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Sampling Theory and
Parallel-Beam Tomography

Adel Faridani

ABSTRACT This article contains a tutorial on the interaction between sampling
theory and tomography as well as some new results. We explore how sampling theorems
are used in tomography to identify efficient data acquisition schemes; facilitate an
error analysis for reconstruction algorithms; and provide a qualitative understanding
of some image artifacts. On the other hand, applications in tomography have stimulated
research on new estimates for the aliasing error and in non-equidistant sampling theory.
New results are included in an analysis of artifacts caused by undersampling.

1 Introduction

Computed tomography (CT) entails the reconstruction of a function f from a
finite number of line integrals of f. A natural question to ask is how many and
which line integrals should be measured in order to achieve a certain accuracy
in the reconstruction. Sampling theory comes naturally into play when trying
to answer this question. It turns out that sampling theory is not only useful in
identifying efficient sampling schemes for tomographic data, but also provides a
qualitative understanding of certain artifacts and facilitates the numerical analy-
sis of reconstruction algorithms. We will explore these themes in the subsequent
sections. On the other hand, applications in tomography have stimulated re-
search in sampling theory, for example on estimates for the aliasing error and on
non-equidistant sampling.

The article is organized as follows. In the next section we begin by introduc-
ing the two-dimensional Radon transform, the mathematical model underlying
tomography, and briefly describe how it arises. In § 3 we present the relevant
classical sampling theorem and prove the standard estimate for the aliasing er-
ror. The section concludes with an improved estimate and an outline of key ideas
for its proof. In sections 4 and 5 we describe how to apply the sampling theory of
§ 3 to tomography in order to identify efficient sampling schemes. A key theme
here is that we have a two-dimensional sampling problem and that the particular
shape of the support of the Fourier transform of the data must be exploited in
order to find efficient sampling schemes.

§ 6 is concerned with reconstruction from efficiently sampled data. This re-
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quires some care, and the necessary insights are provided by an error analysis of a
reconstruction algorithm. While these first six sections are expository in nature,
new results are included in § 7 where we investigate the consequences of under-
sampling. We first show that elementary sampling theory provides a qualitative
understanding why some sampling schemes are more sensitive to undersampling
than others. We then present a numerical analysis of the filtered backprojection
algorithm which reveals the location and relative strength of some artifacts.
The article concludes with references to further developments.

2 The two-dimensional Radon transform

The two-dimensional Radon transform maps a density function f into its line
integrals.

Let Z,R,C denote the integers, real and complex numbers, respectively.
Throughout this paper we will assume that f € C§°(2), i.e., f is infinitely
differentiable and vanishes outside the unit disk  of R?. This assumption sim-
plifies the mathematical proofs, and although the density functions occurring
in practice are not necessarily smooth, we will see that our theoretical results
describe the phenomena observed in practice well.

Let 6 = (cos p,sin ) be the unit vector in R? with polar angle ¢, and 6+ =
(—singp, cosp). For f € C§°(2) define its Radon transform Rf by

Rf(p,s) = / f(scosp —tsinp, ssinp + tcosp)dt

_ /f(sﬁ-l—tHL)dt, (2.1)
R

i.e., Rf(p,s) is the integral of f over the line in direction #+ with signed distance
s from the origin. Sometimes R f is considered as a function of s for fixed ¢. In
this case we write R, f(s) for Rf (¢, s).

In x-ray tomography the Radon transform arises as follows. The function f(z)
to be reconstructed is the so-called x-ray absorption coefficient. Since it varies
for different materials and tissues, it does provide an image of the interior of an
object. We confine ourselves to two dimensions so that the goal is to image a
crossection of the object under investigation. Assume a very thin x-ray beam is
sent through such a crossection, traveling along a segment of the line z = sf-+t6+,
t € R. Then its initial intensity Iy and its intensity I; after passing through the

object are related by
10 = [1 e—Rf(@,s)'

Sending many such rays through the crossection under investigation and mea-
suring each time Iy and I; yields a number of sampled values of Rf. The goal is
then to reconstruct an approximation to f(x) from these values. Naturally, one
would like to achieve high resolution with a minimal amount of measured data.
Thus sampling theory comes into play.
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The Fourier transform of a function g € C§°(R") is defined by

36 = em) ™ [ g9
and is extended to larger classes of functions or distributions by continuity or
duality. Here (z, &) denotes the usual inner product in R”.
In particular, the Fourier transform of R, f is given by

(Rof)0) = (2m) ™/ [ B fls)emas.

The following relation between the Fourier transforms of R, f and f is easy to
verify but very useful:

(Ryf)"(0) = (2m)'/2 f(06). (2.2)

Equation (2.2) is called the projection-slice theorem.

For readers inteersted in a more detailed introduction to tomography we rec-
ommend the monographs [19, 23] or the introductory surveys [10, 13] and the
references given there.

3 Sampling lattices for the Radon Transform

From (2.1) we see that Rf is a function with domain [0,27) x R. The sub-
sequent analysis of sampling and resolution will make use of Fourier analysis.
This requires both the domain of Rf as well as the sampling sets to have a
group structure. Equipped with addition modulo 27 the interval [0, 27) becomes
a group, called the circle group, which we denote by T. Then the domain of R f
may be identified with the group T x R. The addition on T x R can be viewed
as the usual addition in R? but modulo 27 in the first component.

The task of tomography is to reconstruct f from finitely many measurements
of Rf.In the parallel-beam sampling geometry a set of angles {¢;,j =0,...,P—
1} is selected and for each angle ¢; a number of line integrals Rf(y;,s;) are
measured. We require the set {¢j,s;} of all points where Rf is measured to
be a subgroup of T x R, and for practical reasons there should be more than
one measured line for each occurring angle ¢;. A sampling set satisfying these
two requirements is called an admissible sampling lattice. The admissible lattices
may be parameterized as follows [12]:

Lemma 1. Let L be an admissible sampling lattice. Then there is d > 0 and
integers N, P, such that 0 < N < P and
L = L(,N,P)
= {(gjsi) s pj =2mj/P, sj =d(l+ jN/P),
j=0,...,P—-1; l€Z}. (3.3)
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From (3.3) we see that there are P directions 6; corresponding to the equidis-
tant angles ¢; = 2mj/P. For each direction integrals over an equidistant set of
lines with spacing d are measured. This collection of equidistant parallel lines is
shifted by an amount djN/P which varies with the angle ¢;.

