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a b s t r a c t 
We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross–Macdonald malaria 
model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the ex- 
istence of a globally stable steady state, and a threshold that determines whether a pathogen is either 
absent from all patches, or endemic and present at some level in all patches. Each patch is characterized 
by a local basic reproduction number, whose value predicts whether the disease is cleared or not when 
the patch is isolated: patches are known as “demographic sinks” if they have a local basic reproduction 
number less than one, and hence would clear the disease if isolated; patches with a basic reproduction 
number above one would sustain endemic infection in isolation, and become “demographic sources” of 
parasites when connected to other patches. Sources are also considered focal areas of transmission for 
the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. 
We show how to determine the various basic reproduction numbers from steady state estimates in the 
patched network and knowledge of additional model parameters, hereby identifying parasite sources in 
the process. This is useful in the context of control of the infection on natural landscapes, because a com- 
monly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction 
numbers less than one, effectively turning them into sinks. We show that this is indeed a successful con- 
trol strategy—albeit a conservative and possibly expensive one—in case either the human host, or the 
vector does not move. However, we also show that when both humans and vectors move, this strategy 
may fail, depending on the specific movement patterns exhibited by hosts and vectors. 

© 2016 Elsevier Inc. All rights reserved. 
1. Introduction 

Malaria is a mosquito-borne disease caused by Plasmodium 
parasites, and is responsible for hundreds of thousands of deaths 
every year worldwide. The malaria parasite is found in red blood 
cells of an infected person, and transmission to humans occurs 
predominantly through mosquito bites, although according to the 
CDC [10] “it can also be transmitted through blood transfusion, 
organ transplant, the shared use of needles or syringes contami- 
nated with blood, or from a mother to her unborn infant before 
or during delivery (congenital malaria)”. Transmission depends on 
complex interactions between moving mosquito [19] , and moving 
human [26,29,33,34,37] populations to facilitate parasite spread. 
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Human and mosquito populations are often spatially clustered 
[23] , causing malaria risk to be heterogeneous across spatial scales 
[6,16] . Host mediated parasite movement on these landscapes 
drives source-sink parasite dynamics which elimination programs 
must account for [9] , as areas with enough transmission to sustain 
parasite populations locally will export excess parasites through 
host movement, known as transmission foci, supporting parasite 
populations in sink areas, or areas where parasites would not per- 
sist otherwise [9] . As transmission foci enable parasite persistence 
in sinks, they have been proposed as prime targets for control ef- 
forts [9,25] . Conceptually, regional malaria elimination can then be 
achieved by reducing transmission within all transmission foci to 
below self-sustaining levels [24] . 

Simply targeting the areas with the highest apparent transmis- 
sion neglects human and mosquito movement and their role in 
parasite persistence, however, causing movement processes to po- 
tentially undermine elimination effort s [34] . Using a patched Ross–
Macdonald model, we identify transmission foci in the context of 
both human and mosquito movement, and determine whether a 
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strategy that targets foci exclusively is sufficient for parasite elimi- 
nation, finding that while this strategy works when either humans 
or mosquitoes do not move between patches, there are network 
topologies where parasites persist even if transmission in all focal 
areas are brought to below sustainable levels. 

The celebrated Ross–Macdonald model goes back to the 
groundbreaking work of Ronald Ross who received the Nobel Prize 
in Physiology or Medicine in 1902 for elucidating the complex in- 
fection cycle of malaria. Ross’ model has since then been applied 
and refined by many authors including Macdonald, see [31,32] for 
recent reviews. Classical Ross–Macdonald models consider infec- 
tion dynamics in a single patch, but for all the reasons men- 
tioned above, we extend this here to a patched model, a variant of 
which was first proposed and analyzed in [17] . Another variant of 
this model, considered in [28] and reviewed in [3,15,35] , includes 
host movement, but excludes vector movement. More spatial mod- 
els for malaria transmission have been reviewed in [11,15] where 
space is treated discretely in the form of distinct patches, and in 
[12,15] where space is either treated as discrete or as continuous, 
in the latter case leading to models that take the form of reaction–
diffusion equations. 

Models that include mobility need to specify how exactly vec- 
tors and humans move, and here we have adopted the so-called 
Lagrangian approach, see [11] and references therein. A salient 
feature of the Lagrangian model is that all individuals are declared 
to be residents of a specific patch, but that they can spend parts of 
their time in other patches, where they might infect others, or pick 
up the infection. This is in contrast to the more popular Eulerian 
approach, where individuals are not assigned to a particular patch, 
but instead simply move around between the various patches at 
certain prescribed rates. Examples of the Eulerian approach can 
be found in various contexts related to the spread of infectious 
diseases such as in [1,2,5,11] , and are not restricted to malaria. Our 
methods can be used to study similar patched Ross–Macdonald 
models based on the Eulerian approach, but to keep our anal- 
ysis concise, we restrict ourselves to models based on the less 
frequently used Lagrangian approach. More sophisticated patch 
models have been proposed more recently. These models have 
been coupled to agent-based models to incorporate movement of 
the individual agents (both vectors and humans) in response to 
other environmental triggers such as temperature or rainfall, re- 
vealing fascinating patterns in the numerical simulations of these 
hybrid systems, see [22] . The main contributions of this paper are: 

1. Establish the global dynamics of a patched Ross–
Macdonald model , a variant of which was first investigated 
in [17] and reviewed in [11] . This model assumes an arbi- 
trary number of patches between which both humans and 
mosquitoes are allowed to move. These movement patterns 
are quantified by matrices which express the fractions of 
time spent by residents of each patch in all other patches. 
A single real and positive quantity—the spectral radius of a 
matrix defined in terms of model parameters of all patches, 
as well as the movement matrices—determines the fate of 
the infection in the network: When this spectral radius is 
less than one, the infection is cleared. When it is larger than 
one, all solutions converge to a unique positive steady state 
and the infection globally persists in all the patches. 
Although our proof is based on techniques that are similar 
to those used in [11] for a closely related model, we have 
decided to include a concise and self-contained proof in an 
Appendix here, for two main reasons. First, there are impor- 
tant differences between the modeling assumptions made in 
[17] , and those considered here. Second, our proof relies on 
specific irreducibility properties of the matrices that encode 

vector and host mobility, and these conditions are different 
from those stated in [11] , in a rather subtle way. 

2. Identify local sinks and sources from steady state mea- 
surements of infected humans in the network. Each patch 
in the patched Ross–Macdonald model has its own transmis- 
sion characteristics. In fact, to each patch we can associate 
a basic reproduction number, which would predict infection 
persistence or clearance in this patch if the patch were iso- 
lated. Since control measures are often aimed at lowering 
the reproduction numbers of those patches with the high- 
est reproduction number values, an obvious first step is to 
determine, or at least estimate, the basic reproduction num- 
bers of every patch with as little knowledge of model pa- 
rameter values as possible. We show how to do this, based 
on the steady state measurements of infected humans in all 
the patches of the network. It turns out that only a limited 
number of model parameters is needed to achieve this, and 
we precisely state which ones these are. 

3. Investigate how the patch reproduction numbers, in con- 
junction with host and vector mobility patterns, affect 
disease persistence or clearance in the network. We first 
consider the special cases where either only humans, or 
only mosquitoes move. If all patches are hotspots (respec- 
tively, sinks), then no matter what the mobility pattern of 
the moving host is, the disease persists in (respectively, is 
cleared from) the network. Thus, the control strategy that 
makes the reproduction number of every patch less than 
one, is guaranteed to clear the infection from the network, 
no matter what the mobility pattern of the moving host 
is. However, when there is a mix of hotspots and sinks in 
the network, this control strategy might be too conservative: 
For some mobility patterns the infection might be cleared 
without any intervention, although it may persist for oth- 
ers. This also indicates that in this case, an alternative con- 
trol strategy -namely to intervene in the mobility patterns 
of the hosts—might be sufficient to clear the infection; and 
it may even be a cheaper one in certain cases, in particu- 
lar when imposing travel restrictions is more cost-effective. 
We end by considering the general scenario in which both 
humans and mosquitoes move. A striking difference, com- 
pared to the cases where only one population moves, is that 
now the control strategy that makes the basic reproduction 
numbers less than one in all patches, may fail to clear the 
infection from the network. Failure or success depends on 
the mobility patterns of both humans and mosquitoes. Sim- 
ilarly, it may happen that in a network consisting of only 
sources, the infection is cleared by itself, without any con- 
trol intervention at all. These results indicate that control- 
ling a malaria infection in a network depends in a subtle 
way on the interplay between local transmission character- 
istics in the patches on the one hand, and the movement 
patterns of both hosts on the other. 

