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Abstract This paper investigates the effect of drug treatment on the standard within-host
virus model, assuming that therapy occurs periodically. It is shown that eradication is pos-
sible under these periodic regimens, and we quantitatively characterize successful drugs
or drug combinations, both theoretically and numerically. We also consider certain opti-
mization problems, motivated for instance, by the fact that eradication should be achieved
at acceptable toxicity levels to the patient. It turns out that these optimization problems
can be simplified considerably, and this makes calculations of the optima a fairly straight-
forward task. All our results will be illustrated on an HIV model by means of numerical
examples based on up-to-date knowledge of parameter values in the model.
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1. Introduction

For the past two decades, within-host virus models describing viral infections have played
an important role in the understanding of viruses, and the ways in which they escape not
only the immune system, but also the various drugs that have been developed to sup-
press viral replication. Testing specific hypotheses based on clinical data is often difficult
since samples cannot always be taken too frequently from patients, or because detection
techniques of the virus may not be accurate. This justifies the central role played by math-
ematical models in this area of research.

In this paper, we will revisit the standard model of within-host virus infections
(Perelson and Nelson, 1999; Nowak and May, 2000) which encompasses several im-
portant infections such as HIV (Richman, 2004), hepatitis B (Ganem and Prince, 2004;
Locarnini and Lai, 2003) and C (Special issue on virology and clinical advances of HCV
infection, 2006), influenza (Earn et al., 2002), and even the malaria parasite P. falciparum
(Molineaux and Dietz, 2000), and we will explore the consequences of periodic antivi-
ral treatment. We will characterize analytically and numerically the periodic treatment
schedules that lead to viral eradication. However, our results should be interpreted with
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a healthy dose of caution. Indeed, in the case of HIV, for example, we know that viral
eradication with the currently available drugs is not possible, even when patients adhere
to the strict treatment regimens. This means that either the mathematical model does not
capture all the relevant dynamics of the interplay of the virus and its host cells, or that the
drugs are not potent enough for viral eradication. It seems reasonable to speculate that a
mix of both of these factors is to blame, and additional modeling efforts are necessary.

In the case of HIV, several explanations for treatment failure have been proposed,
such as the pre-existence of drug-resistant strains (Ribiero and Bonhoeffer, 2000), or the
emergence of resistant strains after initiation of drug therapy (Bonhoeffer and Nowak,
1997; Larder et al., 1989; Richman et al., 1994). The ability of the virus to mutate quickly
into forms which may be less sensitive to drugs has been, and continues to be, the focus of
much attention; see the recent contributions (Ball et al., 2007; De Leenheer and Pilyugin,
2008) that study the behavior of multistrain viral models. According to Siliciano et al.
(2003), treatment failure is due to the presence of a latent reservoir of HIV in resting
memory CD4+ T cells.

Other research has gravitated around the fact that the periodic regimen in which drugs
are taken daily (or more frequently), puts a very high strain on the patient, calling for
therapies minimizing the treatment burden on the patient (Kirschner et al., 1997), and also
leading to investigations of the use of Structured Treatment Interruptions (STIs) (Bajaria
et al., 2004; Krakovska and Wahl, 2007; Ortiz et al., 2001).

Recall that the standard model (Perelson and Nelson, 1999; Nowak and May, 2000) is
a three-dimensional nonlinear ODE. In the case of HIV, its state consists of the concentra-
tions of healthy CD4+ T cells (the targets of the HIV), infected T cells, and viral particles.
Upon infection of a healthy T cell, one of the first orders of business is to make a copy of
the viral RNA, using the enzyme reverse transcriptase. This step, which is error-prone and
leads to mutations, can be blocked by a class of drugs called reverse transcriptase (RT)
inhibitors. Once the viral copy has been produced, the double stranded viral DNA inte-
grates in the cell’s nucleus as provirus. The usual gene expression now does the rest, and
viral proteins are produced according to the genetic information encoded in the provirus.
These proteins are assembled, mature, and ultimately new viruses bud off from the in-
fected cell’s surface which go on to infect other T cells. During the maturation stage,
the protease enzyme is used to cleave long protein chains, and the so-called protease (P)
inhibitors are drugs that target this step. If effective, they give rise to defective virus.

For other viruses, despite differences in the infection and replication mechanisms, and
in the drugs used against them, the standard model is still a popular model for describ-
ing the dynamics of the infection. For hepatitis B or C, the target cells are liver cells and
some of the drugs used are lamivudine, adefovir and entecavir (for HBV), ribavirin (for
HCYV) and interferon (for HBV and HCV). The influenza virus infects epithelial cells and
is treated with neuraminidase inhibitors (such as oseltamivir and zanamivir) and M2 in-
hibitors (such as amantadine and rimantadine). Finally, the malaria parasite P. falciparum
infects erythrocytes (red blood cells) and malaria has commonly been treated by chloro-
quine.

The purpose of this paper is to assess theoretically and quantitatively what the im-
pact is of periodic drug treatment on the dynamic behavior of the standard model, and in
particular to determine what it takes to get rid of the infection. Mathematically, we ob-
tain a nonlinear periodic ODE, for which in general it is difficult to prove global stability
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and this explains why much research has traditionally resorted to simulations. Surpris-
ingly though, solutions to the standard model ultimately are bounded by solutions of a
monotone system, as pointed out by d’Onofrio (2005), and this allows to conclude global
stability for the nonlinear periodic model.

