ient overall by allowing values of d greater than �=b. This turns out

to be the 
ase for the interla
ed latti
e. The re
ipro
al latti
e is now given by

L

?

I

= f((2k

1

� k

2

)P=2; 2�k

2

=d) ; k

1

; k

2

2 Zg ;
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where for reasons of making use of the symmetry (3.4) we assume P to be

a multiple of 4. Now the translated sets K(#; b) + � will be disjoint if either


onditions (5.24) are satis�ed, or if

�

b

< d �

2�

b

; p > max

�

2�

#d

;

(2� #)b

#

�

; p even, P = 2p: (5.25)

Figure 4 shows the 
ase of optimally sparse sampling with the interla
ed latti
e,

i.e., d = 2�=b, P = 2b(2� #)=#. We see that the interla
ed latti
e allows for a

maximal dete
tor spa
ing of d = 2�=b whi
h is twi
e as large as the maximum

allowed for standard latti
e, with only a moderate in
rease in P , sin
e # 
an

often be 
hosen very 
lose to 1. Hen
e we obtain the same theoreti
al resolution

(as determined by the bandwidth b) with only little more than half the amount

of data required for the standard latti
e.

Sampling 
onditions for a general admissible sampling latti
e L(d;N; P ) have

been given in [11℄.

6 The �ltered ba
kproje
tion algorithm

Having identi�ed eÆ
ient sampling s
hemes the question remains how best to

re
onstru
t from eÆ
iently sampled data. In this se
tion whi
h is based on the

presentations given in [8℄ and [12℄, we des
ribe the most popular tomographi


re
onstru
tion algorithm and present an error analysis whi
h indi
ates how to

a
hieve good re
onstru
tions. The �ltered ba
kproje
tion algorithm is based on

the following approximate inversion formula.

Theorem 6.1. Let e 2 L

2

(R

2

) be a radial fun
tion su
h that j�j

1=2

ê(�) 2 L

2

(R

2

),

and  the even fun
tion of one variable given by ê(�) = (2�)

�1

 (j�j). Let the

asso
iated 
onvolution kernel k be given by

^

k(�) =

1

2

(2�)

�3=2

j�j (�). Then

e � f(x) =

Z

2�

0

Z

R

k(hx; �i � s)Rf('; s) ds d': (6.26)

Proof. The relation (6.26) 
an be veri�ed by writing e � f as e � f(x) =

R

ê(�)

^

f (�)e

ihx;�i

d�, expressing the integral in polar 
oordinates, and using the

relation (2.2); see, e.g., [10℄.

If e is an approximate Æ-fun
tion then (6.26) gives an approximate re
onstru
-

tion formula for f .

Dis
retizing the integrals in equation (6.26) by using the trapezoidal rule yields

the �ltered ba
kproje
tion algorithm. We derive the algorithm assuming the data

are values Rf('

j

; s

jl

) of the Radon transform of f , sampled on an admissible

sampling latti
e L(d;N; P ) as des
ribed in (3.3).
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Dis
retizing (6.26) with the trapezoidal rule gives

e � f(x) '

2�

P

P�1

X

j=0

Q

j

(hx; �

j

i);

Q

j

(t) = d

X

l

k(t� s

jl

)Rf('

j

; s

jl

);

with '

j

; s

jl

as in (3.3), and �

j

= (
os'

j

; sin'

j

). The re
onstru
tion is usually


omputed for values of x on a re
tangular grid x

m

1

m

2

= (m

1

=M

1

;m

2

=M

2

). Sin
e


omputing the dis
rete 
onvolution Q

j

(hx; �

j

i) for ea
h o

urring value of hx; �

j

i

would take too long, one �rst 
omputes Q

j

(iH), jij � 1=H , and then obtains an

approximation I

H

Q

j

(hx; �

j

i) for Q

j

(hx; �

j

i) by linear interpolation with stepsize

H . We assume that

H = d=(N

0

m); with 0 < m;N

0

2 Z; and N

0

N=P 2 Z: (6.27)

This gives H = d=m for the standard latti
e (N

0

= 1) and H = d=(2m) for the

interla
ed latti
e (N

0

= 2). Then the e�e
t of interpolating the 
onvolution is

the same as repla
ing the kernel k with the pie
ewise linear fun
tion I

H

k whi
h

interpolates k at the points Hl, l 2 Z; see, e.g., [8, p.84℄. Hen
e the algorithm


omputes the fun
tion

f

R

(x) =

2�

P

P�1

X

j=0

I

H

Q

j

(hx; �

j

i)

=

2�d

P

P�1

X

j=0

X

l2Z

I

H

k (hx; �

j

i � s

jl

)Rf ('

j

; s

jl

) (6.28)

A popular 
hoi
e for the 
onvolution kernel k is the so-
alled Shepp-Logan

kernel whose Fourier transform is given by

^

k(�) =

1

2

(2�)

�3=2

j�j sin
(��=(2b))�

[�b;b℄

(�); (6.29)


f. [19, pp.110-111℄. Here we used the notation �

M

to denote the 
hara
teristi


fun
tion of a set M , i.e, �

M

(x) = 1 for x 2M and �

M

(x) = 0 otherwise.