The rest of this paper is organized as follows. In Section 2 we 
introduce the patched Ross–Macdonald model and discuss its 
global behavior. Two Appendices contain the proof of this result. 
In Section 2 we also propose a solution to the problem of deter- 
mining the local reproduction numbers of all the patches based on 
steady state measurements. In Section 3 we investigate how patch 
characteristics, together with mobility patterns of vectors and hu- 
man hosts, affect disease clearance or persistence in the network. 
Implications for control strategies aimed at clearing the infection 
from the network are considered here as well. Finally, we conclude 
this paper with some remarks in Section 4 . 
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2. Malaria models 
2.1. Single patch 

The core model on which we later base our patched model, is 
a (rescaling of a) single patch Ross–Macdonald model proposed in 
[31] , see also [11,32] : 
˙ X = ab e −µτY (H − X 

H 
)

− rX (1) 
˙ Y = ac X 

H (V − Y ) − µY (2) 
This model represents the dynamics for the number of infected hu- 
mans X , and the number of infected mosquitoes Y in a total human 
population of H , and a total mosquito population of V individuals. 
Individuals in both populations are assumed to be either suscepti- 
ble, or infected. Hence, the number of susceptible humans is H − X, 
and the number of susceptible mosquitoes is V − Y . The other pa- 
rameters in this model are: 

1. r is the recovery rate of infected humans, and µ is the death 
rate of mosquitoes, both having units of 1/time. 

2. a is the biting rate of mosquitoes with units of number of 
humans bitten per mosquito and per unit of time. 

3. τ is the incubation period (in units of time), i.e. the expected 
time that elapses between the moment a mosquito picks up 
the infection, and the moment it becomes infectious. When 
τ is non-negligible compared to the expected lifetime of a 
mosquito 1/ µ, it may happen that an infected mosquito dies 
before it becomes infectious. Thus, whereas Y is the number 
of infected mosquitoes, e −µτY represents the number of in- 
fectious mosquitoes which are capable of infecting suscepti- 
ble humans. This explains the appearance of the exponential 
factor in Eq. (1) . 

4. b and c represent the probability that a bite by an infectious 
mosquito infects a susceptible human, and the probability 
that a bite by a susceptible mosquito of an infected human 
is successful, respectively. 

Clearly, the first term in (1) and in (2) represents the infection 
rate of susceptible humans, and of susceptible mosquitoes, and the 
remaining terms in these equations are the (human) recovery rate, 
and the (mosquito) death rate. 

We scale X and Y : 
x = X 

H , y = Y 
V , (3) 

and obtain the proportions of infected humans x and of infected 
mosquitoes y . We also introduce the ratio of the total number of 
mosquitoes over the total number of humans: 
m = V 

H , (4) 
and then the dynamics for the proportions x and y is given by: 
˙ x = mab e −µτ y ( 1 − x ) − rx (5) 
˙ y = acx (1 − y ) − µy (6) 

Defining the basic reproduction number 2 following [31] : 
R 0 = ma 2 bc e −µτ

rµ
(7) 

2 Note that if one applies the procedure in [13] to calculate the basic repro- 
duction number, one obtains the square root of the expression on the right-hand 
side of (7) . Note also that no matter which definition one uses, the statement of 
Theorem 1 describing the global behavior of the system, remains the same. 

= mabα e −µτ

r (8) 
where 
α = ac 

µ
(9) 

is the probability that a susceptible mosquito is infected during its 
life time. We see that (5) –(6) has a unique steady state ( ̄x , ̄y ) : 
x̄ = R 0 − 1 

R 0 + α , ȳ = α(R 0 − 1) 
(α + 1) R 0 (10) 

in (0, 1) 2 if and only if R 0 > 1. Note also that (0, 0) is always a 
steady state of (1) –(2) . 

The following global result can be proved using standard phase 
plane techniques, see [20] for instance. Alternatively, one could ex- 
ploit the monotonicity of the system, see [30] , as well as the Ap- 
pendix, for more on monotone systems: 
Theorem 1. If R 0 < 1, then all solutions of (5) –(6) converge to (0, 0) . 
If R 0 > 1, then all positive solutions of (5) –(6) converge to ( ̄x , ̄y ) . 

Estimating R 0 . We now turn to the question of how to estimate 
the value of R 0 , using steady state measurements of the fraction of 
infected humans only. It turns out that additional information is 
needed, but that Theorem 1 readily provides the answer: 

1. If R 0 > 1, then estimating R 0 based on observing the steady 
state value x̄ , and the knowledge of α, is possible by simply 
inverting (10) : 
R 0 = 1 + αx̄ 

1 − x̄ , (11) 
2. But if R 0 < 1, then the observed steady state is (0, 0). In this 

case, the value of R 0 cannot be estimated by observing the 
(0, 0) steady state, even if α is known. 

Control measures. To clear the infection, one must make R 0 
less than 1, and in view of formula (7) this may be achieved by 
lowering m, a, b and c (or α), or increasing r, µ and τ . Practi- 
cal control strategies could include the use of screens, bednets and 
repellents (decreases a ), drug treatment (increases r ), use insecti- 
cides (increases µ and decreases m ), vaccination (decreases b ), lar- 
val source management (decreases m ), and relocation of humans 
(decreases m ). 
2.2. Multi-patch 

Suppose that there are n patches and that in each patch the 
disease dynamics obeys the Ross–Macdonald model (1) –(2) . To dis- 
tinguish the heterogeneity among the patches we shall use sub- 
scripts i for the state variable and the model parameters associated 
to patch i . 

Assuming that both humans and mosquitoes move, possibly 
with different movement patterns, we investigate the following 
coupled model, a variant of which was proposed and analyzed in 
[17] and reviewed in [11] , and which is called a Lagrangian model 
in contrast to the Eulerian models in for example [1,2] : 
˙ X i = 

( 
n ∑ 
j=1 p i j a j b j e −µ j τ j Y j 

) (
H i − X i 

H i 
)

− r i X i (12) 
˙ Y i = 

( 
n ∑ 
j=1 q i j a j c j 

X j 
H j 

) 
(V i − Y i ) − µi Y i , (13) 

for all i = 1 , . . . , n . The parameter p ij ( q ij ) represents the fraction of 
time a human (mosquito) of patch i spends in patch j . Thus, for all 
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i, j = 1 , . . . , n, 
p i j ≥ 0 , q i j ≥ 0 , and n ∑ 

k =1 p ik = 1 , n ∑ 
k =1 q ik = 1 , (14) 

Note that the non-negative matrix P ( Q ) whose ( i, j )th entry is p ij 
( q ij ) is row-stochastic , that is, the row sums of P ( Q ) are all equal 
to 1. 

The model conveys the following idea: All individuals, whether 
they are human or mosquitoes, are assigned a resident patch, but 
spend some proportion of their time in other patches. Susceptible 
individuals -again, both human and mosquitoes—can be infected 
at a rate which is an average of the infection rates across patches, 
weighted by the proportion of the time they spend there. For ex- 
ample, human residents of patch i , spend a proportion of their 
time in patch j . Of these human residents of patch i , a fraction 
(H i − X i ) /H i is susceptible, and if they end up spending time in 
patch j , they may be infected by infectious mosquitoes there at a 
rate that is proportional to the number of infectious mosquitoes 
in that patch, which is e −µ j τ j Y j . This infection rate is also propor- 
tional to the biting rate a j in that patch, and to the probability 
that transmission is successful, i.e. to b j . A similar explanation can 
be given for the infection of susceptible mosquitoes that reside in 
patch i . 