We will first consider a simple case of HIV treatment, where only RT inhibitors are
administered, and where it is assumed that the drug is of the bang-bang type, i.e., at each
moment during the period of the treatment cycle, the drug is in one of two states: Either
it is active at a fixed efficiency level, or it is inactive. The drug is thus characterized by
two parameters: its efficiency level when active, and the duration of the activity. A major
role in our analysis is played by the spectral radius of a non-negative matrix (namely of
the fundamental matrix solution, evaluated over one treatment cycle, of the linearization
at the infection-free equilibrium), which is shown to possess expected monotonicity prop-
erties in terms of the two parameters that characterize the drug. Specifically, this spectral
radius—which also controls the speed of convergence to the infection-free equilibrium—
is lower when the drug is more potent or when it is active longer. Equivalently, conver-
gence to the infection-free equilibrium is faster with a more potent drug, or a drug whose
activity lasts longer. We will see that these results can be generalized to the case of P in-
hibitors, or to a mix of both RT and P inhibitors. This latter scenario reflects more closely
the standard practice of administering cocktails of drugs to HIV infected patients.

In reality, the efficiency of a drug is not of the bang-bang type. In fact, current research
is investigating the effect of including pharmacokinetics into the picture, and has revealed
that the efficiency is a periodic signal with an initial steep rise right after drug intake,
followed by a slower decay over a period; see the work of Dixit and Perelson (2004),
Rong et al. (2007) for detailed models. Therefore, we turn to this more general case, by
approximating the efficiency by a more general piecewise constant periodic signal. It turns
out that the previous results remain valid.

Finally, we turn to optimization problems that involve either maximizing the speed of
convergence to the infection-free equilibrium while making sure that acceptable toxicity
levels are not exceeded, or by minimizing toxicity levels, while making sure the speed of
convergence does not fall below a certain threshold.

All our results will be illustrated by means of numerical examples of within-host HIV
models whose parameters are chosen in accordance with current prevailing knowledge
based on clinical data and extensive experimental evidence. Our results have the potential
to suggest which drug, or which combination of drugs, are optimal for a given patient.
They can also be used to explore the consequences of changing the treatment frequency.
The investigation of the impact of periodic treatment cycles on multi-strain models, or the
effect of STIs is the subject of ongoing research.

Notation For matrices A and B, 0 < A, 0 < A means that A is a (entry-wise) nonneg-
ative, positive matrix, respectively, and A < B means that 0 < B — A. A matrix is called
quasi-positive if all its off-diagonal entries are nonnegative. The spectral radius of a ma-
trix A is defined as the largest modulus of all eigenvalues of A and will be denoted by
p(A). We will also use the matrix exponential of a square matrix A, which is defined by
the convergent matrix series ) o, il—!A", and will be denoted by EXP[A].
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2. Within-host virus model with treatment

We briefly recall the well-known standard model (Perelson and Nelson, 1999; Nowak and
May, 2000). Let

T = f(T)—kVT,
T*=kVT — BT*, (1)
V =NBT*—yV,

where T, T*, V denote the concentrations of healthy and infected cells, and virus parti-
cles, respectively. The notation 7, T*, V is borrowed from the HIV literature (Perelson
and Nelson, 1999; Nowak and May, 2000), where they represent concentrations of CD4+
T -cells, infected T -cells, and HIV virus. But we stress that other virus and parasite infec-
tions are described with the same model as explained in the Introduction.

All parameters are assumed to be positive. The parameters 8 and y are the death rates
of infected cells and virus particles, respectively. The infection is represented by a mass
action term kV T, and N is the average number of virus particles budding off an infected
cell during its lifetime. The (net) growth rate of the uninfected cell population is given by
the smooth function f(7) : R, — R, which is assumed to satisfy the following:

ATy >0: f(TYT —To) <0 forT#Ty, and f'(Tp) <O. 2)

We have chosen to make the class of allowable f(T)’s as large as possible, since the
growth rate is hard to determine. In addition, most mathematical results apparently remain
valid for this large class. Finally, we notice that the two most popular choices for f(T),
namely a — bT for some positive a and b; see Nowak and May (2000) and s + 7T (1 —
T/ Tiax) for some positive s, r and Tp,.x, see Perelson and Nelson (1999) (here, s is a
source term modeling cell production—which in the case of HIV occurs in the thymus—
and r and T},,x are the maximal per capita growth rate and carrying capacity respectively
describing logistic growth of cells), satisfy the preceding conditions.
Since continuity of f implies that f(7p) =0, it follows that

Ey=(1p,0,0),

is an equilibrium of (1), and we will refer to it as the infection-free equilibrium.

A second, positive equilibrium (corresponding to an infection) may exist if the follow-
ing quantities are positive:
y=1D 3

Y T*:f(f)’ _
B kT

F=2
kN

Note that this is the case iff f () > 0, or equivalently by (2) that T= v < To. In terms
of the basic reproduction number

Ry = —To,
Y
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existence of a positive equilibrium is therefore equivalent with
1 < Ry, “

which will be a standing assumption throughout the rest of this paper. Indeed, if we would
assume that Ry < 1, then it would follow from De Leenheer and Smith (2003) that the
infection-free equilibrium Ej is globally asymptotically stable (GAS), and hence in this
case the infection would always be cleared without treatment.

We denote the positive equilibrium that corresponds to an infection by E = (T, T*, V).
Linearization at E, shows that it is unstable, and conditions on f(7") are known that guar-
antee that E is GAS (excluding of course initial conditions corresponding to a healthy, un-
infected individual; these coincide with the T -axis, which is the stable manifold of Ej).
Howeyver, it is also possible that the model exhibits sustained oscillatory solutions which
can be asymptotically stable. Regardless of the dynamical complexity of the solutions of
the model, in general, if left untreated, the infection will persist in a patient. All these
results follow from De Leenheer and Smith (2003).