In [12℄ the following error estimate was given. It builds on pioneering work in

[16℄ and extensions in [8℄. For an alternative estimate yielding 
onvergen
e rates

depending on the smoothness of f see [27℄.

Theorem 6.2. Let f 2 C

1

0

(
), g = Rf , f

R

be as in (6.28) with e and k as in

Theorem 6.1 and in addition su
h that

^

k 2 L

1

(R) and

P

l2Z

jk(Hl)j

2

< 1. Let

M � Z� R be 
ompa
t and let g be sampled on an admissible sampling latti
e

L with parameters d;N; P su
h that the translates M + �, � 2 L

?

are disjoint.

Then, for b > 0,

f

R

(x) = G

H

� e � f(x) + E

1

(x) + E

2

(x) + E

3

(x) + E

4

(x)
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with

b

G

H

(�) = (2�)

�1

sin


2

(H j�j=2)�

[0;b℄

(j�j);

jE

1

(x)j �

p

2�

d

P

X

y2L

jg(y)j

Z

Z�RnM

jF (�; x)jd�;

jE

2

(x)j � 2

p

2�

�

max

j�j�b

�

�

�

sin


2

(H�=2)

^

k(�)

�

�

�

�

Z

(Z�R)nM

jĝ(�)j d�;

jE

3

(x)j � (2�)

3

2

sup

�

Z

b

�b

�

1� sin


2

(H�=2)

�

j

^

k(�)j

X

l2Z

�

�

�

�

^

f

��

� +

2�l

d

�

�

�

�

�

�

�

d�

jE

4

(x)j � 2(2 + d)

p

2� k f k

1

Z

j�j>b

j

^

k(�)jd�;

where sin
(s) = sin(s)=s and for � = (l; �) 2 Z� R,

F (�; x) = J

l

(�jxj) sin


2

(H�=2)

^

k(�)�

[�b;b℄

(�) (6.30)

with J

l

denoting the Bessel fun
tions of the �rst kind.

The parameter b is a 
ut-o� frequen
y and should be 
hosen su
h that j

^

f(�)j

is suÆ
iently small for j�j > b. G

H

has bandwidth b and so G

H

� e � f is a low-

pass �ltered approximation to f with bandwidth b. Appli
ation of the theorem

to the standard and interla
ed latti
es requires to spe
ify an appropriate set

M ; to �nd sampling 
onditions for the latti
e parameters d;N; P whi
h ensure

that the translated sets M + �, � 2 L

?

are disjoint; and to �nd estimates for

R

Z�RnM

jF (�; x)jd� and for

R

(Z�R)nM

jĝ(�)j d�. We will �rst 
onsider the standard

latti
e.

For the standard latti
e we let M be the re
tangle M

1

(#; b) = f(k; �) : j�j �

b; jkj � b=#g. Note that M

1


ontains the set K(#; b) of Theorem 4.1, so we

know that




Rf(�) will be small outside of M

1

if b is 
hosen as the essential

bandwidth of f . The larger setM

1


an be 
hosen here sin
e it turns out that the


onditions for the translates M

1

+ � to be disjoint are the same as for the sets

K+� to be disjoint. As we will see, having a larger set allows for a sharper error

estimate. For the standard latti
e we have N = 0 in (3.3), and the re
ipro
al

latti
e L

?

equals L

?

= f(Pk

1

; 2�k

2

=d); k

1

; k

2

2 Zg. For reasons of eÆ
ien
y

as dis
ussed earlier we let P = 2p be even. It is obvious that the translated sets

M

1

(#; b) + �, � 2 L

?

are disjoint if and only if the sampling 
onditions (5.24)

are satis�ed. Sin
e M

1

(#; b) � K(#; b) the estimate of Theorem 4.1 
an be used

for

R

(Z�R)nM

1

jĝ(�)j d�:

Z

(Z�R)nM

1

jĝ(�)j d� �

Z

(Z�R)nK

jĝ(�)j d�

�

8

�

2

#

Z

j�j>b

j

^

f(�)jd� + k f k

L

1

�(#; b): (6.31)
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Hen
e the error E

2

will be small if f is \essentially bandlimited" with bandwidth

b in the sense that

R

j�j>b

j

^

f(�)jd� is suÆ
iently small.

It was shown in [12℄ that for the standard latti
e

Z

Z�RnM

1

(#;b)

jF (�; x)jd� � 4b (max

j�j�b

j

^

k(�)j)

e

��b=#

1� e

��

;

� = (1� #

2

jxj

2

)

3=2

=3 (6.32)

Hen
e the error E

1

will de
ay exponentially with in
reasing b.