The most important lattices are the standard lattice

Ls = {(pj,s1) 1 ¢; =2mj/P, sy =dl, j=0,...,P—-1, 1€ Z}
which is obtained by letting N = 0, and the interlaced lattice
LI:{(QDJ?‘SJZ)()DJ :27r.7/P7 Sj1 :d(l +]/2)7]:077P_]—7 IGZ}

where P is even and N = P/2. We see that for the standard lattice the values
s; = dl do not change with the angle ¢;. For the interlaced lattice the set of
values sj; = dl + dj/2 is shifted by d/2 when going from one angle ¢; to the
next.

In practice one chooses P = 2p for both lattices, and for the interlaced lattice
one lets p be even. Then, because of the symmetry relation

Rf((pa S) = Rf((ﬁ +m, _8)7 (34)

only the angles ¢; € [0, 7) need to be measured. It turns out [12] that among all
admissible lattices the standard and interlaced lattices are the only ones which
fully exploit this symmetry.

The parameterization given in Lemma 1 is not unique. Alternative parame-
terizations of admissible sampling lattices have been used in [8] and [11].

We now wish to apply Shannon sampling theory in order to find the best
sampling lattices. In order to do this we need some Fourier analysis for functions
defined on the group T x R . The Fourier transform on T x R is defined by

2
G(k,0) = (2m)~* / /g(w,s)e‘“’“ﬁgs) dpds, keZ,0eR
o Jr

Using the notation z = (p, s), ¢ = (k,0), (z,() = kp + os, this can be written
as

3(0) = @m) / o)z CeTxR.

T xR
The inverse Fourier transform in this setting is given by

G(p,s) = (271')_1Z/RG(k,o)ei(k‘p"'”)do

kEZ

= (2m)! G(Q)e"=9d,

Z xR

with z = (p,s) € TxR and ¢ = (k,0) € Z x R. Very useful tools for our
purpose are the Poisson summation formulas for R and T x R:
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Theorem 3.1. (Poisson summation formula for R) Let h > 0 be fized, and
g€ C(R) such that |g(x)| < O(1+al) *, and [3(0)] < C(L+ [o]) ¢ for
some C e > 0. Then

(2m)/?p, Z g(z + hl)e i@+l — Z g(o + 27l /h)ei=?mt/h, (3.5)
I€Z =

For a proof see, e.g., [14, Theorem (8.36)].

The result holds also under less restrictive hypotheses: Let ¢ € L2(R) such
that 3, ., |g(hl)|* < 0o, and § € Li(R). Then (3.5) with = = 0 holds for almost
every o and the sums converge in Lo([—7/h,7/h]). This is a special case of a
very general result given in [15, p. 217].

In order to state the Poisson summation formula for T x R we note that an
admissible sampling lattice L has a corresponding “reciprocal lattice” L+ in the
Fourier domain. L+ is the set of all n € Z x R such that (y,n) € 27Z for all
y € L. From (3.3) it follows that

L*(d,N,P) = {(Pky — Nky, 2nky/d), ki, ks €Z}. (3.6)

Theorem 3.2. (Poisson summation formula for T X R) Let z € T X R and
C € Z x R be fized, L = L(d, N, P) be a an admissible lattice and g € C§° (T x R).
Define the lattice constant cr,by cr, = d/P. Then

Y gl +y)e O = 37 g(¢+ e, (37)

yeL neLL

We are now ready to state the classical sampling theorem for this setting; cf.
[24].
Theorem 3.3. Let g € C°(T xR), L = L(d, N, P) an admissible sampling
lattice and K be a compact subset of Z x R such that its translates K +n,n7 € L+

are disjoint. Let xk denote the characteristic function of K, i.e., xx({) =1 if
¢ € K and xk () =0 otherwise. For z € T x R define

59(2) = 3 ez~ 0)a(w). (3.8)
yeL
Then
9(2) - Sg(z)] < / G(O)1dC. (3.9)
(ZXR)\K

Observe that if § vanishes outside of K then g = Sg, i.e., g can be recovered
exactly from its samples on the lattice L. The meaning of Sg and yx may
become more clear by a comparison with the better known case of sampling
on R. A lattice is then an equidistant set L = dZ = {dl, | € Z}. Assume that K
is an interval, say K = [—1,1]. Then

1 .
k(@) = (2m) V2 / ¢e de = \/g e ﬁ sine(z),
-1 ™ X Vs
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with the “sinus cardinalis” sinc(z) = sin(z)/z. In this case Sg is the so-called
cardinal series

Sg(z) = g Zg(dl) sinc(z — dl).
lez

The main idea of the proof of Theorem 3.3 is as follows: Using the Poisson
summation formula (3.7) we may compute the Fourier transform of Sg as follows.

— d .
S9(Q) = ;Zg(y)i/qr RXK(z—y)ewyodz

27
yeL

d ,
= XK(OF Z gly)e O
yeL

= xx(Q) Y (¢ +n). (3.10)

neLL

From the Fourier inversion formula it follows that

(g - Sg)(2)| < (2m) / G - Sa)(OldC.

Z xR

Now we use (3.10) and observe that

G-59)Q)= > a(C+n) forCeK,

0#n€eLt

and S‘?}(C) =0 for ¢ ¢ K. Hence

2nl(g - Sg)(=)| < L|<g—§g><<>|d< + /( RIS
< g(C+m)| d¢ + §(C)|d
< 7&2 /K 6(C+ )] dC /M)\Km(om
- / GO + / 16(0)1d¢
osmet T (ZxR\K
<2f ol (3.11)
(ZxR)\K

where the last estimate follows from the disjointness of the sets K +n, n € L*.
For a complete proof see, e.g., [8] or [19, pp. 62—64].

We see from (3.10) that S'\g(C) vanishes outside K. On the other hand the terms
with 77 # 0 in the sum cause high frequencies in § to contribute to g?}(() for ( €
K. This effect is called aliasing. The right-hand side of (3.9) provides an estimate
for the so-called aliasing error. If g is the Radon transform of a function with
compact support, then the Fourier transform ¢ cannot have compact support
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and an aliasing error will always be present. Thus tomography provides reasons
to seek sharper estimates for the aliasing error than the classical estimate (3.9).
In the remainder of this section we will report on a way to improve the estimate
(3.9). These results were derived in [11] and are presented here for their relevance
to sampling theory but will not be used further on, so that readers not interested
in this topic may safely proceed to the next section.

Definition 3.1. For g : TxR — C and ¢ € T let g, : R =+ C be given by
9y (s) = g(e, s). Define

€ (g,7) = (271')71/2 sup/ |9,(0)| do. (3.12)
€T J|o|>T

For K € 7Z x R compact let ky = max{|k| : (k,0) € K}, 01 = max{|o]| :
(k,o) € K}, and My = {(k,0) € Z xR : |o| < 01 }\K; see Figure 1.

Finally, for a € R let |a| and [a] denote the largest integer < a and the
smallest integer > a, respectively.