We scale each X i and Y i by the corresponding total number of 
humans and mosquitoes in that patch: 
x i = X i 

H i , y i = Y i 
V i , 

and defining the ratios: 
m i j = V j 

H i , 
yields the dynamics of the proportions x i and y i in each patch: 
˙ x i = 

( 
n ∑ 
j=1 p i j m i j a j b j e −µ j τ j y j 

) 
(1 − x i ) − r i x i (15) 

˙ y i = 
( 

n ∑ 
j=1 q i j a j c j x j 

) 
(1 − y i ) − µi y i , (16) 

For patch i , we define two patch characteristics: 
R i 0 = m ii a 2 i b i c i e −µi τi 

r i µi = m ii a i b i αi e −µi τi 
r i and αi = a i c i 

µi . (17) 
and we say that patch i is a sink if R i 0 < 1 , and a focal area of trans- 
mission (or source ) if R i 0 > 1 . 

We also introduce the parameter vector ρ whose components 
ρ i are the ratios of the total human population in patch i and the 
total human population in the first patch: 
ρi = H i 

H 1 (18) 
Then system (15) –(16) can be re-written as 

˙ x i = 
( 

n ∑ 
j=1 ρ−1 

i p i j ρ j R j 0 α−1 
j r j y j 

) 
(1 − x i ) − r i x i (19) 

˙ y i = 
( 

n ∑ 
j=1 q i j α j µ j x j 

) 
(1 − y i ) − µi y i , (20) 

We note that [0, 1] 2 n is a forward invariant set for system (19) –
(20) , and that (x, y ) = (0 , 0) is always a steady state. In what fol- 

lows we denote the spectral radius of any matrix A by R ( A ), defined 
as: 
R (A ) := sup {| λ| | λ is an eigenvalue of A } 

= lim 
n →∞ || A n || 1 /n , 

where in the latter, well-known formula by Gelfand, || A || denotes 
any matrix norm. We use the notation diag( x ) for any vector x in 
R n to denote the diagonal matrix having the components of the 
vector x on its diagonal. By slightly abusing notation, we denote 
for given vectors x and y in R n , the vectors xy and x / y obtained by 
component-wise multiplication and division respectively, assuming 
that the latter are well-defined. Before stating our main result we 
introduce one more matrix: 
S = P diag (R 0 ) D −1 QD, where D = diag ( (ac) / (rρ) ) (21) 

The following dichotomy states that the global dynamics of sys- 
tem (19) –(20) is entirely determined by the value of the spectral 
radius of the matrix S : 
Theorem 2. Assume that PQ and QP are irreducible matrices. 

If R ( S ) < 1, then (x, y ) = (0 , 0) is the only steady state of (19) –
(20) , and it is globally asymptotically stable. 

If R ( S ) > 1, then system (19) –(20) has exactly two steady states, 
namely (x, y ) = (0 , 0) and a positive ( ̄x , ̄y ) in (0, 1) 2 n . In this case, 
all nonzero solutions converge to ( ̄x , ̄y ) . 

The proof is included it in the Appendix. 
Comments on the irreducibility of PQ and QP . 
Theorem 2 is proved under an irreducibility condition for the 

two matrix products of the row-stochastic mobility matrices of hu- 
mans and vectors. 

1. First, what does irreducibility of PQ and QP mean? 
A particularly convenient definition of irreducibility of a 
non-negative matrix is in graphical terms, as it relates to a 
specific connectedness property of an associated graph [7] . 
Suppose that Z is an n × n non-negative matrix. Construct 
a directed graph with n nodes by drawing a directed edge 
from node i to node j if and only if Z ij > 0. The irreducibil- 
ity of the matrix Z is equivalent to the strong connected- 
ness of the directed graph. The latter property means that 
for any pair of nodes ( i, j ) of the graph, there must ex- 
ist a directed path from node i to node j , obtained by fol- 
lowing directed edges; equivalently, there must exist a fi- 
nite sequence k 1 , . . . , k m with k 1 = i and k m = j, such that 
Z k 1 k 2 Z k 2 k 3 . . . Z k m −1 k m > 0 . 
We shall now use this graphical condition to understand 
what the irreducibility of the matrix QP means. Suppose 
that there is a single infected mosquito in patch i , in an 
otherwise entirely susceptible population of humans and 
mosquitoes in all patches. We ask 
whether or not this single infected mosquito in patch i has the 
potential to cause a secondary mosquito infection in patch j , 
and claim that this is possible if and only if the non-negative 
( j, i )th entry of the matrix QP , is in fact positive: 
0 < [ QP ] ji = n ∑ 

k =1 Q jk P ki . (22) 
Indeed, the single infected mosquito in patch i can infect a 
susceptible human resident in any patch k , while that hu- 
man is visiting patch i . Susceptible humans in patch k spend 
a proportion P ki of their time in patch i . Once the human 
resident of patch k is infected by the mosquito, it can in 
turn infect a susceptible mosquito that is visiting patch k , 
but resides in patch j . Mosquito residents of patch j , spend 
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a proportion Q jk of their time in patch k . Now summing 
over all possible patches k , shows that the original infected 
mosquito in patch i can cause a secondary mosquito infec- 
tion in patch j , provided that the expression in (22) , which 
represents the ( j, i )th entry of the product QP , is positive, as 
claimed. Irreducibility of the matrix QP therefore means that 
a single infected mosquito resident in any patch, has the po- 
tential to cause a mosquito infection in any other patch later 
on, although the latter infection is no longer necessarily a 
secondary infection, but may occur through a finite number 
of consecutive mosquito-human-mosquito infections as de- 
scribed above. 
A convenient way of checking irreducibility of PQ and QP 
goes as follows. First, we construct a bipartite graph. Recall 
that a bipartite graph is a specific kind of graph having the 
property that the set of nodes can be partitioned in two dis- 
joint sets of nodes, such that directed edges only go from a 
node in one set, to a node in the other set. Here we con- 
struct a bipartite graph with 2 n nodes, whose node set is 
partitioned as N 1 UN 2 , such that both N 1 and N 2 each have 
exactly n nodes. When P ij > 0 we draw a directed edge from 
the i th node of N 1 , to the j th node of N 2 . Similarly, when 
Q kl > 0 we draw a directed edge from the k th node of N 2 , to 
the l th node of N 1 . This bipartite graphs captures very well 
that the disease cannot be transmitted directly from host to 
host, or from vector to vector, but must go from vector to 
host, or from host to vector. One can think of the N 1 as a 
representation of the n patches, from which weighted edges 
emanate that indicate the proportion of time, humans spend 
among the patches (the entries of the matrix P ). Similarly, 
N 2 represents the n patches, but now the weighted edges 
indicate the proportion of time mosquitoes spend among the 
patches (the entries of the matrix Q ). We will “collapse” this 
bipartite graph in two distinct ways, ending up with two 
new directed graphs. These resulting graphs each have ex- 
actly n nodes, and irreducibility of QP and PQ will be equiv- 
alent to strong connectedness of these two graphs. Specifi- 
cally, N 1 is the node set of the first directed graph, and has 
a directed edge from node i to node j if [ PQ ] ij > 0, or equiva- 
lently if the bipartite graph has a directed path with exactly 
2 edges, emanating from the i th node of N 1 , and ending in 
the j th node of N 1 . Of course, by the very nature of the 
bipartite graph, such a path must necessarily pass through 
some node k belonging to N 2 . In a similar fashion, a second 
directed graph can be constructed, but the node set of this 
second graph consists of the n nodes that belong to N 2 . Fi- 
nally, irreducibility of PQ and QP is equivalent to the strong 
connectedness of the two directed graphs we have just 
obtained. 
This discussion concerning the irreducibility of PQ and QP 
also sheds light on the reason why Theorem 2 establishes 
that if R ( S ) > 1, then the model has a unique, globally sta- 
ble steady state with respect to which all non-zero solu- 
tions converge; this steady state represents a disease which 
is endemic in all patches, both for humans, as well as for 
mosquitoes . Indeed, for this to happen, the result should 
hold if the initial condition corresponds to the presence of 
a single infected mosquito, or a single infected human. In 
fact, these are typical initial conditions one encounters in 
practice. The discussion presented here, in conjunction with 
Theorem 2 , shows that thanks to the irreducibility of both 
PQ and QP , this single infected individual can indeed cause 
the disease to spread to the entire network for both popula- 
tions, provided that R ( S ) > 1. 