The error E

3

is 
aused by the interpolation step and usually not a 
on
ern

when using the standard latti
e. This 
an be explained as follows: Consider the


ommon parameter 
hoi
e d = H = �=b. Sin
e

^

f(�) is assumed to be small for

j�j > b, only the term with l = 0 in the sum will be signi�
ant, i.e., we have for

j�j � b

X

l2Z

�

�

�

^

f((� + 2�l=d)�)

�

�

�

=

X

l2Z

�

�

�

^

f((� + 2bl)�)

�

�

�

' j

^

f(��)j:

Usually the density fun
tion f is non-negative so that j

^

f(��)j has a sharply

peaked maximum at � = 0 and is very small for j�j 
lose to b. In su
h a 
ase the

error E

3

will be small sin
e the fa
tor 1 � sin


2

(H�=2) is small exa
tly where

j

^

f(��)j is large.

The last error E

4


an be kept small by 
hosing the 
onvolution kernel k su
h

that

R

j�j>b

j

^

k(�)jd� is small. Often one 
an use bandlimited k so that E

4

vanishes

entirely. This is for example the 
ase for the Shepp-Logan kernel (6.29).

In summary, for the standard latti
e we expe
t a good re
onstru
tion as long as

the sampling 
onditions (5.24) are met. The interpolation stepsize H may be as

large as d. The pi
ture in the upper left of Figure 5 demonstrates this 
on
lusion.

It shows a re
onstru
tion of the so-
alled Shepp-Logan phantom with p = 420,

d = H = 1=128, and b = �=d. The phantom models the 
rosse
tion of a human

head by a superposition of 11 ellipses whose parameters 
an be found in [28℄.

The phantom has values between 0 and 1 but the display is su
h that values

greater 0:07 are rendered white and values less than �0:07 are rendered bla
k.

This 
hoi
e is made be
ause we are interested mainly in the small di�eren
es

of the features inside the \head". Note that the re
onstru
tion is very smooth

inside the head but not outside. This 
omes from the fa
t that the strongest

artifa
ts tend to appear along tangents to boundaries with large density jumps.

In this 
ase the only large density jumps are asso
iated with the \skull", and no

tangent to a boundary of the skull passes through the interior of the head. Sin
e

we are interested only in the interior, this re
onstru
tion is quite satisfa
tory.

For the interla
ed latti
e we let M = K(#; b) as in (4.16). For this latti
e

P = 2p and N = P=2 = p. We always let p be even, so that be
ause of the

symmetry relation (3.4) only the angles '

j

2 [0; �) need to be measured. The

re
ipro
al latti
e is L

?

= f(p(2k

1

� k

2

); 2�k

2

=d); k

1

; k

2

2 Zg. We have already

seen that the sets K(#; b) + �, � 2 L

?

are disjoint if either (5.24) or (5.25) are

satis�ed. Comparison of (5.24) and (5.25) shows that the interla
ed latti
e allows
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to double the dete
tor spa
ing d with only a small in
rease of p. It is therefore

potentially up to almost twi
e as eÆ
ient as the standard latti
e. An estimate

for

R

(Z�R)nK

jĝ(�)j d� whi
h 
ontrols the error term E

2

has already been given in

(6.31). It was shown in [12℄ that for the interla
ed latti
e

Z

Z�RnK(#;b)

jF (�; x)jd� � (max

j�j�b

j

^

k(�)j) 4#e

��b

0

�

1 + b

0

1� e

��

+

e

��

(1� e

��

)

2

�

b

0

= (1� #)b=#; � = (1� #

2

jxj

2

)

3=2

=3: (6.33)

As in the 
ase of the standard latti
e, the error E

1

de
reases exponentially with

b, although at a slower rate. Also, for #jxj 
lose to 1 we expe
t this error to

be signi�
antly larger than for the standard latti
e, due to the term involving

(1� e

��

)

2

.

As before the error E

4

is kept small by 
hosing the 
onvolution kernel k ap-

propriately.

Of greater 
on
ern, however, is the error E

3

, whi
h unlike as in the 
ase of

the standard latti
e is now 
riti
al. Consider the 
hoi
e of parameters d = 2�=b,

H = �=b. Now the sum over l in the estimate for E

3

in Theorem 6.2 may have

3 signi�
ant terms for j�j < b:

X

l2Z

�

�

�

^

f((� + 2�l=d)�)

�

�

�

=

X

l2Z

j

^

f((�+bl)�)j ' j

^

f((��b)�)j+j

^

f(��)j+j

^

f ((�+b)�)j:

As dis
ussed earlier, the 
ontribution of the term j

^

f(��)j is strongly attenu-

ated by the fa
tor (1 � sin


2

(H�=2)). However, this is not the 
ase for the

other two terms. E.g., let � be 
lose to b. Then, assuming again that

^

f is large

near the origin, j

^

f((� � b)�)j will be large and is not attenuated by the fa
tor

(1 � sin


2

(H�=2)) whi
h will be 
lose to 1. Therefore we expe
t 
onsiderable

re
onstru
tion errors for this 
hoi
e of parameters. That this is indeed the 
ase

is demonstrated in [16, 8℄ and in the upper right image of Figure 5. Compared to

the upper left image we used the interla
ed latti
e with d = 1=64 and as before

re
onstru
ted with an interpolation stepsize H = 1=128. Strong high-frequen
y

errors render the image useless.