We first state a simplified version of the sharper estimate; cf. [11, Proposi-
tion 5]:

Proposition 3.1. Let K be a compact subset of Z x R satisfying the condition
that if (k,0) € K, then (k',0) € K for all k' with |k'| < |k|. Let L = L(d, N, P)
be an admissible sampling lattice such that the translated sets K +n, n € L+
are disjoint, g € C§°(T x R), Sg as in (3.8), z € T x R, and k1,01, My, €* as in
Definition 3.1. Then

lg(z) = Sg(=)] <« /M 19(O)d¢ + C(k1, P) € (g,01)

with C(ky, P) = 1+ (1 + k43 4 215 (4f; 4 2)) [2d].

Proposition 3.1 is a corollary of Theorem 3.4 below. The key idea of the proof
the Theorem is as follows. The Fourier inversion formula gives

1
2

1

lg(z) — Sg(2)]

[ 60 - 530 =9 dc‘
Z xR

IN

| @0 = 5310 = dc‘

(3.13)

/ 300 d¢
( )\ K

where we have used that according to (3.10) S'\g vanishes outside K. The more
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difficult term to estimate is the integral over K. By (3.10) we have

1 ~ o (2
o | [ 660 = Satne ac
T /K
1 .

- a Z<Z7<>
| [ X e met ac (314)

0#£n€Lt
Now we use (3.6)to write
> a¢+m) = > 3G+ Pk — Nk, G + 21ky /d).
0#neLL (k1,k2)7#(0,0)

The key idea is now to use the one-dimensional Poisson summation formula for
the sum over k;. This is possible for those ( € K and k» such that (s +27k>/d| >
01, which guarantees that ¢ +n € M, for all k;. The detailed proof is given in
[11].

We conclude by stating the more general result.
Theorem 3.4. ([11]) Let ¢ € CP(TxR), K C Z xR compact and L =
L(d,P,M,N) an admissible sampling lattice such that the translated sets K +1,

n € Lt are disjoint. Let ky,01, My as in Definition 3.1, o* = max{oy, 27’7 —o1},
and p; =27j/P, j=0,...P —1. Then

lg(,8) — Sg(w,s)]
! i 7)~L/2 9o(0)| do
< /Ml 9(OldC + (2m) / _lg@)d
L P o) Fld-‘J

max / 05 (0)de (3.15)

V2r T | J=00P=1 15 5 6
with
| P2
C(K,P, = = max ethle—vi)
( ?) P Z lo|<o1 Z
Jj=0 kEN (o)

where N(o) ={k: (k,0) € K}.

4 The support of ]f??

Theorem 3.3 indicates what needs to be done in order to find efficient sampling
schemes for tomography, i.e., when ¢ = Rf. First we need to find a suitable
set K so that the right-hand side of (3.9) is sufficiently small. Then we need to
identify lattices L(d, N, P) as sparse as possible but such that the translated sets
K + 1, n € Lt are disjoint.
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The set K will of course depend on the function f. The crucial parameter
turns out to be a cut-off frequency b such that | f (9)| is sufficiently small for
|€] > b. The parameter b may be viewed as an “essential bandwidth” of f. A
suitable set K was first found by Lindgren and Rattey [18, 26]. Natterer [19]
gave the following rigorous estimate.

Theorem 4.1. [19, p. 71] For b >0 and 0 < ¥ < 1 let
K(W,b) ={(k,0) € ZxR: |o| <b, [k| <9 'max(|o|,(1—9)b)}; (4.16)
see Figure 2. Let f € C§°(Q2). Then

/<z R)\K'm”d%i F©ldg + || £ lloa n(@,b),  (417)

0 Jig)>p
where n(9,b) decreases exponentially with b, satisfying an estimate
0 < 7(¥,b) < C(9)e MNP (4.18)
with constants C (), A(¥) > 0.

The set K (9,b) is depicted in Figure 2. What will turn out to be crucial for
finding efficient sampling lattices is the bow-tie like shape of K. We will briefly
sketch the derivation to illustrate how this shape arises. We have

—

27T
Ritke) = @0 [ [ Rfts)e 400 g ds

27
(271')_1/2/ R, f(0) e~ e dyp
0

27

f(ab) e dip (4.19)

0
27T
= (@2mn)! / (@) / e—iman) =ik g de  (4.20)
R2 0

In deriving (4.19) we used the projection-slice theorem (2.2). From (4.19) we see
that |1/%7(k,0)| will be small for |o| > b if b is the “essential bandwidth” of f,
i.e., if |f(€)| is sufficiently small for |¢| > b. This explains the upper and lower
boundaries of the set K; cf. Figure 2. To explain the bow-tie shape we continue
by writing « = |z|(cos ¥, sin ). This gives

2
(2,”)71/ f(l’)/ eficr\m\cos((pfw)fikg: d(p
R2 0

= ik z)e Y T (—o|z|) d .
= i [ @ =olal) d (4.21)

—

Rf(k,0)

where we have used the integral representation

g i} 2w ) )
Je(t) = - / eiteos e=ike g, (4.22)
0

o
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for the Bessel functions of the first kind J (¢), which can be found in [19, p. 197].
Let 0 < ¢ < 1. Combining an upper bound for the Bessel functions found in
[1, 9.1.63] with a derivation given in [19, p. 198] one obtains the estimate

| T (9K)| < e (RI/3Q=0%)2 (4.23)

It shows that |Ji(t)| decays exponentially as |k| increases beyond |¢].

Since f(z) is assumed to vanish for || > 1 we now see from (4.21) and (4.23)
that |}/2\f(k:,o)| will decay rapidly as soon as |k| > |o|. This explains the bow-
tie shape of the set K. We see that it comes from the compact support of the
function f and the decay properties of the Bessel functions. For a complete
derivation see [19, pp. 71-73]. One can also choose to eliminate the parameter ¢
by setting it equal to 1, as was done in [23, §4.3]. On the one hand this simplifies
the presentation. On the other, it is apparent from the estimate (4.23) that the
result may be somewhat optimistic for situations where both |k| and |o| are small
and |k| only slightly exceeds |o|.

5 Sampling conditions

The next step in applying Theorem 3.3 is to find conditions for the lattice pa-
rameters d, N, P such that the translated sets K(J,b) +n, n € L*(d, N, P) are
disjoint. This is a requirement for the reciprocal lattice to be sparse which means
that the sampling lattice itself must be sufficiently dense.

We begin with the standard lattice, i.e., N = 0. In order to exploit the sym-
metry (3.4) we assume P to be even. According to (3.6) the reciprocal lattice is
given by

L = LY(d,0,P) = {(Pky, 27ks/d), ki,kz €Z}.