2. Note that irreducibility of P and Q does not imply irreducibil- 
ity of their products , as can be seen by the following simple 

example: 
P = (0 1 

1 0 
)

= Q is irreducible, but P Q = (1 0 
0 1 

)

= QP is not. 
Note also that (entry-wise) positivity of one of the matrices, 
is sufficient for irreducibility of the two products , because the 
product of a positive matrix, with a stochastic matrix is al- 
ways positive. 
On the other hand, irreducibility of both P and Q is not neces- 
sary for the irreducibility of PQ and QP . This is illustrated by 
two important special cases that we consider in more de- 
tail later, namely when only humans move, but mosquitoes 
don’t, and vice versa. In this case, irreducibility of the mo- 
bility matrix associated to the moving species, humans or 
mosquitoes, suffice to conclude irreducibility of the matri- 
ces PQ and QP . For example, if humans move according to a 
pattern described by an irreducible mobility matrix P , and 
mosquitoes don’t move (hence Q = I), then P Q = P = QP, 
and the irreducibility of both products is clearly satisfied. 

3. Irreducibility of PQ does not necessarily imply irreducibility of 
QP , as seen by the following example: 
For P = (1 0 

1 0 
)

, and Q = (1 / 2 1 / 2 
1 0 

)
, 

P Q = (1 / 2 1 / 2 
1 / 2 1 / 2 

)
is irreducible, but 

QP = (1 0 
1 0 

)
is not. 

This shows that one cannot drop the irreducibility condition 
of one of the products. 

4. It is claimed in [11] (p.554 in Theorem 1 ), that [17] proved 
that the conclusions of Theorem 2 in this paper hold when 
both P and Q are irreducible (rather than PQ and QP ). As we 
have seen above, irreducibility of P and Q does not imply 
irreducibility of PQ and QP ; and conversely, irreducibility of 
PQ and QP does not imply irreducibility of P and Q . More- 
over, a closer inspection of the model in [17] reveals that 
the setup of patch connectivity considered there, is different 
from the one considered here. Indeed, in [17] , humans are 
not mobile, and reside on a set of n patches; mosquitoes re- 
side in a disjoint set of m patches from which they can visit 
the patches where humans live to cause or pick up the infec- 
tion. Therefore, there is only one mobility matrix (denoted 
as %), associated to mosquito movement. Furthermore, the 
crucial part in the proof in [17] (Theorem 7 on p. 47), where 
the global stability result of the equilibria is established, is 
not shown there explicitly, but instead attributed to a theo- 
rem in [21] . We note that [21] precedes the theory of mono- 
tone dynamical systems [30] which was pioneered by Morris 
Hirsch in the 1980s by almost a decade, and that [17] was 
published around the time monotone systems theory was 
being developed, but, perhaps not surprisingly, without us- 
ing that theory. 
Because we were unable to verify the above mentioned 
claim in [11] -caused by the subtleties related to the ir- 
reducibility properties of the matrices P, Q, PQ and QP —
and because the proof methods of [17] and [21] pre-date 
the by now well-established theory of monotone systems, 
we decided to include a self-contained, yet concise proof 
of Theorem 2 in the Appendix to this paper. We do not 
claim any originality about the proof itself. Indeed, once the 
correct irreducibility condition is established, the proof of 
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global stability is based on arguments that are quite stan- 
dard nowadays thanks to the development of the theory of 
monotone systems. Our main purpose, however, is to clar- 
ify some of the confusion surrounding the role of the irre- 
ducibility conditions of the mobility matrices. 

Estimating R 0 . Theorem 2 provides a dichotomy for the global 
behavior of the coupled system (19) –(20) , depending on whether 
R ( S ) is less than or larger than one. We now turn to the question 
of estimating the vector R 0 , based on steady state measurements 
of the infected human populations in the various patches. 

We assume throughout that the products of both mobility ma- 
trices, namely PQ and QP , are irreducible, and then Theorem 2 sug- 
gests the following: 

1. If R ( S ) < 1, then system (19) –(20) has only one globally sta- 
ble steady state at (x, y ) = (0 , 0) . Hence, we cannot estimate 
the vector R 0 , based on the observation of this steady state. 
This is similar to what happened in the single patch case. 

2. If R ( S ) > 1, then the irreducibility of PQ and QP guarantees 
that system (19) –(20) has a unique steady state ( ̄x , ̄y ) in (0, 
1) 2 n which attracts all nonzero solutions. In order to locate 
which patches are foci, and which are sinks, we ask the fol- 
lowing question: 
Given (an estimate of) x̄ , can we find (a corresponding estimate 
of) R 0 ? 
It is reasonable to assume that at the very least, some es- 
timate of x̄ , the vector consisting of the fraction of infected 
humans in all patches, is available. This data can be collected 
from counts of malaria cases in the local hospitals of each 
patch, and dividing this number by the total human popula- 
tion per patch. To tackle this question, we first express the 
steady state equations, where we let 1 be the n -vector con- 
sisting of ones: 
diag ( (1 − x̄ ) /ρ) P diag (ρr ̄y /α) R 0 = diag (r) ̄x (23) 
diag (1 − ȳ ) Q diag (µα) ̄x = diag (µ) ̄y (24) 
We proceed in two steps: 
Step 1: Express ȳ in terms of x̄ . This can be achieved by 
solving the second equation for ȳ : 
ȳ = diag −1 (1 + z̄ ) ̄z , where z̄ := diag −1 (µ) Q diag (µα) ̄x 

(25) 
Indeed, the second steady state Eq. (24) is equivalent to 
diag −1 (1 − ȳ ) ̄y = z̄ . Since the scalar function y → y/ (1 − y ) 
with y in (0, 1) is increasing, hence invertible with inverse 
z → z/ (1 + z) , the above relation (25) follows. 
Note that the practical relevance of formula (25) is that it al- 
lows us to find the vector of fractions of infected mosquitoes 
in all patches -a vector which is probably difficult to mea- 
sure directly—in terms of x̄ whose estimate is more feasible. 
But it also requires additional knowledge of certain system 
parameters, namely the vectors µ and α, and the matrix Q 
associated to mosquito movement. The latter matrix in par- 
ticular, may be difficult to estimate. 
Step 2: Solve for R 0 in terms of x̄ . Note that (23) is a linear 
system in the unknown vector R 0 . Its solution is: 
R 0 = A −1 diag (r) ̄x , (26) 
provided that the matrix: 
A := diag ( (1 − x̄ ) /ρ) P diag (ρr ̄y /α) , ȳ given by (25) , 
is invertible. 

Since ( ̄x , ̄y ) belongs to (0, 1) 2 n , invertibility of A is clearly 
equivalent to invertibility of P . Thus, if P is invertible, then 
(26) yields the vector of the basic reproduction numbers of 
all the patches. In particular, we can then immediately read 
off which of the patches are sources, and which are sinks. 
An interesting situation arises when some of the patches 
in the network are sinks. Indeed, in this case, our method, 
allows us to estimate their basic reproduction number (as- 
suming that the disease persists in the network), something 
which would have been impossible if these sinks were iso- 
lated patches as shown before. One limitation of our method 
is that the matrix P should be invertible, and this may not 
always be the case, as 
P = 1 

n 
 
  
1 1 . . . 1 
. . . . . . . . . . . . 
1 1 . . . 1 

 
  

shows. The structure of this matrix implies that humans of 
every patch divide their time equally among all patches. 

Comments on estimating R 0 . Let us examine which model pa- 
rameters, or parameter combinations, should be known in order to 
evaluate the right hand side of (26) , assuming that we have at least 
an estimate of x̄ . From Step 1, we need the vectors µ and α, and 
the matrix Q , associated to mosquito movement. From Step 2, we 
see that we also need the vector r , the vector ρ , and the matrix P , 
associated to human mobility, and this matrix should be invertible. 

In summary, we need the: 
1. recovery rate vector r , and the death rate vector µ. 3 
2. vector α, which consists of the probabilities that a suscepti- 

ble mosquito becomes infected over its entire lifetime, in all 
the patches. 