A 
omplementary explanation for this strong sensitivity with respe
t to H

was given in [8℄. The sums with respe
t to j and l in (6.28) 
an be viewed as

dis
retizations of the integrals with respe
t to ' and s in (6.26), respe
tively. If

the sampling 
onditions (5.24) are satis�ed, then both the inner and outer inte-

gral are approximated a

urately by the respe
tive sum. But in 
ase of (5.25) the

stepsize dmay be too large for an a

urate approximation of the inner integral. In

this 
ase the a

ura
y of the re
onstru
tion depends on the 
an
ellation of these

errors during the subsequent summation with respe
t to j. If the interpolation

is not a

urate, this 
an
ellation is prevented.

Hen
e when using the interla
ed latti
e one should 
hoose H � �=b, so that

(1�sin


2

(H�=2)) is small for j�j < b. Typi
al 
hoi
es in pra
ti
e areH = �=(16b)

or smaller. This 
hoi
e has been made in the lower left image of Figure 5. The
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high-frequen
y errors are indeed removed, but it turns out that we also removed

a wel
ome smoothing e�e
t of the interpolation with larger stepsize and are left

with an unwel
ome high-frequen
y pattern stemming from the dis
ontinuity of

the Fourier transform (6.29) of the 
onvolution kernel k at the 
ut-o� frequen
y.

This error 
an be removed by 
hosing a di�erent kernel k whose Fourier trans-

form tapers of to zero at � = �b. However, this entails a 
ertain loss of resolution

as was demonstrated in [8℄. A better possibility is to �rst interpolate the data

onto the standard latti
e and then perform the re
onstru
tion from the inter-

polated data. This was done in [7℄ using the interpolation from the sampling

theorem with very good results. In the lower right of Figure 5 we interpolated

the data onto the standard latti
e using bilinear interpolation. The re
onstru
-

tion is 
omparable to the one in the upper left, although now we used only half

as many sampled data. However, we will see in the next se
tion that part of

the advantage of the interla
ed latti
e is lost due to in
reased sensitivity with

respe
t to undersampling in the ' variable.

In summary, we expe
t good re
onstru
tions for the interla
ed latti
e for d


lose to the optimal value 2�=b if the sampling 
onditions (5.25) are satis�ed and

if either H is suÆ
iently small or the data are interpolated onto the standard

latti
e prior to re
onstru
tion.

7 Analysis of the e�e
ts of undersampling

In this se
tion we use sampling theory to analyze some e�e
ts of undersam-

pling. By undersampling we mean a violation of the sampling 
onditions (5.24)

or (5.25). First we present a qualitative dis
ussion of why the interla
ed latti
e

is more sensitive to undersampling than the standard latti
e. Then we perform

a more detailed analysis and gain insight into the lo
ation and strength of un-

dersampling artifa
ts when using the �ltered ba
kproje
tion algorithm.

Let us begin by noting an intriguing di�eren
e in the stru
ture of the sampling


onditions (5.24) and (5.25) for the standard latti
e and the interla
ed latti
e,

respe
tively. The 
onditions for d and P in (5.24) are independent of ea
h other

and indeed 
ould be derived by applying one-dimensional sampling theory to

ea
h of the variables separately. On the other hand the 
onditions (5.25) 
ome

from genuinely two-dimensional sampling theory, whi
h is re
e
ted in the fa
t

that the 
ondition for P involves d. This has the intriguing 
onsequen
e that in

some 
ases the 
ondition 
an be violated by de
reasing d, in spite of the fa
t that

this makes the sampling latti
e more dense. So we would have undersampling in

spite of having sampled more data. Figure 6 illustrates su
h a 
ase. Compared

to Figure 4 we de
reased d without 
hanging P . This has the e�e
t of moving

the translated sets K + � further apart in the verti
al dire
tion. As the �gure

shows the translated sets are no longer disjoint. Numeri
al experiments in [8, p.

97℄ 
on�rmed that this results in inferior tomographi
 re
onstru
tions. This 
an

also be seen from a 
omparison of the top and bottom pi
tures in the right half
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of Figure 10, whi
h are dis
ussed further in the next se
tion. On the other hand,

sampling more data by leaving d �xed and in
reasing P does not violate (5.25).

In this 
ase the translated sets K + � in Figure 4 move further apart from ea
h

other in the horizontal dire
tion and remain disjoint.

