Small-gain theorems for predator-prey systems
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Abstract. We present a global stability result for Lotka-Volterra systems of the
predator-prey type. It turns out that these systems can be interpreted as feedback
interconnections of two monotone control systems possessing particular input-output
properties. The proof is based on a small-gain theorem, adapted to a setting of sys-
tems with multiple equilibrium points. Our main result provides a sufficient condi-
tion to rule out oscillatory behavior which often occurs in predator-prey systems.

1 Introduction

Predator-prey systems have been -and still are- attracting a lot of attention
[6, 11, 8] since the early work of Lotka and Volterra. It is well-known that these
systems may exhibit oscillatory behavior, the best known example being the
classical Lotka-Volterra predator-prey system, see e.g. [6, 7], defined by
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where = and z denote the predator, respectively the prey concentrations and
a12,a921,71 and 1o are positive constants. The phase portrait consists of an
infinite number of periodic solutions centered around an equilibrium point. It
is also well-known that this system is not structurally stable and perturbations
in the coefficients destroy this qualitative picture.

However, structurally stable predator-prey systems with isolated periodic
solutions can be found as well. One example (which is still low-dimensional
but not of the Lotka-Volterra type) is Gause’s model [7] which admits iso-
lated periodic solutions under suitable conditions [8]. Oscillatory behavior is
possible for systems in the class of Lotka-Volterra predator-prey systems, but
then the number of predator and prey species is necessarily greater than two.
To illustrate this we provide an example with 2 predator species and 1 prey
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species. We also assume that the predator species are mutualistic [7], which
is the case for instance if the predator population is stage-structured. (e.g.
consisting of young and adults)

FEzxample

Consider the parameterized (parameter k& > 0) Lotka-Volterra predator-
prey system with 2 predator species 1 and x> and 1 prey species z :

1 -1 1 1 T1 -1
Zo | = diag(z1,z2,2)(| 1 =2 0 o | + 1 1) (1)
z 0 —k-3 z k+3

One could interpret x; as the immature and z» as the mature predators.

For every k > 0 there is a nontrivial equilibrium point at (1,1,1) and
the Routh-Hurwitz criterion reveals that it is locally asymptotically stable if
k € (0,k.) where k. := 57. For k > k. however, the linearization at (1,1,1)
possesses 1 stable (and hence real) eigenvalue and 2 unstable eigenvalues. It
can be shown that for k¥ — k. > 0 but small, the unstable eigenvalues must be
complex conjugate with nontrivial imaginary part. In [4] we have shown that
a supercritical Hopf bifurcation occurs a at the critical value k..

The example suggests that oscillatory behavior is to be expected in the
following Lotka-Volterra predator-prey system:

—diag(z,2)(| .. o+ D @)

where z is k-dimensional and z is (n — k)-dimensional. Throughout this paper
we make the following assumption:

H: For system (2), A and D are Metzler and stable and B,C >0

where the inequalities on the matrices B and C should be interpreted entry-
wise. (A matrix is a Metzler matrix if its off-diagonal entries are non-negative
and stable if it only has eigenvalues with negative real part.) The given ex-
ample satisfies this assumption.

Here we consider whether oscillations or more complicated behavior of
system (2) can be ruled out.

To system (2) one can associate two Input/Output (I/O) systems:

z = diag(2)(Dz + r2 + Cu(t)), w==2 (3)

and
¢ = diag(z)(Az + 1 + Bu(t)), y== (4)
where u(t) is a (component-wise) non-positive and v(t) a (component-wise)

non-negative input signal and w and y are output signals. These I/O-systems
are monotone in the sense of [1] (a precise definition of such systems is given
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later). To each I/O system we associate an I/O quasi-characteristics k., re-
spectively k, (see Definition 2). This is a mapping between the input and
output space capturing the ability of an I/O system to convert a constant
input in a converging output with a limit which is (almost) independent of
initial conditions. The I/O quasi-characteristic assigns to every input its cor-
responding output limit.

Notice that system (2) is a negative feedback interconnection of system (3)
and system (4) by setting:

v=w, u=—y. (5)

This allows the use of results from theories on interconnected control systems
-in particular small-gain theorems- to prove global stability. Our main result
can informally be stated as follows:

Theorem 1. The feedback system (3), (4) and (5) possesses an (almost) glob-
ally attractive equilibrium point provided the discrete-time system

up1 = —(ky 0 ky) (uk)

possesses a globally attractive fixed point.

Our results illustrate a recently developed theory for monotone control
systems [1, 2].

Important note: Due to space constraints we leave out all proofs. They
can be found in an extended version of this paper; see [4].