3. the matrix P , which quantifies human movement. 
4. the matrix Q , which quantifies mosquito movement. 
5. vector ρ , consisting of the ratios of the total human popula- 

tions in the various patches compared to the first patch. 
6. the vector x̄ , consisting of the proportions of human infected 

individuals in the various patches. 
Let us compare this to the traditional estimation method of R 0 , 

based on the original definition (17) , which provides formulas for 
its entries in terms of various model parameters. This method re- 
quires for each patch i , the following information: 

1. the recovery rate r i , the death rate µi . 
2. the probability αi . 
3. the biting rate a i . 
4. the probability b i that an infectious mosquito bite success- 

fully infects a susceptible human. 
5. the ratio of total number of mosquitoes and total number of 

humans m ii = V i /H i . 
6. the incubation period τ i . 
From both lists above, we see that the first two items of each 

method are the same, but the next four are different. 
The parameter which is perhaps the most difficult one to de- 

termine for our estimation method (26) is Q , the mobility matrix 
associated to mosquito movement. This requires estimates of time 
spent by the mosquitoes among the various patches. On the other 
hand, in cases where the geographic scale of the patches is large, 

3 Actually, slightly less information is required. Indeed, it suffices that we know 
the ratios of the recovery rates, and the ratios of the death rates in the different patches . 
This follows from the fact that in (25) and in (26) , there are factors diag( µ) and 
diag −1 (µ) , and diag( r ) and diag −1 (r) pre-and post-multiplying the matrix Q and P 
respectively. 
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compared to typical distances traveled by mosquitoes, one may ar- 
gue that Q = I. This expresses that mosquitoes are confined to their 
patch of residence. To a lesser extent, the mobility matrix P associ- 
ated to human movement, may sometimes be difficult to estimate, 
although mobile telephony data could be used for this purpose by 
tracking the movements of cell phone users. 

The parameters which are the hardest to determine for the 
traditional method (17) are the ratios m ii of the total number of 
mosquitoes over the total number of humans in each patch. Al- 
though the total number of humans in each patch is likely to 
be well-known in many cases, this is far less likely in case of 
mosquitoes. 

Finally, an important limitation of our method, compared to the 
traditional one, is that we require that R ( S ) > 1, so that the model 
has a positive steady state ( ̄x , ̄y ) in (0, 1) 2 n . In other words, our 
method requires the disease to be endemic, whereas the traditional 
method also works when the disease is not endemic. 
3. Bounds for R ( S ) and implications for control 

In this section we perform a closer examination of the spec- 
tral radius of the matrix S defined in (21) , because the value of 
this spectral radius determines whether or not the malaria infec- 
tion persists in the patched network. We shall derive sharp upper 
and sharp lower bounds for this spectral radius in terms of the 
basic reproduction numbers of all the patches, and the mobility 
matrices of vectors and hosts. Similar bounds have been obtained 
for various epidemic models of non-vector borne diseases and us- 
ing the Eulerian approach to model movement of individuals, see 
[18] for an SEIRP-model (P represents the class of partially immune 
individuals), [14] for an SIS-model, and [4] for an SIR-model of a 
large metropolitan city and several satellite cities representing a 
suburban area. 

Our analysis shall start with some special cases where either 
only humans move, or only mosquitoes. Later we turn to the gen- 
eral case where both move. We will see that there are profound 
differences between the first two scenarios on the one hand, and 
the third one on the other. 

A key technical property that we shall use repeatedly in this 
context, is that the spectral radius is a non-decreasing function 
over the set of non-negative matrices, i.e.: 
0 ≤ A ≤ B ⇒ R (A ) ≤ R (B ) . (27) 
Here, the notation A ≤ B means that the entries of B are not 
smaller than the corresponding entries of A . For a proof of this fact, 
see [7] . 

Below we use the notation x min = min i (x i ) and x max = max i (x i ) 
for a given vector x in R n . 
3.1. Only humans move 

When only humans move it follows that the matrix associated 
to the mobility of mosquitoes, is the identity matrix: 
Q = I. (28) 
In this case, the matrix S simplifies to the matrix S h , which is de- 
fined as: 
S h = P diag (R 0 ) , (29) 
and then we have the following bounds on the spectral radius of 
S h : 
Theorem 3. Assume that (28) and (29) hold. Then: 
(R 0 ) min ≤ R (S h ) ≤ (R 0 ) max (30) 

Moreover, these bounds are sharp in the sense that there exist row- 
stochastic matrices P min and P max such that: 
ρ( P min diag (R 0 ) ) = (R 0 ) min and ρ( P max diag (R 0 ) ) = (R 0 ) max (31) 
Proof. Note that 0 ≤ S h = P diag (R 0 ) implies that: 
0 ≤ (R 0 ) min P ≤ S h ≤ (R 0 ) max P, 
and hence (30) follows from (27) and the fact that R (P ) = 1 (since 
P is row-stochastic). To prove that the lower bound is achieved, 
take P min as the matrix having exactly one column consisting of 
ones, namely the i th column where i is any index such that R i 0 = 
(R 0 ) min , and all other columns are zero vectors. A straightforward 
calculation then shows that R (P min diag (R 0 )) = (R 0 ) min . Similarly, 
to prove that the upper bound is achieved, set P max as the matrix 
having exactly one column consisting of ones corresponding to an 
index j for which R j 0 = (R 0 ) max , and all other columns consisting of 
zero vectors. This proves (31) . !

From the point of view of malaria eradication in case only hu- 
mans move, Theorem 3 , in combination with Theorem 2 , has sev- 
eral implications: 

1. If all patches are foci, then the malaria infection will persist in 
the network, independently of network topology as encoded by 
the (human) mobility matrix P . Indeed, when all patches are 
transmission foci, then ( R 0 ) min > 1, and therefore R ( S h ) > 1 
by (30) . Theorem 2 then implies that the infection persists. 

2. If all patches are sinks, then the malaria infection will be 
cleared from the network, independently of network topology 
as encoded by the (human) mobility matrix P . Indeed, when 
all patches are sinks, then ( R 0 ) max < 1, and therefore R ( S h ) 
< 1 by (30) . Theorem 2 then implies that the infection is 
cleared. 

3. One control strategy is to identify all the foci (this can be 
achieved using the procedure outlined in the previous section), 
and make their corresponding basic reproduction number less 
than one by suitable local control measures, described in the 
section devoted to a single patch. This strategy is guaranteed 
to clear the infection, independently of the network topology as 
encoded by the matrix P. 

4. The latter control strategy is probably rather conservative 
because it is aimed at disease clearance for all network 
topologies . In practice, one is confronted with a specific topol- 
ogy , and it is conceivable that to clear the infection, not all 
foci should necessarily be made into sinks by appropriate lo- 
cal control measures. To see that this can indeed happen, we 
consider a scenario with two patches in which one patch is 
a source, and the other is a sink. Depending on the network 
topology the infection may be cleared or may persist, high- 
lighting the crucial role played by the matrix P . Assume 2 
patches such that 
R 0 = (3 / 2 

1 / 2 
)

In other words, patch 1 is a transmission focus, and patch 2 
is a sink. Let 
P 1 = (1 / 2 1 / 2 

1 / 4 3 / 4 
)

and P 2 = (3 / 4 1 / 4 
1 / 2 1 / 2 

)
. 