It turns out that part of the advantage of the interla
ed latti
e is lost due to

in
reased sensitivity with respe
t to undersampling in the ' variable. This 
an be

qualitatively explained as follows (
f. [23, p. 89, Remark 3℄): Figure 7 shows the

translated sets K+� in 
ase of the standard latti
e with P = 2b=#, d = �=b. For

illustrative purposes we have marked the point � = (�0:85b=#;�0:99b) 2 K and

its translates � + � with a �. Assume we wish to 
ompute an approximation for

the Fourier transform ĝ(�) from the values of g on a sampling latti
e L by means

of taking the dis
rete Fourier transform with respe
t to L. The result would

be ĝ(�) ' (d=P )

P

y2L

g(y)e

�ihy;�i

, i.e., just the left-hand side of the Poisson

summation formula (3.7) for z = 0. A

ording to the Poisson summation formula

this is equal to

X

�2L

?

ĝ(� + �) = ĝ(�) +

X

0 6=�2L

?

ĝ(� + �):

If the translated points � + � lie outside K for � 6= 0 we may assume that their


ontribution is small, so that we obtain a good approximation for ĝ(�). This will

be the 
ase if the sampling 
onditions (5.24) are satis�ed, as 
an be seen from

Figure 7. In Figure 8 we have de
reased P to P = 0:8(2b=#), so that the sets

K + � are no longer disjoint. We see that one of translated points � + �, � 6= 0

now lies within K, 
ausing an aliasing error. However, it turns out that in most

appli
ations of tomography this error will be small. This is due to the fa
t that

in most 
ases f(x) � 0 for all x, so that the Fourier transform

^

f(�) is maximal

at the origin and de
ays qui
kly away from the origin. Be
ause of the proje
tion-

sli
e theorem (2.2) the same is true for ĝ(k; �) =




Rf(k; �). Sin
e the only one

of the translated points � + �, � 6= 0 whi
h lies in K lies near the lower right


orner of K, i.e., far away from the origin, the resulting error is likely to be small

in most 
ases. This explains the observation that for the standard latti
e P 
an

often be 
hosen smaller than required by (5.24) without signi�
ant degradation

in the re
onstru
ted images. For example, in order to obtain the visible artifa
ts

in the middle left pi
ture of Figure 10, whi
h is dis
ussed further below, we had

to redu
e P very signi�
antly.

This situation is di�erent for the interla
ed latti
e as Figure 9 shows. Com-

pared to Figure 4 we have de
reased P to 4=5 of its required value. We have

again marked the point � = (�0:85b=#;�0:99b) 2 K and its translates. Again

one of the translated points lies inside K, but this time very 
lose to the origin,

where j




Rf(k; �)j is large. This 
auses a large error for the approximate value of




Rf(�), indeed the error 
an be expe
ted to be mu
h larger than the exa
t value.

Hen
e we expe
t to in
ur large high-frequen
y errors whi
h may signi�
antly

degrade the re
onstru
ted images; 
f. the middle right pi
ture in Figure 10. This


on
ludes our qualitative dis
ussion.
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In the remainder of this se
tion we build on results in [19, p. 105℄ and [12℄ by

giving a quantitative dis
ussion of artifa
ts 
aused by undersampling in the '

variable for the standard and interla
ed latti
es when using the �ltered ba
kpro-

je
tion algorithm.

For the following dis
ussion it suÆ
es to negle
t the e�e
t of the interpolation

and to assume that the 
onvolution kernel k from Theorem 6.1 is bandlimited

with bandwidth b, i.e.,

^

k(�) = 0 for j�j > b. This is possible sin
e it was shown in

[12℄ that the 
ontributions from the interpolation and from the high-frequen
y

part of k 
an be estimated separately. Hen
e we assume that we re
onstru
t the

fun
tion

f

R

(x) =

2�d

P

P�1

X

j=0

X

l2Z

k(hx; �

j

i � s

jl

)Rf('

j

; s

jl

):

For x 2 
 de�ne the auxiliary fun
tion q

x

2 L

2

(T� R) su
h that q

x

(�';�s) =

k(hx; �i � s), i.e., q

x

('; s) = k(hx; !i + s) with ! = (
os';� sin'). As before

we use the notation '

j

= 2�j=P and �

j

= (
os'

j

; sin'

j

), write g('; s) for

Rf('; s), and in 
ases were we 
onsider operations a
ting on the s-variable alone

we may write g

'

(s), q

x;'

(s) for g('; s) and q

x

('; s), respe
tively. For the following

dis
ussion we will also assume that f is essentially bandlimited with bandwidth

b in the sense that j
g

'

(�)j is negligibly small for j�j > b.

Using s

jl

= dl + dNj=P , expressing q

x;'

as the inverse Fourier transform of

q̂

x;'

and using the one-dimensional Poisson summation formula (3.5) we obtain

f

R

(x) =

2�d

P

P�1

X

j=0

X

l2Z

q

x

(�'

j

;�s

jl

)g('

j

; s

jl

)

=

p

2�d

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�)

X

l2Z

g

'

j

(dl + dNj=P )e

�i�(dl+dNj=P )

d�

=

2�

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�)

X

l2Z


g

'

j

(� + 2�l=d)e

iNl'

j

d�: (7.34)

On the other hand we have from Theorem 6.1

e � f(x) =

Z

2�

0

Z

R

k(hx; �i � s) g('; s)ds d'

=

Z

2�

0

Z

R

q̂

x;�'

(�)
g

'

(�) d� d':

Treating the term with l = 0 in (7.34) separately gives the following de
om-
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position of the re
onstru
tion error.