From this we readily conclude that for K = K(¢,b) the sets K +n = K +
(Pky, 2mk2/d) will be disjoint if and only if

d<m/b, P >2b/9; (5.24)

see Figure 3.

The translated sets in Figure 3 do not appear to be packed as densely as
possible. Another arrangement corresponding to a different lattice may result
in a denser packing, giving a denser reciprocal lattice and therefore a sparser
sampling lattice. However, it is apparent from letting k1 = 1, k2 = 0 in (3.6) that
the point 7 = (P,0) always belongs to L*(d, N, P). For K and K + (P,0) not
to overlap we need P > 2b/d. Hence the standard lattice is optimal in the sense
that it does require only a minimal number of directions. Other lattices can only
be more efficient overall by allowing values of d greater than 7/b. This turns out
to be the case for the interlaced lattice. The reciprocal lattice is now given by

L} = {((2k1 — ko) P/2, 2nky/d), ki, ko € 7},
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where for reasons of making use of the symmetry (3.4) we assume P to be
a multiple of 4. Now the translated sets K (d,b) + n will be disjoint if either
conditions (5.24) are satisfied, or if

2w
b

2 2 —
, p>max <19—7;, %) , peven, P =2p. (5.25)

S|

<d<

Figure 4 shows the case of optimally sparse sampling with the interlaced lattice,
ie, d=2n/b, P =2b(2 —¢)/J. We see that the interlaced lattice allows for a
maximal detector spacing of d = 27 /b which is twice as large as the maximum
allowed for standard lattice, with only a moderate increase in P, since ¢ can
often be chosen very close to 1. Hence we obtain the same theoretical resolution
(as determined by the bandwidth b) with only little more than half the amount
of data required for the standard lattice.

Sampling conditions for a general admissible sampling lattice L(d, N, P) have
been given in [11].

6 The filtered backprojection algorithm

Having identified efficient sampling schemes the question remains how best to
reconstruct from efficiently sampled data. In this section which is based on the
presentations given in [8] and [12], we describe the most popular tomographic
reconstruction algorithm and present an error analysis which indicates how to
achieve good reconstructions. The filtered backprojection algorithm is based on
the following approximate inversion formula.

Theorem 6.1. Let e € Ly(R?) be a radial function such that |€|'/?¢(€) € Lo (R?),
and 1 the even function of one variable given by é(&) = (2m)~t(|€|). Let the
associated convolution kernel k be given by k(o) = (2m)=%/?|o|¢(0). Then

ex f(x) :/0 W/Rk((a:,e) —$)Rf(p,s)dsdep. (6.26)

Proof. The relation (6.26) can be verified by writing e * f as e x f(x) =
fé(f)f(f)ei(“”@df, expressing the integral in polar coordinates, and using the
relation (2.2); see, e.g., [10].

If e is an approximate d-function then (6.26) gives an approximate reconstruc-
tion formula for f.

Discretizing the integrals in equation (6.26) by using the trapezoidal rule yields
the filtered backprojection algorithm. We derive the algorithm assuming the data
are values Rf(ypj,s;;) of the Radon transform of f, sampled on an admissible
sampling lattice L(d, N, P) as described in (3.3).
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Discretizing (6.26) with the trapezoidal rule gives
9 D=1
exf0) = 223 Qe 0y)),
=0

Q;(t)

A k(t—sp)Rf(;,850),

l

with ¢;,s; as in (3.3), and 6; = (cosj, sin ;). The reconstruction is usually
computed for values of z on a rectangular grid Zm,m, = (m1/Mi, ma/M,). Since
computing the discrete convolution Q;({z,6;)) for each occurring value of (z, 8;)
would take too long, one first computes Q;(iH), |i| < 1/H, and then obtains an
approximation IgQ;((z,6;)) for Q;({z,6;)) by linear interpolation with stepsize
H. We assume that

H =d/(N'm), with 0 <m,N’' € Z, and N'N/P € Z. (6.27)

This gives H = d/m for the standard lattice (N’ = 1) and H = d/(2m) for the
interlaced lattice (N’ = 2). Then the effect of interpolating the convolution is
the same as replacing the kernel k with the piecewise linear function Ik which
interpolates k at the points HI, | € Z; see, e.g., [8, p.84]. Hence the algorithm
computes the function

P-1

fale) = 253 1nQj((e.0:)
7=0

27md =
= 5 2> Iuk((z,0;) = sj0) Rf (¢5,501) (6.28)

j=0 leZ

A popular choice for the convolution kernel & is the so-called Shepp-Logan
kernel whose Fourier transform is given by

ko) = 3m)*/ |olsinc(om/(2D)) X(_1(0); (6.29)

cf. [19, pp.110-111]. Here we used the notation xas to denote the characteristic
function of a set M, i.e, xa(z) =1 for x € M and xa(x) = 0 otherwise.

In [12] the following error estimate was given. It builds on pioneering work in
[16] and extensions in [8]. For an alternative estimate yielding convergence rates
depending on the smoothness of f see [27].

Theorem 6.2. Let f € C§5°(Q), g = Rf, fr be as in (6.28) with e and k as in
Theorem 6.1 and in addition such that k € Ly(R) and ez [R(HI)? < oo. Let
M C Z x R be compact and let g be sampled on an admissible sampling lattice
L with parameters d, N, P such that the translates M + 1, n € L+ are disjoint.
Then, for b >0,

fr(z) = Gu xex f(z) + Ei(z) + Ex(z) + Es(z) + Ey(z)
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with

Gu(&) = (2m) 'sinc®(HIE|/2)x10,5 (1€,

B0 < Vs Y oty |/ |F(,)ldC,
yEL
Ba(e)| < 2vor (lrglsg\sinc%flo/?)l%(o)\) /(M\Mm(omc,
|Es(z)| < (27r)%s1;p/_bb (1 —sinc®(Ho /2)) |Z << 2ﬂ-l> 0) do

leZ

Es@)] < 22+dVar || £ |l / () |do,

lo|>b

where sinc(s) = sin(s)/s and for ( = (I,0) € Z x R,

F(C,x) = Jilole]) sine?(Ho /2) k(0) X(_4(0) (6.30)
with J; denoting the Bessel functions of the first kind.

The parameter b is a cut-off frequency and should be chosen such that | f €3]
is sufficiently small for || > b. Gy has bandwidth b and so Gy *e x f is a low-
pass filtered approximation to f with bandwidth b. Application of the theorem
to the standard and interlaced lattices requires to specify an appropriate set
M; to find sampling conditions for the lattice parameters d, N, P which ensure
that the translated sets M + 1, n € L+ are disjoint; and to find estimates for
foR\M |F(¢,z)|d¢ and for f(ZxR)\M |G(¢)| d¢. We will first consider the standard
lattice.