Obviously, the purpose of treatment is to clear the infection, hopefully by making
E(y GAS by suitable modifications of model (1) which reflect the effect of drugs. Let us
specialize to HIV by examining the effect of RT inhibitors. The effect of using P inhibitors
will be considered later. Using monotherapy based on RT inhibitors, model (1) is modified
to:

T = f(T)—k(l—e®)VT,
T*=k(1—e@®)VT - BT*, (5)
V =NBT*—yV,

where €(¢) € [0, 1] is the (time-varying) drug efficiency of the RT inhibitors. The drug is
not effective when €(¢) = 0 and 100% effective when € (1) = 1. Notice that E| is still an
equilibrium of the modified model (5), regardless of the drug efficiency.

Assuming that the efficiency is constant over time, we set €(t) = e € (0, 1]. Then to
clear the infection, it suffices to choose e such that the modified basic reproduction num-
ber Ry(¢) is less than 1, where

Ro(e) := MTO.
Y

Indeed, the results mentioned previously are applicable to this modified model, and they
imply that if Ry(€) < 1, then E, is GAS for (5). Equivalently, if the efficiency e satisfies

1
e> e i=1— = (6)
0

then treatment will be successful in this case. If the drug would be effective 100% so that
e = 1, then treatment would always be successful. Current RT inhibitors clearly do not fit

this profile. Moreover, in practice, the drug efficiency is not constant through time, and
the main purpose of this paper is to investigate the quantitative consequences of this fact.
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3. Periodic drug efficiency
We now make the assumption that €(¢) is periodic:
€(t) =€+ 1), forallrt,

for some period T > 0. This is closer to reality where patients ideally adhere to a strict
periodic treatment schedule, taking medication daily (z = 1 day) or twice a day (t =
0.5 day) for instance.

The shape of €(¢) over one treatment cycle is determined by the pharmacokinetics
which will not be modeled here. Roughly speaking, pharmacokinetics describes what
happens to a drug after the moment of intake, but before it starts being active at the in-
fection site. The standard model can be coupled with a detailed pharmacokinetics model;
see, for instance, the work of Dixit and Perelson (2004), Rong et al. (2007), where it was
shown that at least qualitatively, the graph of the periodic function €(7) is roughly like the
one depicted in Fig. 1. It is characterized by a quick rise of the efficiency to a peak value
right after drug intake, followed by a slower decay. This is significantly different from the
case where the efficiency is constant, the situation we described in the previous section.
In pharmacokinetics, the efficiency €(¢) is traditionally defined as

y(@)

€(t) = K430

for some positive constant K, where y () is a state component of a compartmental linear
system. For our purposes, we do not need to know the details of the pharmacokinetics
process, except for the fact that the signal y(¢) (and hence also €(t)) converges to a peri-
odic signal with the same period as the treatment schedule.

Thus, we will assume that the efficiency €(¢) is periodic, and we start by linearizing
system (5) at the equilibrium Ey:

x = B(t)x, N
where

(T 0 —k(1—€e@)Ty
B(t) = 0 —B k(1—€e)Ty
0 NB -y

0 tau t

Fig. 1 Periodic drug efficiency €(t).
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It is well known that the stability properties of the origin of (7) (and generically the local
stability properties of the equilibrium E( for system (5)) are determined by the Floquet
multipliers of (7). The block-triangular structure of B(¢) implies that these are

e/t and A, A3,

where A, and A; are the Floquet multipliers of the planar t-periodic system:

B\ _ (B k1 —e)Ty\ (x )
i) \NB -y x3)°

In particular, since f'(Tp) < 0 by (2), it follows that the three Floquet multipliers of

system (7) are contained in the interior of the unit disk of the complex plane, which in

turn implies that Ej is locally asymptotically stable for system (5)—if |A,[, |A3] < 1. In

fact, by a beautiful argument due to d’Onofrio (2005), it turns out that the same conditions
imply the much stronger result of global asymptotic stability of E, for system (5).

Proposition 1 (d’Onofrio, 2005). Let the Floquet multipliers of system (7) be contained
in the interior of the open unit disk of the complex plane. Then E is GAS for system (5),
hence the infection is cleared.

This result shows how relevant and important it is to determine the Floquet multipliers of
system (7). Unfortunately, for general functions €(t), this is a notoriously difficult task.
Therefore, we will consider the simpler case where €(¢) is piecewise constant, bearing
in mind that piecewise constant functions are often good approximations to continuous
functions. We will start with an even simpler case where €(¢) is of the bang-bang type.

3.1. Periodic drug efficiency of the bang-bang type

We make the following simplifying assumption regarding the shape of the graph of the
T-periodic function €(¢), which is illustrated in Fig. 2:

e. tel0,pl,
() = p ©)
0, te(p.1),
1
€
0 p tau t

Fig. 2 Periodic drug efficiency €(¢) of the bang-bang type.
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where p € (0, 7) is the time duration during which the drug is supposed to be active
with efficiency e € [0, 1]. During the remaining part of the treatment period the drug is
assumed to be totally inefficient. Clearly, this is a very crude way of approximating the
more realistic shape of €(¢) depicted in Fig. 1, but some key properties are to be learned
from this case, and they carry over to more general cases that describe reality better, as
we will discover later.

There are two possible parameters which can be varied in (9), namely e and p, and the
purpose of the rest of this subsection is to investigate their effect on the Floquet multipliers
of system (8) with (9). These Floquet multipliers are the eigenvalues of the following
matrix

@ (e, p) =EXP[(r — p)A(0)|EXP[ pA(e)], (10)
where
(—ﬁ k(1 — e)T0>
Ale) = ) (11)
NB -y

Since both A(e) and A(0) are quasi-positive matrices their matrix exponentials are non-
negative matrices.! Thus, @ (e, p) is a nonnegative matrix and by the Perron—Frobenius
theorem (Berman and Plemmons, 1994); its spectral radius p (@ (e, p)) is an eigenvalue of
@ (e, p). Thus, the Floquet multipliers of system (8) with (9) are contained in the interior
of the unit disk of the complex plane if and only if p(® (e, p)) < 1. This guarantees that
the infection is cleared (globally) by Proposition 1.