E(x) = f

R

(x) � e � f(x) = E

1

(x) +E

2

(x);

E

1

(x) =

2�

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�) 
g

'

j

(�) d�

�

Z

2�

0

Z

R

q̂

x;�'

(�)
g

'

(�) d� d'; (7.35)

E

2

(x) =

X

l6=0

2�

P

P�1

X

j=0

Z

R

q̂

x;�'

j

(�)
g

'

j

(� + 2�l=d)e

iNl'

j

d�: (7.36)

Clearly E

1


an be viewed as the error stemming from dis
retizing the integral

with respe
t to '. In order to pro
eed further we need the Poisson summation

formula for T whi
h reads

2�

P

P�1

X

j=0

G('

j

)e

�im'

j

=

p

2�

X

l2Z

b

G(m+ P l); (7.37)

b

G(l) =

1

p

2�

Z

2�

0

G(')e

�il'

d'

for suÆ
iently smooth fun
tions G. Using (7.37) for the fun
tion

G

l

(') =

Z

R

q̂

x;�'

(�)
g

'

(� + 2�l=d) d�

gives

E

1

(x) =

p

2�

X

k2Z




G

0

(Pk) �

Z

2�

0

G

0

(') d'

=

p

2�

X

k 6=0




G

0

(Pk) (7.38)

E

2

(x) =

p

2�

X

l6=0

X

k2Z




G

l

(Pk �Nl): (7.39)

The next task is to 
ompute the Fourier 
oeÆ
ients




G

l

(m). We have

q̂

x;�'

(�) =

^

k(�) e

i�hx;�i


g

'

(� + 2�l=d) =

1

p

2�

Z

R

2

f(y) e

�i(�+2�l=d)hy;�i

dy:

The se
ond equation is 
lear from the proje
tion-sli
e theorem (2.2). This leads

to




G

l

(m) =

1

p

2�

Z

2�

0

Z

R

q̂

x;�'

(�)
g

'

(� + 2�l=d) d� e

�im'

d' (7.40)

=

1

2�

Z

R

2

f(y)

Z

R

^

k(�)

Z

2�

0

e

ih�x�(�+2�l=d)y; �i�im'

d' d� dy:
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Writing z = �x�(�+2�l=d)y as z = jzj(
os ; sin ) and using the representation

(4.22) for the Bessel fun
tion we obtain

j




G

l

(m)j =

�

�

�

�

Z

R

2

f(y)

Z

R

^

k(�)J

m

(j�x� (� + 2�l=d)yj)e

�im 

d� dy

�

�

�

�

�

Z

b

�b

j

^

k(�)j

Z




jf(y)J

m

(j�x � (� + 2�l=d)yj)j dy d�: (7.41)

We now 
ombine (7.40) and (7.41) to �nd 
onditions for j




G

l

(m)j to be small.

First we observe from (7.40) that the integrand may not be negligible only for

those values of � for whi
h both

j�j � b and j� + 2�l=dj � b: (7.42)

Combining this with the estimate (4.23) we �nd that




G

l

(m) will be negligibly

small if

j�x � (� + 2�l=d)yj � #jmj (7.43)

for all x 2 
, all y 2 supp(f), and all values of � satisfying (7.42).

We are now ready to dis
uss the errors for spe
i�
 latti
es and begin with

the standard latti
e. We assume that the sampling 
ondition for d is satis�ed,

i.e., d � �=b. It follows that the 
onditions (7.42) are only satis�ed if l = 0 and

j�j � b. Hen
e E

2

will be small. The leading terms in the expansion (7.38) for

E

1

are




G

0

(�P ). A

ording to (7.43) these terms will be small if

j�(x � y)j � #P

for all x 2 
, all y 2 supp(f), and all j�j � b. Sin
e the maximum value for

jx � yj, x; y 2 
 equals 2, this 
ondition leads ba
k to the sampling 
ondition

P � 2b=#. If f is supported in a region jyj � r < 1, then we have jx�yj � (1+r)

and (7.43) holds for P � (1 + r)b=#.

We also obtain some information about the lo
ation of artifa
ts in 
ase (7.43)

is violated. Assume that f(y) is 
on
entrated near a point y

0

. Then j�(x � y)j

is maximal for j�j = b and x as far away from y

0

as possible. So we expe
t the

artifa
ts to be strongest and to appear �rst near the part of the boundary of


 whi
h is opposite y

0

. However, we see from (7.40) that the 
ontribution to




G

0

(�P ) from values j�j 
lose to b will not be large, sin
e 
g

'

(�) 
an be expe
ted

to be small for j�j near b if f(x) is a non-negative fun
tion. These expe
tations

are 
onsistent with pra
ti
al experien
e. With the standard latti
e P 
an often be


hosen signi�
antly smaller than 2b=# without mu
h degradation in the image.