For the standard lattice we let M be the rectangle M; (¥,b) = {(k,0) : |o| <
b, |k| < b/¥}. Note that M; contains the set K(¢,b) of Theorem 4.1, so we
know that I/%?(C) will be small outside of M; if b is chosen as the essential
bandwidth of f. The larger set M; can be chosen here since it turns out that the
conditions for the translates M; + n to be disjoint are the same as for the sets
K + 1 to be disjoint. As we will see, having a larger set allows for a sharper error
estimate. For the standard lattice we have N = 0 in (3.3), and the reciprocal
lattice L+ equals Lt = {(Pky, 2mks/d), ki,ko € Z}. For reasons of efficiency
as discussed earlier we let P = 2p be even. It is obvious that the translated sets
M;(9,b) +n, n € L* are disjoint if and only if the sampling conditions (5.24)
are satisfied. Since M (¢,b) D K (¢,b) the estimate of Theorem 4.1 can be used
for f(ZxR)\Ml 19(¢)] d¢:

JGIES
(Z xR\ M)

IN

LGS
(ZxR)\K

[ 1@l 1S s b (63)
& |€]>b
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Hence the error E, will be small if f is “essentially bandlimited” with bandwidth
b in the sense that f|£|>b |£(€)|d¢ is sufficiently small.

It was shown in [12] that for the standard lattice

o—Bb/
d 4b k —_—
/ZXR\Ml(ﬂb)| SEL (m\i}ﬂ (@)) 1—e=B’
B=(1-v9%z?)°%?/3 (6.32)

Hence the error E; will decay exponentially with increasing b.

The error E3 is caused by the interpolation step and usually not a concern
when using the standard lattice. This can be explained as follows: Consider the
common parameter choice d = H = r/b. Since f(£) is assumed to be small for
|€] > b, only the term with { = 0 in the sum will be significant, i.e., we have for
lo| <b

> |fo +2m/d0)| = D2 |F((o +2000)| =1f(00)].

lEZ IEZ

Usually the density function f is non-negative so that | f (08)| has a sharply
peaked maximum at ¢ = 0 and is very small for |o| close to b. In such a case the
error E3 will be small since the factor 1 — sinc?(Ho/2) is small exactly where
|f(08)] is large.

The last error Ey can be kept small by chosing the convolution kernel £ such
that f\0\> p |k(0)|do is small. Often one can use bandlimited & so that Ej vanishes

entirely. This is for example the case for the Shepp-Logan kernel (6.29).

In summary, for the standard lattice we expect a good reconstruction as long as
the sampling conditions (5.24) are met. The interpolation stepsize H may be as
large as d. The picture in the upper left of Figure 5 demonstrates this conclusion.
It shows a reconstruction of the so-called Shepp-Logan phantom with p = 420,
d=H =1/128, and b = w/d. The phantom models the crossection of a human
head by a superposition of 11 ellipses whose parameters can be found in [28§].
The phantom has values between 0 and 1 but the display is such that values
greater 0.07 are rendered white and values less than —0.07 are rendered black.
This choice is made because we are interested mainly in the small differences
of the features inside the “head”. Note that the reconstruction is very smooth
inside the head but not outside. This comes from the fact that the strongest
artifacts tend to appear along tangents to boundaries with large density jumps.
In this case the only large density jumps are associated with the “skull”, and no
tangent to a boundary of the skull passes through the interior of the head. Since
we are interested only in the interior, this reconstruction is quite satisfactory.

For the interlaced lattice we let M = K (9,b) as in (4.16). For this lattice
P = 2p and N = P/2 = p. We always let p be even, so that because of the
symmetry relation (3.4) only the angles ¢; € [0,7) need to be measured. The
reciprocal lattice is Lt = {(p(2k; — k2),27ks/d), ki, k2 € Z}. We have already
seen that the sets K(9,b) +n, n € Lt are disjoint if either (5.24) or (5.25) are
satisfied. Comparison of (5.24) and (5.25) shows that the interlaced lattice allows
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to double the detector spacing d with only a small increase of p. It is therefore
potentially up to almost twice as efficient as the standard lattice. An estimate
for [, (ZXR\K |§(¢)| d¢ which controls the error term FE» has already been given in

(6.31). It was shown in [12] that for the interlaced lattice

~ / 1+ e B
F((o)|d¢ < (max |k(0)]) 49e % < + )
/ZXR\Kw,m' (Ga)de < (\a\§b| @ l—e#  (1—ef)?

b= (1-9)b/0, B=(1-09z)%?%/3. (6.33)

As in the case of the standard lattice, the error F; decreases exponentially with
b, although at a slower rate. Also, for ¥|z| close to 1 we expect this error to
be significantly larger than for the standard lattice, due to the term involving
(1—e ")z,

As before the error Ey4 is kept small by chosing the convolution kernel k ap-
propriately.

Of greater concern, however, is the error E3, which unlike as in the case of
the standard lattice is now critical. Consider the choice of parameters d = 27 /b,
H = 7/b. Now the sum over [ in the estimate for E5 in Theorem 6.2 may have
3 significant terms for |o| < b:

S |fto +2mt/0)| = ST If(0+b0O)| = 1F((0-b)0)|+|f(8) 1+ f (4D

lEZ leZ

As discussed earlier, the contribution of the term |f(o6)| is strongly attenu-
ated by the factor (1 — sinc?(Ho/2)). However, this is not the case for the
other two terms. E.g., let ¢ be close to b. Then, assuming again that f is large
near the origin, |f((oc — b)#)| will be large and is not attenuated by the factor
(1 — sinc®(Ho/2)) which will be close to 1. Therefore we expect considerable
reconstruction errors for this choice of parameters. That this is indeed the case
is demonstrated in [16, 8] and in the upper right image of Figure 5. Compared to
the upper left image we used the interlaced lattice with d = 1/64 and as before
reconstructed with an interpolation stepsize H = 1/128. Strong high-frequency
errors render the image useless.

A complementary explanation for this strong sensitivity with respect to H
was given in [8]. The sums with respect to j and ! in (6.28) can be viewed as
discretizations of the integrals with respect to ¢ and s in (6.26), respectively. If
the sampling conditions (5.24) are satisfied, then both the inner and outer inte-
gral are approximated accurately by the respective sum. But in case of (5.25) the
stepsize d may be too large for an accurate approximation of the inner integral. In
this case the accuracy of the reconstruction depends on the cancellation of these
errors during the subsequent summation with respect to j. If the interpolation
is not accurate, this cancellation is prevented.