Then setting S 1 = P 1 diag (R 0 ) and S 2 = P 2 diag (R 0 ) , we have 
that: 
R (S 1 ) ≈ 0 . 92 < 1 , but R (S 2 ) ≈ 1 . 22 > 1 . 
Thus, when human mobility is encoded by the matrix P 1 , the 
infection is cleared. But if it is encoded by P 2 , the infection 
persists. 
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5. Theorem 3 also suggests an alternative control strategy, 

namely to control the people’s mobility pattern by modify- 
ing the matrix P , for instance by prohibiting travel between 
certain patches. Indeed, the proof of Theorem 3 shows that 
by making P equal to (or at least approximately equal to) the 
matrix P min , we can minimize R ( S h ). The biological interpre- 
tation of P min is that all humans should spend 100% of their 
time in the patch having lowest reproduction number, a re- 
sult which makes sense intuitively. 
Yet another control strategy can be gleaned from (30) in 
Theorem 3 : The strategy which relocates people between 
patches in an appropriate way. To sketch the main idea be- 
hind this strategy, consider for simplicity a scenario with 2 
patches where 
R 1 0 = V 1 

H 1 a 1 b 1 α1 e −µ1 τ1 
r 1 and R 2 0 = V 2 

H 2 a 2 b 2 α2 e −µ2 τ1 
r 2 

and such that 
R 1 0 < 1 < R 2 0 . 
Consequently, (R 0 ) max = R 2 0 > 1 , and therefore the infection 
will persist in the two-patch system, at least for some hu- 
man mobility matrices P . Control strategies based on reloca- 
tion only, amount to keeping all parameters V i , a i , b i , αi , µi , 
τ i and r i fixed for i = 1 , 2 , but allowing H 1 and H 2 to vary, as 
long as their sum remains constant. In this particular case, 
to clear the infection, we would seek to decrease R 2 0 below 1, 
while maintaining R 1 0 below 1 as well. This may be achieved 
by increasing H 2 and decreasing H 1 by an equal amount. In 
practice, this means that human individuals would be relo- 
cated from patch 1 to patch 2. The difficulty lies in the fact 
that although we can obviously always make R 2 0 less than 1 
by an appropriate decrease in H 2 , the corresponding increase 
in H 1 might push R 1 0 above 1, in which case the relocation 
strategy will fail to clear the infection. 

3.2. Only mosquitoes move 
In this case, the matrix P associated to human movement, is the 

identity matrix: 
P = I. (32) 
The matrix S simplifies to the matrix S m which is defined as: 
S m = diag (R 0 ) D −1 QD, (33) 
and then spectral radius of S m is bounded as follows: 
Theorem 4. Assume that (32) and (33) hold. Then: 
(R 0 ) min ≤ R (S m ) ≤ (R 0 ) max (34) 
Moreover, these bounds are sharp in the sense that there exist row- 
stochastic matrices Q min and Q max such that: 
ρ
(
diag (R 0 ) D −1 Q min D ) = (R 0 ) min and ρ(

diag (R 0 ) D −1 Q max D )
= (R 0 ) max (35) 

Proof. Since R (AB ) = R (BA ) for any square matrices A and D , it 
follows that R (S m ) = R (diag (R 0 ) DD −1 Q ) = R ( Q diag (R 0 ) ) , and then 
the rest of the proof is similar to that of Theorem 3 . !

All the remarks we made concerning disease control in case 
only humans move, remain valid here as well: simply replace the 
matrix P by the matrix Q in the discussion following Theorem 3 . 
In particular, when all patches are focal areas, the disease persists, 
and when all patches are sinks, the disease is cleared, independent 
of the network topology associated to the mosquito movement ma- 
trix Q . Hence, a conservative control strategy is to make the repro- 
duction numbers of all patches less than one, using local control 

measures described in the section devoted to a single patch. When 
some patches are transmission foci but others are sinks, there ex- 
ist mosquito mobility matrices Q which give rise to disease persis- 
tence, but also matrices Q giving rise to disease clearance. Finally, 
another possible control strategy, is to redistribute mosquitoes be- 
tween various patches, similarly to the relocation strategy of hu- 
mans described in the previous subsection. In practice this can be 
achieved by placing repellants in patches with high basic reproduc- 
tion values, effectively reducing the total number of mosquitoes V 
in those patches. However, these mosquitoes will move to other 
patches, where they in turn will increase the basic reproduction 
number. The failure or success of this strategy depends on whether 
or not the replaced mosquitoes push the basic reproduction values 
in their new home patches above 1. 
3.3. Both humans and mosquitoes move 

This is the general case, where both P and Q are assumed to 
differ from the identity matrix. First, we define the positive vector 
d as: 
d = (ac) / (rρ) . 
Note that this implies that the diagonal matrix D in (21) con- 
tains the components of d on its diagonal: D = diag (d) , and hence 
(21) can be re-written as: 
S = P diag (R 0 /d) Q diag (d) (36) 
Then we have: 
Theorem 5. The spectral radius of S is bounded as follows: 
d min (R 0 /d) min ≤ R (S) ≤ d max (R 0 /d) max (37) 
Moreover, these bounds are sharp in the sense that there exist pairs 
of row-stochastic matrices ( P min , Q min ) and ( P max , Q max ) such that: 
ρ( P min diag (R 0 /d) Q min diag (d) ) = d min (R 0 /d) min , and (38) 
ρ( P max diag (R 0 /d) Q max diag (d) ) = d max (R 0 /d) max . (39) 
Proof. From (36) follows that: 
d min (R 0 /d) min P Q ≤ S ≤ d max (R 0 /d) max P Q, 
and therefore, upon taking the spectral radius of the matrices 
above, the fact that R (P Q ) = 1 (because the product of two row- 
stochastic matrices is row-stochastic, hence has spectral radius 1), 
(27) implies (37) . To prove (38) and (39) we use a similar argu- 
ment as in the proof of Theorem 3 . For instance, to prove (38) we 
can take P min to be a matrix having exactly one column consist- 
ing of ones, namely the i th column corresponding to the minimal 
component of the vector R 0 / d , and all other columns are zero vec- 
tors. Similarly for Q min we take a matrix having exactly one col- 
umn consisting of ones, namely the j th column corresponding to 
the minimal component of the vector d , and all other columns 
are zero vectors. Then a straightforward calculation shows that 
(38) holds. !

Although many of the remarks we made concerning disease 
control following Theorem 3 and Theorem 4 , remain valid in the 
case that both humans and mosquitoes move, we point out some 
striking differences: 

1. The conservative control strategy that made the basic re- 
production numbers in all patches less than one using lo- 
cal control measures, no longer guarantees that the dis- 
ease will be cleared from the network, independently of the 



98 N.W. Ruktanonchai et al. / Mathematical Biosciences 279 (2016) 90–101 
movement matrices P and Q . Indeed, although this strat- 
egy ensures that ( R 0 ) max < 1, it does not necessarily make 
d max ( R 0 / d ) max < 1. For example, in a 2 patch system with: 
R 0 = (1 / 2 

1 / 4 
)

and d = (1 / 4 
1 

)

there holds that: 
1 / 2 = (R 0 ) max < 1 < d max (R 0 /d) max 

= max ( (1 / 2) / (1 / 4) , 1 / 4 ) = 2 . 
Consequently, Theorem 5 also says that there are in fact net- 
work topologies for human ( P ) and mosquito ( Q ) movement, 
such that the disease persists (because the upper bound 
for R ( S ), which is 2, can be achieved), despite the fact that 
( R 0 ) max < 1. In other words, contrary to what happened in 
the cases where only humans or only mosquito move, the 
disease may persist in a network of sinks. 

2. Similar arguments show that when both humans and 
mosquitoes move, it is possible that the disease is cleared 
from a network of sources. This contrasts the cases where 
either only humans, or only mosquitoes move. For instance, 
when 
R 0 = (2 

4 
)

and d = ( 1 
1 / 4 

)

then 
1 / 2 = (1 / 4) min (2 , 16) = d min (R 0 /d) min < 1 < (R 0 ) min = 2 . 