This is also demonstrated by the following numeri
al experiment. Figure 10 shows

various re
onstru
tions of the fun
tion

f(y) =

�

1� 100jy � y

0

j

2

�

3

+

; y

0

= (0:4; 0:7)
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where the + symbol indi
ates that f(y) = 0 whenever (1 � 100jy � y

0

j

2

) <

0. Hen
e f is supported in the region jy � y

0

j � 0:1. For all re
onstru
tions

of Figure 10 we 
hose b = 32� and the interpolation stepsize H = �=(8b) =

1=256. We have to 
hoose very small H be
ause our goal is to obtain a

urate

re
onstru
tions in the sense of a small l

2

-error. In 
ase of H = d the additional

�ltering 
aused by the fun
tion G

H

from Theorem 6.2 
auses additional error.

This situation is di�erent from Figure 5. There the goal was not so mu
h to

minimize the l

2

-error but to obtain opti
ally pleasing images, so the additional

smoothing 
aused by G

H

was wel
ome. The re
onstru
tions are 
omputed on

a 256 � 256 grid. Sin
e we want to study small artifa
ts the display is su
h

that values below �0:01 are rendered bla
k and values above 0:01 are rendered

white. The upper left pi
ture shows a re
onstru
tion with the standard latti
e

with d = �=b = 1=32 and p = 112. Here we let p = P=2 and only used the p

dire
tions 
overing a 180 degree range. Clearly the sampling 
onditions (5.24)

are satis�ed. The relative l

2

-error of this re
onstru
tion is 4:8%. Slight redu
tion

of p does not lead to a visible distortion in the image. The middle left pi
ture in

Figure 10 shows a re
onstru
tion where p is signi�
antly redu
ed to p = 50. As

predi
ted, the resulting artifa
ts are strongest near the boundary of 
 opposite

y

0

. The relative error is now 7:4%. The artifa
ts are still not very strong. While

the maximum of the fun
tion f(y) equals 1, the maximum value of the artifa
t

equals only 0:0107.

We now turn to the interla
ed latti
e. If d � �=b we have the same situation

as dis
ussed above for the standard latti
e. More interesting is the 
ase �=b �

d � 2�=b as permitted by (5.25). In this 
ase the 
onditions (7.42) are satis�ed

by the following values of l and �.

l = 0; �b � � � b

l = 1; �b � � � b�

2�

d

l = �1;

2�

d

� b � � � b

The terms with l = 0 lead to the same dis
ussion as above, sin
e the parameter

d does not o

ur in (7.38). In the following we investigate the terms with l = 1.

The terms with l = �1 lead to the same 
on
lusions. For l = 1 the leading

terms in the expansion (7.39) for E

2

are




G

1

(�P=2). Re
all that N = P=2 for

the interla
ed latti
e. For these terms to be small we need

j�x� (� + 2�=d)yj � #P=2

all x 2 
, all y 2 supp(f), and �b � � � b � 2�=d. For these values of � we

obtain

j�x� (� + 2�=d)yj � j�j jxj +

�

�

�

�

� +

2�

d

�

�

�

�

jyj

= j�j jxj +

�

2�

d

� j�j

�

jyj �

2�

d

: (7.44)
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where we have used that b � 2�=d � 2b be
ause of (5.25). This leads to the


ondition P � 4�=(#d) for P whi
h is 
onsistent with the sampling 
ondition

(5.25). The upper right pi
ture in Figure 10 shows a re
onstru
tion using the

interla
ed latti
e with p = 112 and d = 2�=b = 1=16. The sampling 
onditions

(5.25) are satis�ed and with a relative l

2

-error of 4:7% the re
onstru
tion is of

equal a

ura
y as the one from the standard latti
e in the upper left pi
ture,

although now we have only half as many sampled data.

Again we obtain some information about the magnitude and lo
ation of arti-

fa
ts 
aused by 
hoosing P too small. Assume again that f(y) is 
on
entrated

near a point y

0

. Then we have that M(�) = max

x2


j�x � (� + 2�=d)y

0

j will be

maximal as � runs through [�b; b� 2�=d℄ if � = �b. If d is 
hosen very 
lose to

2�=b, then for � near �b we have

j�x� (� + 2�=d)yj ' bjxj

sin
e the term (� + 2�=d)y ' (� + b)y will be negligible for � 
lose to �b.

Hen
e for P too small we expe
t an artifa
t to appear in the ring-like region

#P=(2b) < jxj � 1. This is indeed observed in the middle right pi
ture of Figure

10, where we redu
ed p = P=2 slightly to p = 100.