Hence when using the interlaced lattice one should choose H <« /b, so that
(1—sinc?(Ho/2)) is small for |o| < b. Typical choices in practice are H = 7/(16b)
or smaller. This choice has been made in the lower left image of Figure 5. The
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high-frequency errors are indeed removed, but it turns out that we also removed
a welcome smoothing effect of the interpolation with larger stepsize and are left
with an unwelcome high-frequency pattern stemming from the discontinuity of
the Fourier transform (6.29) of the convolution kernel k at the cut-off frequency.
This error can be removed by chosing a different kernel & whose Fourier trans-
form tapers of to zero at o = +b. However, this entails a certain loss of resolution
as was demonstrated in [8]. A better possibility is to first interpolate the data
onto the standard lattice and then perform the reconstruction from the inter-
polated data. This was done in [7] using the interpolation from the sampling
theorem with very good results. In the lower right of Figure 5 we interpolated
the data onto the standard lattice using bilinear interpolation. The reconstruc-
tion is comparable to the one in the upper left, although now we used only half
as many sampled data. However, we will see in the next section that part of
the advantage of the interlaced lattice is lost due to increased sensitivity with
respect to undersampling in the ¢ variable.

In summary, we expect good reconstructions for the interlaced lattice for d
close to the optimal value 27 /b if the sampling conditions (5.25) are satisfied and
if either H is sufficiently small or the data are interpolated onto the standard
lattice prior to reconstruction.

7 Analysis of the effects of undersampling

In this section we use sampling theory to analyze some effects of undersam-
pling. By undersampling we mean a violation of the sampling conditions (5.24)
or (5.25). First we present a qualitative discussion of why the interlaced lattice
is more sensitive to undersampling than the standard lattice. Then we perform
a more detailed analysis and gain insight into the location and strength of un-
dersampling artifacts when using the filtered backprojection algorithm.

Let us begin by noting an intriguing difference in the structure of the sampling
conditions (5.24) and (5.25) for the standard lattice and the interlaced lattice,
respectively. The conditions for d and P in (5.24) are independent of each other
and indeed could be derived by applying one-dimensional sampling theory to
each of the variables separately. On the other hand the conditions (5.25) come
from genuinely two-dimensional sampling theory, which is reflected in the fact
that the condition for P involves d. This has the intriguing consequence that in
some cases the condition can be violated by decreasing d, in spite of the fact that
this makes the sampling lattice more dense. So we would have undersampling in
spite of having sampled more data. Figure 6 illustrates such a case. Compared
to Figure 4 we decreased d without changing P. This has the effect of moving
the translated sets K + n further apart in the vertical direction. As the figure
shows the translated sets are no longer disjoint. Numerical experiments in [8, p.
97] confirmed that this results in inferior tomographic reconstructions. This can
also be seen from a comparison of the top and bottom pictures in the right half
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of Figure 10, which are discussed further in the next section. On the other hand,
sampling more data by leaving d fixed and increasing P does not violate (5.25).
In this case the translated sets K + 7 in Figure 4 move further apart from each
other in the horizontal direction and remain disjoint.

It turns out that part of the advantage of the interlaced lattice is lost due to
increased sensitivity with respect to undersampling in the ¢ variable. This can be
qualitatively explained as follows (cf. [23, p. 89, Remark 3]): Figure 7 shows the
translated sets K +n in case of the standard lattice with P = 2b/¥, d = m/b. For
illustrative purposes we have marked the point ¢ = (—0.85b/¢, —0.99b) € K and
its translates ¢ + n with a x. Assume we wish to compute an approximation for
the Fourier transform §({) from the values of g on a sampling lattice L by means
of taking the discrete Fourier transform with respect to L. The result would
be §({) ~ (d/P)Y. ELg(y)e"(y@, i.e., just the left-hand side of the Poisson
summation formula (3.7) for z = 0. According to the Poisson summation formula
this is equal to

daC+n) =9 + D aC+m).

neLt 0#neLt

If the translated points ¢ 4+ ) lie outside K for n # 0 we may assume that their
contribution is small, so that we obtain a good approximation for §(¢). This will
be the case if the sampling conditions (5.24) are satisfied, as can be seen from
Figure 7. In Figure 8 we have decreased P to P = 0.8(2b/4), so that the sets
K + n are no longer disjoint. We see that one of translated points ¢ +n, n # 0
now lies within K, causing an aliasing error. However, it turns out that in most
applications of tomography this error will be small. This is due to the fact that
in most cases f(x) > 0 for all z, so that the Fourier transform f(¢) is maximal
at the origin and decays quickly away from the origirfl; Because of the projection-
slice theorem (2.2) the same is true for §(k,o0) = Rf(k,o). Since the only one
of the translated points ¢ + 1, n # 0 which lies in K lies near the lower right
corner of K, i.e., far away from the origin, the resulting error is likely to be small
in most cases. This explains the observation that for the standard lattice P can
often be chosen smaller than required by (5.24) without significant degradation
in the reconstructed images. For example, in order to obtain the visible artifacts
in the middle left picture of Figure 10, which is discussed further below, we had
to reduce P very significantly.

This situation is different for the interlaced lattice as Figure 9 shows. Com-
pared to Figure 4 we have decreased P to 4/5 of its required value. We have
again marked the point ¢ = (—0.85b/9,—0.99b) € K and its translates. Again
one of the translated points lies inside K, but this time very close to the origin,
where |1/%}’ (k,o0)] is large. This causes a large error for the approximate value of
}/f\f (¢), indeed the error can be expected to be much larger than the exact value.
Hence we expect to incur large high-frequency errors which may significantly
degrade the reconstructed images; cf. the middle right picture in Figure 10. This
concludes our qualitative discussion.
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In the remainder of this section we build on results in [19, p. 105] and [12] by
giving a quantitative discussion of artifacts caused by undersampling in the ¢
variable for the standard and interlaced lattices when using the filtered backpro-
jection algorithm.

For the following discussion it suffices to neglect the effect of the interpolation
and to assume that the convolution kernel £ from Theorem 6.1 is bandlimited
with bandwidth b, i.e., k(o) = 0 for |o| > b. This is possible since it was shown in
[12] that the contributions from the interpolation and from the high-frequency
part of k£ can be estimated separately. Hence we assume that we reconstruct the
function

fr(z) = 27rd Z > k(x,0;) — s;)Rf (@, 550)-

j=0 lez

For z € Q define the auxiliary function ¢, € L2(T x R) such that ¢, (—¢, —s) =
k({(x,0) — s), i.e., qz(p,s) = k({z,w) + s) with w = (cos p, —sin p). As before
we use the notation ¢; = 27j/P and 6; = (cosyj,singp;), write g(p,s) for
Rf(p,s), and in cases were we consider operations acting on the s-variable alone
we may write g, (), ¢a,, () for g(¢, s) and g, (¢, ), respectively. For the following
discussion we will also assume that f is essentially bandlimited with bandwidth
b in the sense that |g,(o)| is negligibly small for |o| > b.