The following proposition—whose proof is deferred to the Appendix—reveals that
p(@ (e, p)) has the expected monotonicity properties: it decreases with e (more efficient
treatment) and with p (drug is effective longer).

Proposition 2. Let e, e’ € [0, 1] and p, p’ € [0, t]. Then the map (e, p) — p(® (e, p)) is
continuous,

e<e, p#0=p(®(. p)) < p(P(e. p)). (12)
and
p<p,e£0=p(P(e, p)) <p(Ple p)). (13)
Moreover,
p(®(e,0)) = p(P(0, 7)) = p(EXP[TA(0)]) > 1
forall e € [0,1] and all p € [0, T] (no treatment) (14)
and

IProof: Let A be quasi-positive. Then B = A + «/ is a nonnegative matrix for all sufficiently large
values of «, implying that EXP[tB] is a nonnegative matrix for all + > 0. But since EXP[tA] =
EXP[—at] EXP[z B], the same conclusion holds for EXP[tA].
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Fig.3 Spectral radius of p(® (e, p)) as a function of efficiency e and treatment duration p. The horizontal
surface corresponds to p = 1.

p(®(1, 1)) = p(EXP[rA(1)]) = max{EXP[—B7], EXP[—yT]} <1

(constant, 100% effective treatment). (15)

Since p(® (e, p)) (provided it is less than 1) is a measure of how fast solutions of (5)
with (9) approach Ej (at least locally near Ey), this result may be interpreted as follows:
Let the treatment be periodic, of the bang-bang type, and capable of clearing the infection.
If it is more efficient, or lasts longer, then the infection is cleared more quickly. We illus-
trate Proposition 2 in Figs. 3 and 4. The parameters used are taken from Rong et al. (2007),
and they are as follows: f(T) =a — bT with a = 10* ml™' day™' and b = 0.01 day ™'
(which implies that Ty = 10° ml™!), k = 2.4 x 1078 mlday~!, 8 = 1 day~!, N = 3000,
y =23 day~'. The period of the treatment 7 is 1 day.

In Rong et al. (2007), for a related model, it is argued that the average drug efficiency,

1 T
—f eydr =22,
T Jo T

is a good indicator to assess the success or failure of periodic treatment regimens, in the
sense that the outcome of constant (nonperiodic) treatment with drug efficiency at a level
equal to the average drug efficiency of the periodic regimen, will predict the outcome of
the periodic regimen.

We show in Figs. 5 and 6 that this claim should be interpreted with some caution, as it
is only approximately true.

Using the same model parameters as before, we see for instance that the level curve
ep = 0.67 for the average drug efficiency (recall that T = 1 day) intersects the level
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Fig. 4 Contour plot of the spectral radius p(® (e, p)) as a function of efficiency e and treatment duration
p: p(P(e, p)) > 1 inred (dark) region and < 1 in green (light) region.

curve p(P (e, p)) = 1. Thus, all points on this level curve and above (below) the curve
p(P(e, p)) =1 correspond to treatment success (failure). One particular point for which
treatment fails is the point (e, p) = (0.67, 1) which corresponds to a constant (nonperi-
odic) treatment regimen. Recalling (6), we notice that treatment failure for this particular
point could also have been concluded from the fact that

0.67 <eqp=1-— L ~0.681.
Ro

We can in fact generalize this conclusion, and determine numerically all level curves
for the average drug efficiency which contain points corresponding to both treatment fail-
ure and success; see Fig. 6. These are the level curves ep = ¢, where ¢ € (0.659,0.681),
since they intersect the curve p (@ (e, p)) = 1. Points on these level curves that are below
(above) the latter curve correspond to treatment failure (success). The efficiency levels
e =0.659 and e = e.i; ~ 0.681 constitute an interval of

eqit — 0.659

€crit

~3.3%

near e for which caution should be exerted in claiming that the average drug efficiency
is a good measure for treatment failure or success. Fortunately, this is only a small interval
for this example, and thus the average drug efficiency is approximately a good measure
for treatment success or failure.

For completeness, we also present in Figs. 7 and 8 the results of a simulation run that
illustrate what happens when both a periodic drug treatment regimen, and its correspond-
ing constant (nonperiodic) treatment regimen with the same average drug efficiency fail.
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Fig. 5 Level curves for average drug efficiency ep = ¢ inred (¢ = 0.65, 0.67, 0.69, 0.75, 0.8, ¢ increasing
in NE direction). Level curve p(® (e, p)) = 1 in blue: has second lowest intersection with vertical axis.

Fig. 6 Level curves for average drug efficiency ep = ¢ in red (¢ = 0.659,0.681, ¢ increasing in NE
direction). Level curve p(@® (e, p)) = 1 in blue: lies between the two level curves of the average drug
efficiency. All level curves ep = ¢ with ¢ € (0.659, 0.681) contain both points of treatment success and
treatment failure.
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Fig. 7 Plot of the viral load V(¢) for system (5) with (9) and (e, p) = (0.5, 0.5). The initial condition
is the pretreatment disease steady state (T, T*, V) = (319444, 887681, 6806); see (3). The horizontal
line corresponds to the steady state value of the viral load for the disease steady state of (5) with (9) and
(e, p) = (0.25, 1) (that is, a constant, nonperiodic treatment regimen with the same average drug efficiency
as the periodic regimen).