The geometry of the artifa
ts is di�erent when d is not very 
lose to 2�=b,

so that the term (� + 2�=d)y is not negligible for � 
lose to �b. In this 
ase

j�x� (� + 2�=d)y

0

j will be maximal for � = �b and x = y

0

=jy

0

j. Hen
e we

expe
t the strongest artifa
ts at the part of the boundary of 
 whi
h is nearest y

0

.

This is shown in the bottom right pi
ture of Figure 10 where we used p = 112 and

de
reased d to d = 1=18 so that the sampling 
ondition p > 2�=(#d) is violated.

Clearly, the strongest artifa
ts are at the boundary of 
 near the support of f .

We also see from (7.40) that the 
ontribution from values of � near �b to




G

1

(�P=2) is not ne
essarily small. For example, if d = 2�=b and � = �b, then


g

'

(� + 2�=d) = 
g

'

(0) whi
h is usually large. Hen
e the errors from 
hoosing P

too small 
an be expe
ted to be mu
h larger as in 
ase of the standard latti
e.

This is indeed observed in pra
ti
e, as 
an be seen by 
omparing the relative

errors in Figure 10.

8 Further developments

In this arti
le we have only 
onsidered two dimensions and the so-
alled parallel-

beam geometry. The results reported in the �rst six se
tions are a summary of

resear
h whi
h has developed over a period of time, beginning with Corma
k [3℄

and Lindgren and Rattey [26℄, and being further developed by Natterer [19, 20,

21, 22, 23℄, Kruse [16℄, Desbat [4℄ and the author [7, 8, 10, 11, 12℄.

Of great pra
ti
al importan
e is also the so-
alled fan-beam geometry. EÆ
ient

sampling s
hemes for the fan-beam geometry have been derived by Natterer [20℄;

see also [19, 23℄.
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Of growing interest are questions of sampling in three-dimensional tomogra-

phy. For work in this area see, e.g., [5, 6, 22, 25℄.

Finally, in this arti
le we only dis
ussed appli
ations of the 
lassi
al sampling

theorem. Some tomographi
 appli
ations 
all for non-equidistant sampling and

have stimulated resear
h in this area, e.g., [2, 7, 9, 29℄.
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FIGURE 3. The translated sets K + � for the standard latti
e in 
ase of d = �=b,

P = 2b=#. The points � of the re
ipro
al latti
e are indi
ated by an `x`.



1. Sampling Theory and Parallel-Beam Tomography 29

k

σ

x

x

x x

x

x x

x

P/2

4pi/d

FIGURE 4. The translated sets K + � for the interla
ed latti
e in 
ase of d = 2�=b,

P = 2b(2� #)=#. The points � of the re
ipro
al latti
e are indi
ated by an `x`.
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Standard, H = 1/128
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Interlaced, H = 1/128
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Interlaced, H = 1/2048
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Interlaced with interpolated data
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

FIGURE 5. Re
onstru
tions of the Shepp-Logan phantom. All re
onstru
tions were


omputed with p = 420, b = 128�, and the Shepp-Logan 
onvolution kernel (6.29).

Upper left: Standard latti
e, d = H = 1=128. Upper right: Interla
ed latti
e, d = 1=64,

H = 1=128. Lower left: Interla
ed latti
e, d = 1=64, H = 1=2048. Lower right: Data

sampled on interla
ed latti
e with d = 1=64 and then interpolated onto standard latti
e

with d = 1=128 using bilinear interpolation. Re
onstru
tion from the interpolated data

with H = 1=128.
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FIGURE 6. The translated sets K + � for the interla
ed latti
e in 
ase of d = 1:45�=b,

P = 2b(2 � #)=#, # = 0:8. In spite of denser sampling than in the 
ase d = 2�=b

depi
ted in Figure 4, the sets K + � are no longer disjoint, resulting in aliasing error.
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?

are marked with a �.
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FIGURE 8. The translated sets K + � for the standard latti
e in 
ase of d = �=b,

P = 0:8(2b=#), # = 0:8. The point � = (�0:85b=#;�0:99b) 2 K and its translates

� + �, � 2 L

?

are marked with a �.
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FIGURE 9. The translated sets K + � for the interla
ed latti
e in 
ase of d = �=b,

P = 0:8(2b(2�#)=#), # = 0:8. The point � = (�0:85b=#;�0:99b) 2 K and its translates
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are marked with a �.
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FIGURE 10. Artifa
ts resulting from P being too small. The fun
tion to be re
on-

stru
ted is f(y) =

�

1� 100jy � y

0

j

2

�

3

+

, y

0

= (0:4; 0:7). Re
onstru
tions from the stan-

dard latti
e are in the left 
olumn and from the interla
ed latti
e in the right 
olumn.

All re
onstru
tions are 
omputed with b = 32� and an interpolation stepsizeH = 1=256

and displayed on a 256� 256 grid su
h that values less than �0:01 are rendered bla
k

and values greater than 0:01 are rendered white.
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