Using sj; = dl + dNj/P, expressing ¢, as the inverse Fourier transform of
4z, and using the one-dimensional Poisson summation formula (3.5) we obtain

fr(z) = 2ﬂdzzqz —pj, —$1)9(;,5j1)

j=0 lez

q.n 03 (0) N g, (dl + dNj/Pe 0 dHANI/P) oy

LEZL
or "t
- Ty / Qo () S G5, (0 + 271 [ )™ do (7.34)
j=0 /R leZ

On the other hand we have from Theorem 6.1

erf@ = [ " | 6y - 9 gty

2T
= / / G,— (o) do dep.

Treating the term with [ = 0 in (7.34) separately gives the following decom-
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position of the reconstruction error.

E(z) = fr(x) —exf(x) = Ei(z)+ Ex(z),

P—1
Ei) = %ﬂz [ (@) 5 (0) o

/ " / G (o) dor dip, (7.35)

2
E)(x) = Z WZ/% 0;(0)d0; (0 + 2nl/d)eN"%i do.  (7.36)

[#0 j=0

Clearly E; can be viewed as the error stemming from discretizing the integral
with respect to ¢. In order to proceed further we need the Poisson summation
formula for T which reads

P—1

2 —ime; -~

FE G(pj)e i = \/271'2 G(m + Pl), (7.37)
Jj=0

IEZ

1 2m .
—= [ G(p)e"d
= [ G

for sufficiently smooth functions G. Using (7.37) for the function

Gi(p) = /Rtim,w(o)@(o + 2nl/d) do

G(l)

gives

B@ = VEYGED - [ G

kEZ
= Vo) Go(Pk) (7.38)
k#0
By(w) = V23> Gi(Pk—N). (7.39)
1#0 kEZ

The next task is to compute the Fourier coefficients G, (m). We have
Ge,-p(0) = k(o) ®?)

Golo +27l/d) = e~ilo2ml/DW.0) gy

72 1

The second equation is clear from the projection-slice theorem (2.2). This leads
to

Gi(m)

2m
\/2— / / Gr.—p(0) Go(o + 27l /d) do e~ ™% dip (7.40)
I

- 7. i{ox—(oc+2wl/d)y, 0)—imy
- /sz(y)/Rk(a)/O e do do dy.
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Writing z = oz — (0 +2wl/d)y as z = |z|(cos ¢, sin 1) and using the representation
(4.22) for the Bessel function we obtain

|Gi(m)|

/ f(w) / k() Jm (0 — (0 + 21l fd)yl)e "™ do dy
R2 R

IN

b
/ ()] / F@)Im(low — (o + 2nl/d)y]) dydo.  (7.41)
—b Q

We now combine (7.40) and (7.41) to find conditions for |c7,(m)| to be small.
First we observe from (7.40) that the integrand may not be negligible only for
those values of o for which both

lo| <b and |o+2xl/d] <D. (7.42)

Combining this with the estimate (4.23) we find that é\l(m) will be negligibly
small if

loxz — (o + 2nl/d)y| < ¥m| (7.43)

for all z € Q, all y € supp(f), and all values of o satisfying (7.42).

We are now ready to discuss the errors for specific lattices and begin with
the standard lattice. We assume that the sampling condition for d is satisfied,
ie., d < 7/b. It follows that the conditions (7.42) are only satisfied if I = 0 and
|o| <b. Hence Eo will be small. The leading terms in the expansion (7.38) for
E, are é;(iP). According to (7.43) these terms will be small if

o(z —y)| < 9P

for all z € Q, all y € supp(f), and all |o| < b. Since the maximum value for
|z —y|, z,y € Q equals 2, this condition leads back to the sampling condition
P > 2b/9.1f f is supported in a region |y| < r < 1, then we have |z —y| < (1+7)
and (7.43) holds for P > (1 +r)b/9.

We also obtain some information about the location of artifacts in case (7.43)
is violated. Assume that f(y) is concentrated near a point yo. Then |o(z — y)|
is maximal for |o| = b and « as far away from y, as possible. So we expect the
artifacts to be strongest and to appear first near the part of the boundary of
2 which is opposite yo. However, we see from (7.40) that the contribution to
é\o(:tP) from values |o| close to b will not be large, since g, (o) can be expected
to be small for |o| near b if f(z) is a non-negative function. These expectations
are consistent with practical experience. With the standard lattice P can often be
chosen significantly smaller than 2b/¢ without much degradation in the image.
This is also demonstrated by the following numerical experiment. Figure 10 shows
various reconstructions of the function

fy) = (1-100y - %*)° , w0 = (04,0.7)
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where the + symbol indicates that f(y) = 0 whenever (1 — 100|y — yo|?) <
0. Hence f is supported in the region |y — yo| < 0.1. For all reconstructions
of Figure 10 we chose b = 327 and the interpolation stepsize H = 7 /(8b) =
1/256. We have to choose very small H because our goal is to obtain accurate
reconstructions in the sense of a small [s-error. In case of H = d the additional
filtering caused by the function Gy from Theorem 6.2 causes additional error.
This situation is different from Figure 5. There the goal was not so much to
minimize the [>-error but to obtain optically pleasing images, so the additional
smoothing caused by G was welcome. The reconstructions are computed on
a 256 x 256 grid. Since we want to study small artifacts the display is such
that values below —0.01 are rendered black and values above 0.01 are rendered
white. The upper left picture shows a reconstruction with the standard lattice
with d = 7/b = 1/32 and p = 112. Here we let p = P/2 and only used the p
directions covering a 180 degree range. Clearly the sampling conditions (5.24)
are satisfied. The relative l»-error of this reconstruction is 4.8%. Slight reduction
of p does not lead to a visible distortion in the image. The middle left picture in
Figure 10 shows a reconstruction where p is significantly reduced to p = 50. As
predicted, the resulting artifacts are strongest near the boundary of Q opposite
yo- The relative error is now 7.4%. The artifacts are still not very strong. While
the maximum of the function f(y) equals 1, the maximum value of the artifact
equals only 0.0107.