The two examples above, indicate that knowledge of the max- 
imal and minimal component of the vector R 0 , i.e. the maximal 
and minimal basic reproduction number of all the patches in iso- 
lation, is no longer sufficient to predict disease clearance or persis- 
tence from the network. Instead, according to the bounds (37) in 
Theorem 5 , the product of the maximal and minimal components 
of the vectors d and R 0 / d are the relevant quantities. Therefore, 
control strategies focused on the basic reproduction numbers of 
isolated patches, are no longer adequate when both hosts and vec- 
tors move. From a practical control perspective, this may be the 
most important conclusion of the mathematical analysis presented 
here. 
4. Conclusion 

Robust strategies for malaria elimination that account for para- 
site movement are critical for malaria control programs [24] , and 
strategies that spatially target vector control and treatment will 
improve the efficiency of the use of limited resources. Being able 
to predict how control will affect parasite populations across net- 
works of patches has been characterized statistically, but it also 
requires a mechanistic understanding of transmission and parasite 
mobility, as mediated by both mosquitoes and humans. However, 
most algorithms for quantifying transmission intensity across het- 
erogeneous landscape either do not incorporate mobility in both 
hosts [27,36] or are purely statistical identification methods [8] . 
In the multi-patch Ross–Macdonald model we analyzed to identify 
patches that are transmission foci, which incorporates both human 
and mosquito movement, we test whether targeting foci based on 
local estimates of transmission is a viable strategy for eliminating 
parasite populations regionally. We find that while this strategy is 
sufficient to eliminate all parasites if only humans or mosquitoes 
move, when both hosts move, there are network topologies that 
can cause a strategy that only targets foci to fail. This result high- 
lights the complex interactions between malaria parasite, human, 
and mosquito populations caused by host mobility, and the need 
for understanding the specific movement patterns of humans and 

mosquitoes when developing malaria elimination strategies. More 
generally, it is well-known that the basic reproduction number R 0 
plays an important role in various models of the spread of many 
infectious diseases, yet control measures aimed at simply reducing 
R 0 below 1 may be insufficient to clear the infection. Our results 
are in accordance with that observation. 

We conclude with some comments related to the practical use 
of our results. A nontrivial problem when using the proposed 
patched Ross–Macdonald model, is to define the various patches in 
the system. Policy makers who would use this model in their deci- 
sion process, will have to identify the various patches first, before 
they can implement specific control strategies. Obviously, there is 
no unique way to do this. For example, a lot depends on the geo- 
graphic scale of the infection dynamics: this could range from sys- 
tems of nearby towns that are connected via small trails or paved 
roads for humans, and rivers or lakes for mosquitoes, over counties 
to provinces and countries, or even on a global scale by transport 
via boats and air. This variability in geographic scale also affects ju- 
dicious choices of the mobility matrices needed in our model: peo- 
ple travel far less frequently via air to other countries, than they 
do to the local fitness club two towns over. There is nothing sin- 
gular about the problem of choosing patches in the context of the 
patched Ross–Macdonald model investigated here. In fact, users of 
any patch model face this issue as well. Nevertheless, we believe 
that they constitute a good first step toward a better understand- 
ing of more complicated models that incorporate spatial features 
more explicitly, such as partial differential equations models. 
Appendix A. Quasi-monotone matrices and monotone systems 

An interesting class of matrices are so-called quasi-monotone 
matrices. 4 They are real, n × n matrices A such that: 
A i j ≥ 0 if i * = j. 
In other words, they have non-negative off-diagonal entries. For 
vectors and matrices alike, we use the order symbols ≤, < and 
+ to denote non-negativity, non-zero and non-negative, and pos- 
itivity respectively. For instance 0 < x means that x is a nonzero, 
non-negative vector. 

We collect some relevant properties of quasi-monotone matri- 
ces, which are consequences of the celebrated Perron–Frobenius 
Theorem, see for example [7] : 
Theorem 6. Let A be a quasi-monotone and irreducible matrix. Then 
there is a real and simple eigenvalue s (called the stability modulus) 
with corresponding eigenvector x , 0 : 
Ax = sx, 
and Re( λ) < s for every eigenvalue λ of A, other than s. Moreover, 
every eigenvector z > 0 of A must be a scalar multiple of x. 

Suppose that A 1 and A 2 are quasi-monotone, irreducible matrices 
with stability moduli s 1 and s 2 . If A 1 < A 2 , then s 1 < s 2 . If A 1 and A 2 
are only quasi-monotone, and A 1 ≤ A 2 , then s 1 ≤ s 2 . 

We will also need the following result concerning a specific 
non-negative matrix featured later: 
Proposition 1. Let A ≥ 0 and B ≥ 0 be n × n matrices and let 
C = (0 A 

B 0 
)

. 
Then C is irreducible if and only if both AB and BA are irreducible. If 
C is irreducible, then ( R (C) ) 2 = R (AB ) = R (BA ) . 

4 In the literature these are also known as Metzler matrices. 
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Proof. It is well-known that a non-negative matrix X is irreducible 
if and only if there exists an integer k > 0 such that X + X 2 + · · · + 
X k , 0 , see [7] . Note that if m is a positive integer, then 
C + C 2 + · · · + C m 

= 

 
                  
                  

 
      

m −1 
2 ∑ 

i =1 (AB ) i A m −1 
2 ∑ 

i =0 (BA ) i 
B m −1 

2 ∑ 
i =0 (AB ) i 

m −1 
2 ∑ 

i =1 (BA ) i 

 
      , if m is odd 

 
     

m 
2 ∑ 

i =1 (AB ) i A m 2 −1 ∑ 
i =0 (BA ) i 

B m 2 −1 ∑ 
i =0 (AB ) i 

m 
2 ∑ 

i =1 (BA ) i 

 
     , if m is even 

If C is irreducible, then there is some positive integer k , with nec- 
essarily k > 1, such that the matrix C + · · · + C k , 0 . Then the di- 
agonal blocks in the expression above with m = k are positive ma- 
trices, and this implies that AB and BA are irreducible. 

Conversely, if AB and BA are irreducible, let k = max (k 1 , k 2 ) , 
where k 1 and k 2 are positive integers such that ∑ k 1 

i =1 (AB ) i , 0 
and ∑ k 2 

i =1 (BA ) i , 0 . Since AB and BA are irreducible, no row of 
A or B can consist of zeros only, and hence A ∑ k 

i =1 (BA ) i , 0 and 
B ∑ k 

i =1 (AB ) i , 0 as well. Setting m = 2(k + 1) yields that C + · · · + 
C m , 0 , and then C is irreducible. 

If C is irreducible, then the Perron–Frobenius Theorem [7] im- 
plies that R ( C ) is a positive eigenvalue of C , and it has a corre- 
sponding positive eigenvector. Hence, there exist vectors x , 0 and 
y , 0, not both zero, such that: 
C (x 

y 
)

= R (C) (x 
y 
)

, 
or equivalently, that 
Ay = R (C) x 
Bx = R (C) y 
Then 
ABx = ( R (C) ) 2 x and BAy = ( R (C) ) 2 y. 
But AB and BA are irreducible (because C is irreducible), and since 
x , 0 and y , 0, the Perron–Frobenius Theorem implies that 
R (AB ) = ( R (C) ) 2 = R (BA ) , 
concluding the proof. !

Finally, we consider systems for which the linearization of the 
vector field in any point is a quasi-monotone and possibly irre- 
ducible matrix. Such system are examples of what are known as 
(strongly) monotone systems [30] and they have the remarkable 
property that their solutions satisfy a particular comparison prin- 
ciple stated below. 

More precisely, we consider 
˙ x = f (x ) , x ∈ U ⊂ R n , (40) 
where U is a convex region in R n and f is a C 1 vector field. Then 
the following comparison principle holds, see [30] for a proof: 
Proposition 2. Assume that the Jacobian matrix J ( x ) := Df ( x ) is 
quasi-monotone in U. Then system (40) is monotone, i.e. if x 0 and y 0 
are initial conditions in U with corresponding solutions x ( t ), y ( t ) both 
defined on some positive interval I, we have that: 
x 0 ≤ y 0 ⇒ x (t) ≤ y (t) , t ∈ I. 

If J ( x ) is quasi-monotone and irreducible in U, then the system is 
strongly monotone, i.e. it is monotone, and for initial conditions x 0 ≤
y 0 , we have the following stronger property: 
x 0 < y 0 ⇒ x (t) + y (t) , t ∈ I. 
Appendix B. Proof of the dichotomy 

Proof of Theorem 2 . System (19) –(20) is strongly monotone on 
[0, 1) 2 n by Proposition 2 . Indeed, the Jacobian matrix is: 
J(x, y ) 

= 
 
 −D 1 (y ) diag ( 1 − x ) diag −1 (ρ) 

× P diag (ρR 0 r/α) 
diag (1 − y ) Q diag (µα) −D 2 (x ) 

 
 , 

where D 1 ( y ) and D 2 ( x ) are positive diagonal matrices whose diag- 
onal entries depend only on the indicated arguments y and x re- 
spectively. As long as all x i and all y i are not equal to 1, J ( x, y ) is a 
quasi-monotone and irreducible matrix. (irreducibility follows from 
Proposition 1 because PQ and QP are irreducible, and because no 
component of x or y equals 1) Consequently, the system is strongly 
monotone in this region of the state space. 