T+ T"
500000
475000
450000 //\ /ﬁ\
425000 V%
400000

375000
350000

100 200 300 400

Fig. 8 Plot of the total T-cell load T () + T*(¢) for system (5) with (9) and (e, p) = (0.5,0.5). The
initial condition is the pretreatment disease steady state (T, T*,V) = (319444, 887681, 6806); see (3).
The horizontal line corresponds to the steady state value of the total 7-cell load for the disease steady state
of (5) with (9) and (e, p) = (0.25, 1) (that is, a constant, nonperiodic treatment regimen with the same
average drug efficiency as the periodic regimen).

Using the same model parameters as before and using (e, p) = (0.5, 0.5) (so that the av-
erage periodic drug efficiency equals ep/t = (0.5)2/1 = 0.25), it can be seen that the
virus is not eradicated, yet appears to settle down at a periodic cycle. The values of the
viral load and total T -cell load at the disease steady state under the constant (nonperiodic)
treatment regimen are drawn as horizontal lines.

Remark 1. This result can be modified to the situation in which P inhibitors are used for
treatment instead of RT inhibitors. Model (5) is then replaced by

T = f(T)—kVT,
T*=kVT — BT*, (16)
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V=N(l—e®)BT*—yV,
and matrix A(e) in (11) by
(w0 on )
Ale) = . a7
Nl-ep -y

With this notation and still using (10), Proposition 2 remains valid.

Remark 2. Similar results can be stated to describe the situation in which combination
therapy is used. This is the more commonly found therapy method where patients take a
cocktail of both RT and P inhibitors. Model (5) should then be replaced by

T = f(T) = k(1 — &) VT,
T* = k(1 —exn())VT — BT, (18)
V=N(l-e(®))BT* —yV,

where

19)

exp(t) = {ERTs t € [0, prrl, p(t) = :QP, t €10, ppl,

0, t € (prTs T)s 0, te(pp, 1)

denote the piecewise constant efficiencies of the RT and P inhibitors, respectively. Finally,
matrix A(e) in (11) is replaced by

—-B k(1 _eRT)TO)
N( —ep)B —y '

A(err, ep) = ( (20

With these notations and assuming without loss of generality that pry < pp (if not, simply
swap subscripts RT and P in the expression below), the spectral radius of the following
matrix

D (err, ep, PRT» PP)
=EXP[(r — pp)A(0,0)| EXP[(pp — prr)A(0, ep) | EXP[ prrA (err. ep) ]

is the key quantity. As expected, the spectral radius is decreasing in each of its arguments
€RT; €p, PRT, Pp. We omit the proofs of these results as they are straightforward modifica-
tions of the proof of Proposition 2.

3.2. General piecewise constant periodic drug efficiencies

As mentioned earlier, in practice, the graph of the drug efficiency is not as shown in Fig. 2,
but rather as the dashed-dotted line in Fig. 9, which can be approximated by a piece-
wise constant and t-periodic efficiency with several constant drug level efficiencies e; >
ey > --- > e, > e, during the respective intervals [po, p1), [P1, P2)s -+ [Pm—1> Pm)»
[Pm — Pm+1), where po :=0 and p,,+ := t for some m > 1.
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Fig. 9 t-periodic drug efficiency €(¢) (dashed-dotted line) and a piecewise constant approximation.

Define (E, P) :=(e1,-.., €mt1, P1s---, Pm) and let
®(E, P) = EXP[(Pni1 — pm)Aens1)]...EXP[(p1 — po)A(e)]. 1)

Similarly to Proposition 2, we find that the spectral radius of @ (E, P) is decreasing in
each of its arguments.

Proposition 3. Letm > 1,0=po<pi<pr< - < pmw <pmr1=tTand 1 = ¢y > e >
ey > > ey > eyt > eyin =0. Then the map (E, P) — p(®(E, P)) is continuous. In
addition,

ie{l,....m+1}ande <e <e < €12 = p(@(Ei, P)) < p(dﬁ(E, P)),

(22)
and
jell....omyand p;_y < p; < p; < pjs1= p(®(E, P))) < p(®(E, P)), (23)
where
E~,-:(el,ez,...,e,-,l,e,f,e,ur],...,em+1)
and
i)j:(pl»p2v~-«spj71sp}vijrlw-«spm)-

The proof is deferred to the Appendix.

4. Optimization problems

In this section, we return to the case of periodic efficiencies of the bang-bang type. What
follows can easily be generalized to the case of more general, piecewise constant periodic

2If i = 1, then replace < by < in the right most inequality. If i = m + 1, replace < by < in the left most
inequality.
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efficiencies. As mentioned earlier, the purpose of treatment is to eradicate the infection
by making Ey GAS for (5) with (9). In practice, however, one would like to achieve this
while the burden of drug exposure on the patient is as low as possible. Obviously, there are
various ways to measure this burden. Let us list a couple of particular problems, assuming
a t-periodic treatment schedule:

1. Minimize p(® (e, p)) subject to (e, p) € [0, 1] x [0, ] and fote(z)dt =ep <c, for
some fixed ¢ € (0, 7).

2. Minimize for €(t)dt = ep, subject to (e, p) € [0, 1] x [0, t] and p(D (e, p)) < §, for
some fixed § € (p(@(1, 1)), 1).

In the first problem, the spectral radius of @ (e, p) is minimized. As we mentioned before,
this spectral radius controls the rate of convergence to E (provided it is less than 1): the
smaller the spectral radius, the faster solutions converge. In addition to minimizing the
spectral radius, the burden of drug exposure on the patient should not exceed a specified
upper bound c. Here, this burden is measured as the area under the graph of the efficiency
€(t) over one treatment cycle. The second problem on the other hand, concerns mini-
mization of the burden, subject to the condition that the spectral radius is less than a given
bound § (assumed to be less than 1 so that convergence to Ej is guaranteed).