We now turn to the interlaced lattice. If d < w/b we have the same situation
as discussed above for the standard lattice. More interesting is the case 7/b <
d < 27/b as permitted by (5.25). In this case the conditions (7.42) are satisfied
by the following values of [ and o.

l:07 _bS >
I=1 b<o<b_ T
= 5 _0'_ d
2
I= 1, g—bgagb

The terms with [ = 0 lead to the same discussion as above, since the parameter
d does not occur in (7.38). In the following we investigate the terms with [ = 1.
The terms with [ = —1 lead to the same conclusions. For [ = 1 the leading
terms in the expansion (7.39) for B are G;(£P/2). Recall that N = P/2 for
the interlaced lattice. For these terms to be small we need

lox — (o0 + 27 /d)y| < YP/2

all z € Q, all y € supp(f), and —b < 0 < b — 27/d. For these values of o we
obtain

lox — (o +2r/d)y] < |of|]z] +

o
d Y

— lollel + (5 -wol) i < B
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where we have used that b < 27 /d < 2b because of (5.25). This leads to the
condition P > 4x/(¥d) for P which is consistent with the sampling condition
(5.25). The upper right picture in Figure 10 shows a reconstruction using the
interlaced lattice with p = 112 and d = 27/b = 1/16. The sampling conditions
(5.25) are satisfied and with a relative ls-error of 4.7% the reconstruction is of
equal accuracy as the one from the standard lattice in the upper left picture,
although now we have only half as many sampled data.

Again we obtain some information about the magnitude and location of arti-
facts caused by choosing P too small. Assume again that f(y) is concentrated
near a point yo. Then we have that M (o) = maxgecq |ox — (0 + 27/d)yo| will be
maximal as o runs through [—b, b — 27/d] if o = —b. If d is chosen very close to
27 /b, then for o near —b we have

lox — (o + 27 /d)y| =~ b|z|

since the term (o + 27/d)y ~ (o + b)y will be negligible for o close to —b.
Hence for P too small we expect an artifact to appear in the ring-like region
¥P/(2b) < |x| < 1. This is indeed observed in the middle right picture of Figure
10, where we reduced p = P/2 slightly to p = 100.

The geometry of the artifacts is different when d is not very close to 27/,
so that the term (o + 27 /d)y is not negligible for o close to —b. In this case
|ox — (0 + 27w /d)ye| will be maximal for o = —b and = = yo/|yo|- Hence we
expect the strongest artifacts at the part of the boundary of €2 which is nearest yo.
This is shown in the bottom right picture of Figure 10 where we used p = 112 and
decreased d to d = 1/18 so that the sampling condition p > 27 /(dd) is violated.
Clearly, the strongest artifacts are at the boundary of {2 near the support of f.

We also see from (7.40) that the contribution from values of o near —b to
é\l(:tP/2) is not necessarily small. For example, if d = 27/b and o = —b, then
9y(0 + 27 /d) = g,(0) which is usually large. Hence the errors from choosing P
too small can be expected to be much larger as in case of the standard lattice.
This is indeed observed in practice, as can be seen by comparing the relative
errors in Figure 10.

8 Further developments

In this article we have only considered two dimensions and the so-called parallel-
beam geometry. The results reported in the first six sections are a summary of
research which has developed over a period of time, beginning with Cormack [3]
and Lindgren and Rattey [26], and being further developed by Natterer [19, 20,
21, 22, 23], Kruse [16], Desbat [4] and the author [7, 8, 10, 11, 12].

Of great practical importance is also the so-called fan-beam geometry. Efficient
sampling schemes for the fan-beam geometry have been derived by Natterer [20];
see also [19, 23].
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Of growing interest are questions of sampling in three-dimensional tomogra-
phy. For work in this area see, e.g., [5, 6, 22, 25].

Finally, in this article we only discussed applications of the classical sampling
theorem. Some tomographic applications call for non-equidistant sampling and
have stimulated research in this area, e.g., [2, 7, 9, 29].
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FIGURE 1. Example of a set K with the related quantities k1, o1, M1 as in Definition
3.1 and the set My = (Z x R)\(K U My).
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FIGURE 2. The set K(¢,b) for ¥ = 0.8.
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FIGURE 3. The translated sets K + 7 for the standard lattice in case of d = 7/b,
P = 2b/9. The points n of the reciprocal lattice are indicated by an ‘x‘.
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FIGURE 4. The translated sets K + n for the interlaced lattice in case of d = 27/b,
P = 2b(2 — ¥)/9. The points n of the reciprocal lattice are indicated by an ‘x‘.
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Standard, H = 1/128 Interlaced, H = 1/128

1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Interlaced, H = 1/2048 Interlaced with interpolated data

FIGURE 5. Reconstructions of the Shepp-Logan phantom. All reconstructions were
computed with p = 420, b = 1287, and the Shepp-Logan convolution kernel (6.29).
Upper left: Standard lattice, d = H = 1/128. Upper right: Interlaced lattice, d = 1/64,
H = 1/128. Lower left: Interlaced lattice, d = 1/64, H = 1/2048. Lower right: Data
sampled on interlaced lattice with d = 1/64 and then interpolated onto standard lattice
with d = 1/128 using bilinear interpolation. Reconstruction from the interpolated data
with H = 1/128.
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FIGURE 6. The translated sets K + n for the interlaced lattice in case of d = 1.457 /b,
P = 2b(2 — 9)/Y, 9 = 0.8. In spite of denser sampling than in the case d = 27 /b
depicted in Figure 4, the sets K + n are no longer disjoint, resulting in aliasing error.
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FIGURE 7. The translated sets K + n for the standard lattice in case of d = 7/b,
P = 2b/9, 9 = 0.8. The point { = (—0.85b/9, —0.99b) € K and its translates ¢ + 7,
n € L™ are marked with a *.
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FIGURE 8. The translated sets K + n for the standard lattice in case of d = 7/b,
P = 0.8(2b/9), ¥ = 0.8. The point { = (—0.85b/9,—-0.99b) € K and its translates

¢ +mn, n € L™ are marked with a *.
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FIGURE 9. The translated sets K + n for the interlaced lattice in case of d = 7/b,
P =0.8(20(2—19)/9), 9 = 0.8. The point ( = (—0.85b/9, —0.99b) € K and its translates
¢ +mn, n € L™ are marked with a *.
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Standard lattice Interlaced lattice
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-1 0 1 -1 0 1
p=112, d=1/32, Rel. error = 0.0480 p=112, d=1/16, Rel. error = 0.0471
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OMMALT,
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p=50, d=1/32, Rel. error = 0.0738 p=100, d=1/16, Rel. error = 0.2202
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FIGURE 10. Artifacts resulting from P being too small. The function to be recon-
structed is f(y) = (1 —100]y — y0|2)j_, yo = (0.4, 0.7). Reconstructions from the stan-
dard lattice are in the left column and from the interlaced lattice in the right column.
All reconstructions are computed with b = 327 and an interpolation stepsize H = 1/256
and displayed on a 256 x 256 grid such that values less than —0.01 are rendered black
and values greater than 0.01 are rendered white.
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