Nonzero solutions starting on the boundary of [0, 1] 2 n enter 
(0, 1) 2 n instantaneously (when x i = 1 or y i = 1 this is immediate; 
and when x i = 0 or y i = 0 , this follows because the flow is strongly 
monotone on [0, 1) 2 n and because (x, y ) = (0 , 0) is a steady state). 
In particular, the only steady state on the boundary of [0, 1] 2 n is 
the zero steady state (x, y ) = (0 , 0) . 

Next we consider the local stability properties of the zero 
steady state (0, 0). These are determined by the location of eigen- 
values of J (0, 0) in the complex plane. Since D 1 (0) = diag (r) and 
D 2 (0) = diag (µ) , we have that: 
J(0 , 0) = ( −diag (r) diag −1 (ρ) P diag (ρR 0 r/α) 

Q diag (µα) −diag (µ) 
)

Following [13] we rewrite this matrix as the difference of a non- 
negative matrix F and a nonsingular M-matrix V as follows: 
J(0 , 0) = F −V, 
where 

F = ( 0 diag −1 (ρ) P diag (ρR 0 r/α) 
Q diag (µα) 0 

)
, 

and V = (diag (r) 0 
0 diag (µ) 

)
. 

Let s denote the stability modulus of J (0, 0). The proof of the 
Theorem 2 in [13] shows that: 
s 
 
 
 

< 0 
= 0 
> 0 if and only if R (F V −1 ) 

 
 
 

< 1 
= 1 
> 1 (41) 

Consequently, the local stability properties of the steady state (0, 0) 
which are determined by the sign of s , can be equivalently derived 
from the spectral radius of the matrix F V −1 : 
F V −1 = ( 0 diag −1 (ρ) P diag ( (ρR 0 r) / (αµ) ) 

Q diag (αµ/r) 0 
)

. 
It follows from Proposition 1 (note that the irreducibility condition 
in that Proposition is satisfied because both PQ and QP are irre- 
ducible), and from the fact that R (RS) = R (SR ) for any two square 
matrices R and S , that: 
(
R (F V −1 ) )2 = R (S) , 
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where the matrix S is defined in (21) . Thus it follows from (41) that 
the stability modulus of J (0, 0) is negative, zero or positive if and 
only if R ( S ) is less than 1, equal to 1 or larger than 1 respectively. 
Consequently, the zero steady state (x, y ) = (0 , 0) is locally asymp- 
totically stable, respectively unstable if R ( S ) is less than 1, respec- 
tively larger than 1. 

We now distinguish two cases: 
1. R ( S ) ≤ 1. In this case we shall prove that the zero steady state 

(x, y ) = (0 , 0) is globally attractive, i.e. all solutions of (19) –(20) 
converge to it. 
First we show that there is no other steady state in [0, 1] 2 n . 
To see this, assume that there is a nonzero steady state ( ̄x , ̄y ) , 
which must necessarily belong to (0, 1) 2 n (since we have shown 
that the only steady state on the boundary of [0, 1] 2 n is the 
zero steady state). Then the following steady state expression 
must hold: 
A ( ̄x , ȳ ) (x̄ 

ȳ 
)

= (0 
0 
)

, (42) 
where 
A ( ̄x , ȳ ) := 

 
 −diag (r) diag (1 − x̄ ) diag −1 (ρ) 

× P diag ( ρR 0 r/α) 
diag (1 − ȳ ) Q diag (µα) −diag (µ) 

 
 
(43) 

Note that A ( ̄x , ̄y ) is a quasi-monotone, irreducible matrix (irre- 
ducibility follows from Proposition 1 because PQ and QP are ir- 
reducible, and because ( ̄x , ̄y ) belongs to (0, 1) 2 n ), and that 
A ( ̄x , ȳ ) < J(0 , 0) . 
Then Theorem 6 implies that 
s 1 < s 2 , 
where s 1 is the stability modulus of A ( ̄x , ̄y ) , and s 2 is the stabil- 
ity modulus of J (0, 0). But since R ( S ) ≤ 1, it follows from what 
was said above that s 2 ≤ 0, and hence 
s 1 < 0 . 
But in view of (42) , Theorem 6 implies that the stability mod- 
ulus of A ( ̄x , ̄y ) is equal to 0. Hence we have reached a contra- 
diction, and we conclude that (0, 0) is the only steady state of 
system (19) –(20) in [0, 1] 2 n . 
To finish the proof in this case we show next that all solutions 
converge to the zero steady state. Consider the initial condition 
( 1, 1 ), the North East corner of the state space [0, 1] 2 n . Note 
that the vector field in this point is pointing to the South West: 
(
F(1 , 1 ) 
G(1 , 1 ) 

)
= ( −r 

−µ

)
+

(
0 
0 
)

(44) 
Here, (F(x, y ) 

G(x, y ) ) denotes the vector field of system (19) –(20) . 
Then it follows that the solution starting in ( 1, 1 ) is strictly 
decreasing with respect to the componentwise partial order 
on [0, 1] 2 n . Since this solution is also bounded below by the 
zero steady state, it follows that this solution must converge 
to a steady state of the system. Since there is only one steady 
state, namely (x, y ) = (0 , 0) , this solution converges to (0, 0). 
Finally, since the system is monotone, every solution starting in 
[0, 1] 2 n is bounded above by the solution starting in ( 1, 1 ) by 
Proposition 2 , and hence all solutions converge to (0, 0) as well. 

2. R ( S ) > 1. In this case, the stability modulus of J (0, 0) is positive, 
and then a Taylor approximation of the vector field near the 
zero steady state (x, y ) = (0 , 0) , shows that 
(
F(εv 1 , εv 2 ) 
G(εv 1 , εv 2 ) 

)
,

(
0 
0 
)

for all sufficiently small and positive ε where ( v 1 , v 2 ) , 0 is 
the eigenvector corresponding to the positive stability modulus 
of J (0, 0) (see Theorem 6 ). Then by the theory of monotone sys- 
tems there exists a steady state ( ̄x m , ̄y m ) , 0 in (0, 1) 2 n , and a 
connecting orbit between (0, 0) and ( ̄x m , ̄y m ) , converging to 0 
in backward time and to ( ̄x m , ̄y m ) in forward time, see Theorem 
4.3.3 in [30] . Similarly, since (44) continues to hold in this case, 
there exists a steady state ( ̄x M , ̄y M ) > 0 and a connecting orbit 
starting at ( 1, 1 ) and converging to ( ̄x M , ̄y M ) in forward time. 
We know that both ( ̄x m , ̄y m ) and ( ̄x M , ̄y M ) belong to (0, 1) n . 
Moreover, it can be shown that ( ̄x m , ̄y m ) ≤ ( ̄x M , ̄y M ) (for other- 
wise, a comparison argument would violate the monotonicity of 
the system). The key step is to show that ( ̄x m , ̄y m ) = ( ̄x M , ̄y M ) . 
We argue by contradiction, and assume that they are different. 
Then in particular, there holds: 
( ̄x m , ȳ m ) < ( ̄x M , ȳ M ) . 
Let ( ̄x , ̄y ) be an arbitrary steady state in (0, 1) 2 n . The steady 
state equations can be written as in (42) –(43) , and then 
Theorem 6 implies that the stability modulus of A ( ̄x , ̄y ) is zero. 
Thus, both A ( ̄x m , ̄y m ) and A ( ̄x M , ̄y M ) have the same stability 
modulus, namely zero. However, if ( ̄x m , ̄y m ) < ( ̄x M , ̄y m ) , then 
the structure of the matrix A ( x, y ) implies that A ( ̄x m , ̄y m ) < 
A ( ̄x M , ̄y m ) , and then Theorem 6 implies that the stability mod- 
uli of these matrices are different. We have reached a con- 
tradiction, and consequently, there is only one nonzero steady 
state in [0, 1] 2 n . Finally, exploiting the strong monotonicity 
of the system, it follows that all nonzero solutions converge 
to this nonzero steady state by the comparison argument in 
Proposition 2 . 
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