Both problems fit in the larger classes of problems which we describe next. Let the
maps F, G : [0, 1] x [0, ] — R be continuously differentiable with the following prop-
erties:

F(0,00=G(0,00=0, and VF, VG >0, but #0on[0,1]x[0, 7]\ {(0,0)}.

Now, consider the more general optimization problems.

Class I. Minimize p(® (e, p)) subject to (e, p) € [0, 1] x [0, 7] and F (e, p) < ¢, for
some fixed ¢ > 0 satisfying {(e, p)|F (e, p) =c} N[0, 1] x [0, T] # @.

Class II. Minimize G (e, p), subject to (e, p) € [0, 1] x [0, t] and p(D (e, p)) < §, for
some fixed § € (p(@(1, 7)), 1).

The first two problems fit in this class for the choices F (e, p) = G(e, p) = ep. But it is
clear that other choices could be of interest as well, for instance, F(e, p) = ae?! + bp?2,
for some fixed ¢, g, > 1 and a, b > 0, or positive linear combinations of several of these
functions.

It turns out that both classes of optimization problems can be simplified thanks to
Proposition 2. We will see shortly that the optimum appears on the boundary of the con-
straint set in both cases, which translates into saying that the optimum occurs only if the
burden is the maximally allowed one (for problems in the first class), or that the spectral
radius takes the largest allowed value (for problems in the second class) implying that
convergence to Ey will be as slow as allowed.

To be more precise, we claim that Class I and II optimization problems are equivalent
to Class IIT and IV problems, respectively, which are defined as follows:

Class III. Minimize p(® (e, p)) subject to (e, p) € [0, 1] x [0, ] and F(e, p) = c, for
some fixed ¢ > O satisfying that {(e, p)|F (e, p) =c} N[0, 1] x [0, T] # @.

Class IV. Minimize G(e, p), subject to (e, p) € [0,1] x [0, t] and p(P (e, p)) =3, for
some fixed § € (p(@(1, 1)), 1).
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rho

0.695

0.685

0.675

0.66

Fig. 10 Graph of p(® (e, p)) for points (e, p) with ep = 0.8 for e € [0.8, 1]. Minimum for p is 0.665 and
it is achieved for (e, p) = (1, 0.8).

Fig. 11 Graph of p(® (e, p)) for points (e, p) with 2+ p2 =122 foree [0.65, 1]. Minimum for p is
0.866 and it is achieved for (e, p) = (0.868, 0.829).

Notice that the difference between Class I and III, and Class II and IV is in the constraint
only (by replacing the inequality by an equality). In other words, the optimum of Class I
and II problems occurs on the boundary of the constraint set. We show this equivalence for
Class I and III problems. The argument to show equivalence of Class II and IV problems
is very similar and omitted. Suppose that (e*, p*) is such that p(®(e*, p*)) is minimal,
while F(e*, p*) < c. Notice that (e*, p*) # (0, 0) since ¢ > 0 and F takes small positive
values near (0, 0) in the rectangular region R := [0, 1] x [0, t] and p is strictly lower
in those points. Also (e*, p*) # (1, t), since otherwise the level set {(e, p)|F (e, p) = c}
does not intersect R, contrary to our assumption.

If (e*, p*) is in the interior of R, then the point (¢, p’) := (e*, p*) + sV F (e*, p*) is
still in the interior of R with F'(e’, p’) < ¢ for small enough positive s, yet p(® (€', p)) <
p(@(e*, p*)) by Proposition 2, contradicting minimality. The same argument applies if
(e*, p*) = (0, p*) for some p* € (0, t) or if (e*, p*) = (e*, 0) for some e* € (0, 1), since
a perturbation of such a point in the direction of VF(e*, p*), results in a point which is
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Fig. 12 Level curves ep = ¢ in red (¢ = 0.7,0.75, 0.8, 0.85,0.9, ¢ increasing in NE direction). Level
curve p(@ (e, p)) = 0.7 in blue: has third lowest intersection with vertical axis.

Fig. 13 Level curves o2 + p2 =cinred (c=1.4,1.5,1.6,1.7, 1.8, c increasing in NE direction). Level
curve p(@ (e, p)) = 0.7 in blue: has fourth lowest intersection with vertical axis.
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still in R. If (e*, p*) = (1, p*) for some p* € (0, 7) or if (e*, p*) = (¢*, 7) for some e¢* €
(0, 1), then a perturbation in the direction of V F'(e*, p*) could potentially result in a point
outside R. To prevent this, we perturb as follows for the case where (e*, p*) = (1, p*)
(the argument when (e*, p*) = (e*, 7) is similar and omitted): Let (¢/, p') = (1, p*) +
(0, s). Then for sufficiently small and positive s, (¢’, p’) is still on the boundary of R
and F(¢, p') <c, yet p(@ (€, p")) < p(P(e, p)) by Proposition 2, a contradiction to
minimality.

5. Numerical examples

Here, we provide some examples of the optimization problems we just discussed. The
model parameters used throughout this section are the ones chosen in Section 3.1.

Let us first minimize p (@ (e, p)), see Figs. 3 and 4. The constraint is that the burden
of drug exposure on the patient, ep should not exceed 0.8. The minimum is 0.665 (which
fortunately implies that with this treatment schedule the infection can be cleared success-
fully) and it is achieved at (e, p) = (1,0.8). In other words, the drug should be 100%
efficient while it is active. This is illustrated in Fig. 10, which depicts the spectral radius
p(P(e,0.8/e)).

Let us see what happens when we modify the measure of the burden to e + p2,
and demand that it should not exceed 1.22. This time the minimal spectral radius is
0.866 (again implying that this therapy will clear the infection) and it is achieved at
(e, p) = (0.868,0.829). This is illustrated in Fig. 11, which depicts the spectral radius
0(P(e,+/1.22 — ¢2)). A striking difference between this schedule and the previous one,
is that now the minimum is achieved in the interior of the rectangular parameter space
[0, 1] x [0, 1], while previously it was achieved on the boundary. When the drug is active,
it should therefore not be 100% efficient as before.

Let us now consider minimization problems in which the burden is minimized sub-
ject to a constraint on the spectral radius, or equivalently, on the speed of convergence
to the infection-free equilibrium. If the burden is measured by ep, and if the spec-
tral radius should not exceed 0.7, we find that the minimum is 0.782 and it occurs at
(e, p) = (1,0.782) which is on the boundary of [0, 1] x [0, 1] and requires that the drug
is 100% effective when it is active. This is illustrated in Fig. 12, where we depict a few
level curves of ep, and the maximally allowable spectral radius p = 0.7.

If we modify the measure of the burden to e?> + p? (and still assuming the constraint
that the spectral radius should not exceed 0.7), then the minimum is 1.493 and it occurs
at (e, p) = (0.884, 0.844) which is in the interior of the rectangular region [0, 1] x [0, 1].
This is illustrated in Fig. 13, where we depict a few level curves e + p?, and the maxi-
mally allowable spectral radius p = 0.7.
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Appendix

Proof of Proposition 2: This proof hinges on the following standard facts:

1. If A is quasi-positive and A < B but A # B, then 0 < EXP[rA] < EXP[7B] but
EXP[tA] # EXP[zB] for all > 0.
To see this, let « > 0 be such that C = A+« > 0. Then setting D = B + o/, we have
that 0 < C < D but C # D. Then EXP[tC] < EXP[¢ D], but EXP[¢C] # EXP[t D] for
all ¢ > 0. It follows that EXP[tA] < EXP[tB] but EXP[tA] # EXP[¢B] for all t > 0.

2. Forallt > 0, EXP[tA(e)] > 0 if ¢ # 1, while EXP[tA(e)] > O (but not > 0) if e = 1.

3. If A > 0and B > 0 has no zero row or zero column, then AB > 0 and BA > 0. This is
true in particular when B = EXP[tC] for t > 0 and C a quasi-positive matrix because
of Fact 1 and the fact that matrix exponentials are invertible.

4. If0 < A< B but B# A, then p(A) < p(B), see Corollary 1.5 in Chap. 2 in Berman
and Plemmons (1994).

Continuity of the map (e, p) — p(P (e, p)) follows from the definition (10) of p and the
fact that the spectral radius of any matrix is continuous in terms of its entries.
Let0<e<e <1and p#0. Then

A(¢) < A(e) and A(e') # A(e)

= 0 <EXP[pA(¢')] <EXP[pA(e)] and EXP[pA(e')] #EXP[pA(e)]
by Facts 1 and 2

= 0 <EXP[(r — p)A(0)|EXP[pA(e)] < exp[(r — p)A(0)| EXP[pA(e)]

and EXP[(r — p)A(0)|EXP[pA(e')] #EXP[(t — p)A(0)|EXP[pA(e)]

by Facts 1 and 3 and invertibility of matrix exponentials

=0<®(,p)<P(e, p)and @(¢', p) # (e, p)

= p(®(, p)) <p(P(e, p)) by Fact4.

This result remains valid if ¢’ = 1 because p (@ (e, p)) is continuous. This establishes (12).
Let0 < p < p’ <t ande#0. Then

A(e) < A(0) and A(e) # A(0)
= 0 <EXP[(p' — p)A(e)] <EXP[(p' — p)A(0)]
and EXP[(p' — p)A(e)] #EXP[(p' — p)A(0)] by Fact 1
= 0 <EXP[(p' — p)A(e)|EXP[pA(e) | <EXP[(p' — p)A(0)|EXP[pA(e)]
and EXP[(p' — p)A(e)|EXP[pA(e)]
#EXP[(p' — p)A(0)]EXP[pA(e)] by Fact 1
and invertibility of exponentials

= 0 <EXP[(r — p)A(0)|EXP[(p' — p)A(e)|EXP[pA(e)]
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<EXP[(r — p))A(0)]EXP[(p' — p)A(0)]EXP[pA(e)] and
EXP[(r — p")A(0)|EXP[(p’ — p)A(e)|EXP[pA(e)]
#EXP[(r — p)A(0)]EXP[(p’ — p)A(0)|EXP[ pA(e)]
by Fact 2 and invertibility of exponentials
=>0<®(e,p) <P(e, p)and D (e, p') # P (e, p)
= p(®P(e, p)) < p(P(e, p)) by Fact 4.

This remains valid if p’ = 7 because p(® (e, p)) is continuous. This establishes (13).
Finally, it follows from our standing assumption (4), that the determinant of A(0) is

negative. Thus, A(0) has a positive eigenvalue which implies (14). Also, (15) is immediate

from (11). [l

Proof of Proposition 3: The same facts as in the proof of Proposition 2 will be used.
Continuity of the map (E, P) — p(®(E, P)) follows from the definition (10) of p

and the fact that the spectral radius of any matrix is continuous in terms of its entries.
Fixie{l,...,m+1}andlete; <e; < 1. Then

A(€)) < Ale;) and A(e]) # Ale))
= 0 < EXP[(p: — pi_1)A(€))] <EXP[(pi — pi_1)A(er)] and
EXP[(pi — pi—1)A(€)] #EXP[(pi — pi1)A(e;)] by Facts 1 and 2
=0<®(E;, P)<®(E, P)and ®(E;, P) # ®(E, P) by Facts 1 and 3
and invertibility of matrix exponentials

= p(®(E;, P)) < p(®(E, P)) by Fact4.

This result remains valid if i = 1 and €| = 1 because p(®(E, P)) is continuous. This
establishes (22).
Fix je{l,...,m}andlet0 < p; < p} < 7. Since e < e;, we have that

A(ej) < A(ej41) and A(e;) # A(eji1)
= 0 <EXP[(p} — pj)Ale))] < EXP[(p} — pj)A(ej1)] and
EXP[(p) — pj)A(e;)] #EXP[(p} — pj)A(ej+1)] by Fact 1
= 0 <EXP[(p} — pj)A(e/) |EXP[(p; — p;-1)Ale;)]
<EXP[(p} — pj)A(ej+1)|EXP[(p; — pj-1)A(e;)] and
EXP[(p; — pj)A(e;)|EXP[(p; — pj—1)Ale;)]

#* EXP[(P; — p)A(e; ) |EXP[(p; — pj-1)A(e))]
by Fact 1 and invertibility of exponentials

= 0 <EXP[(pj11 — p))Ale;+1) |EXP[(p, — pj-1)A(e))]
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< EXP[(pj+1 — p))Ale;j+1)]EXP[(p; — p;-1)A(e))] and
EXP[(pj+1 — p))A(ej+1)JEXP[(p, — p;-1)A(e))]
#EXP[(pj+1 — pj))Ale;1)|EXP[(p; — pj—1A(e))]
by Facts 1 and 3 and invertibility of exponentials
=0<®(E, P)) <®(E, P)and ®(E, P;) # D (E, P)
by Facts 1 and 3 and invertibility of exponentials

= p(®(E, P))) < p(®(E, P)) by Fact4.

This establishes (23). d

References

Bajaria, S.H., Webb, G., Kirschner, D.E., 2004. Predicting differential responses to structured treatment
interruptions during HAART. Bull. Math. Biol. 66, 1093-1118.

Ball, C.L., Gilchrist, M.A., Coombs, D., 2007. Modeling within-host evolution of HIV: mutation, compe-
tition and strain replacement. Bull. Math. Biol. 69, 2361-2385.

Berman, A., Plemmons, R., 1994. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadel-
phia.

Bonhoeffer, S., Nowak, M.A., 1997. Pre-existence and emergence of drug resistance in HIV-1 infection.
Proc. R. Soc. Lond. B 264, 631-637.

De Leenheer, P., Pilyugin, S.S., 2008 Multi-strain virus dynamics with mutations: a global analysis. Math.
Med. Biol., to appear. (Preliminary version in arXiv:0707.4501/).

De Leenheer, P., Smith, H.L., 2003. Virus dynamics: a global analysis. SIAM J. Appl. Math. 63, 1313—
1327.

Dixit, N.M., Perelson, A.S., 2004. Complex patterns of viral load decay under antiretroviral therapy: in-
fluence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95-109.

d’Onofrio, A., 2005. Periodically varying antiviral therapies: conditions for global stability of the virus
free state. Appl. Math. Comput. 168, 945-953.

Earn, D.J.D., Dushoff, J., Levin, S.A., 2002. Ecology and evolution of the flu. Trends Ecol. Evol. 117,
334-340.

Ganem, D., Prince, A.M., 2004. Hepatitis B virus infection—natural history and clinical consequences.
New Engl. J. Med. 350, 1118-1129.

Kirschner, D., Lenhart, S., Serbin, S., 1997. Optimal control of the chemotherapy of HIV. J. Math. Biol.
35, 775-792.

Krakovska, O., Wahl, L.M., 2007. Drug-sparing regimens for HIV combination therapy: benefits predicted
for “drug coasting”. Bull. Math. Biol. 69, 2627-2647.

Larder, B., Darby, G., Richman, D.D., 1989. HIV with reduced sensitivity to zidovudine isolated during
prolonged therapy. Science 243, 1731-1734.

Locarnini, S., Lai, C.-L., 2003. Hepatitis B Virus Guide. International Medical Press, London.

Molineaux, L., Dietz, K., 2000. Review of intra-host models of malaria. Parassitologia 41, 221-231.

Nowak, M.A., May, R.M., 2000. Virus Dynamics. Oxford University Press, New York.

Ortiz, G.M., et al., 2001. Structured antiretroviral treatment interruptions in chronically HIV-1-infected
subjects. Proc. Natl. Acad. Sci. 98, 13288-13293.

Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41,
3-44.,

Ribiero, R.M., Bonhoeffer, S., 2000. Production of resistant HIV mutants during antiretroviral therapy.
Proc. Natl. Acad. Sci. 97, 7681-7686.

Richman, D.D., et al., 1994. J Nevirapine resistance mutations of HIV-1 selected during therapy. J. Virol.
68, 1660—1666.

Richman, D.D. (Ed.), 2004. Human Immunodeficiency Virus. International Medical Press, London.


http://arxiv.org/abs/arXiv:0707.4501/

210 De Leenheer

Rong, L., Feng, Z., Perelson, A.S., 2007. Emergence of HIV-1 drug resistance during antiretroviral treat-
ment. Bull. Math. Biol. 69, 2027-2060.

Siliciano, J.D., et al., 2003. Long term follow-up studies confirm the extraordinary stability of the latent
reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727-728.

Special issue on virology and clinical advances of HCV infection, 2006. Int. J. Med. Sci. 3.



	Within-Host Virus Models with Periodic Antiviral Therapy
	Abstract
	Introduction
	Notation

	Within-host virus model with treatment
	Periodic drug efficiency
	Periodic drug efficiency of the bang-bang type
	General piecewise constant periodic drug efficiencies

	Optimization problems
	Numerical examples
	Acknowledgement
	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