2 Preliminaries

First we will review a small-gain theorem which applies to a particular class
of I/O systems.
Consider the following I/O system:

.’L’:f(.'lf,U), y:h(.’E) (6)

where z € R” is the state, v € U C R™ the input and y € Y C RP the
output. It is assumed that f and g are smooth (say continuously differentiable)
and that the input signals u(t) : R — U are Lebesgue measurable functions
and locally essentially bounded. Solutions are then defined and unique and
we denote the solution with initial state o € R™ and input signal u(.) by
z(t,xo,u(.)), t € Z where T is the maximal interval of existence. We will
also assume that a forward invariant set X C R is given, meaning that for
all inputs u(.) and for every zo € X it holds that z(t,zo,u(.)) € X, for all
t € ZN R;. Initial conditions shall be restricted to the X in the sequel.

The usual partial order on R", denoted by =, is to be understood
component-wise, i.e. £ < y means that x; < y; for ¢ = 1,...,n. As a subset
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of R* (R™, RP), the state space X (input space U, output space Y) inherits
its partial order. Similarly, the set of input signals then also has a (obvious)
partial order: u(.) < v(.) if u(t) < v(¢t) for almost all ¢ > 0. Next we define
the concept of a monotone I/O system.

Definition 1. The I/O system (6) is monotone if the following conditions
hold:

1 222, u(.) 2v() = z(t,z,u() S x(t,z,v()), VEE (LiNT)NRy. (7)

and
T, X2 = h(xl) < h(flfz) (8)

A key role in our main result is played by the following concept.

Definition 2. Assume that X has positive measure. System (6) has an In-
put/State (1/S) quasi-characteristic k, : U — X if for every constant input
u € U (and using the same notation for the corresponding u(.)), there is a
zero-measure set B, such that:

t_l)iinoom(t,wo,u) = kfc(u)a va €X \ Bu (9)

If system (6) possesses an 1/S quasi-characteristic k, then it also possesses an
Input/Output (I/0) quasi-characteristic ky : U — 'Y defined as ky := ho k.

The following result can be found in [2]. A system possesses an almost glob-
ally attractive equilibrium point if it has an equilibrium point that attracts all
solutions not initiated in a set of measure zero. If in addition, this equilibrium
point is stable, we call it almost globally asymptotically stable.

Theorem 2. Consider two I/0 systems:

&1 = fi(z1,u1), 1 = ha(21) (10)
&y = fa(z2,u2), Y2 = ho(z2) (11)
where x; € X; C R%, u; € U; C R™ and y; € Y; C R for i = 1,2.
Assume that Yy = Us and Yo = —U; and that these systems are connected via

a negative feedback loop:
U2 = Y1, U1 = —Y2. (12)

Suppose that:

1. Systems (10) and (11) are monotone I/O systems.

2. Systems (10) and (11) have continuous I/S quasi-characteristics k,, and
ks, respectively (and also I/O quasi-characteristics ky, and ky, ).

3. The forward solutions of the full system (10) — (12) are bounded.
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If the following discrete-time system, defined on Uy :

U1 = —(ky, © ky, ) (ur) (13)

possesses a globally attractive fized point @ € Uy, then the full system has an
almost globally attractive equilibrium point (Z1,T2) € X1 X X2 and is such
that (Z1,%2) = (Ko, (4), (kay © ky, ) (1))

This result is called a small-gain theorem and the last condition will be referred
to as a small-gain condition.

Next we specialize to (autonomous) Lotka-Volterra systems and provide a
boundedness and a stability result.

Consider the classical Lotka-Volterra system:

z = diag(z)(Az + 1) (14)

where z € R* and r € R". It is well-known that R is a forward invariant set
for (14) and thus we always assume that initial conditions are restricted to RY .
Recall that a Lotka-Volterra system is uniformly bounded [7] if there exists
a compact, absorbing set K C R? , i.e. for all 29 € R}, there is a T'(zg) > 0
such that z(t,z0) € K for all t > T'(xg). Below we use the notation int(R? )
for the interior points of R .

Lemma 1. (Ezercise 15.2.7, p.188 in [7]) System (14) is uniformly bounded
if and only if

Jc € int(R} ) : —Ac € int(RY). (15)
and every principal sub-matrix of A has the same property.

We will soon specialize to Lotka-Volterra systems with a Metzler interac-
tion matrix A. First we recall some facts about the stability of these matrices
[7] which are based on the Perron-Frobenius Theorem [9, 7].

Lemma 2. (Theorem 15.1.1, p.181 in [7]) A Metzler matriz is stable if and
only if it is diagonally dominant, i.e.

3d € int(RY ) : —Ad € int(R?). (16)

If A is a stable Metzler matriz then (16) holds for every principal sub-matriz
of A as well, implying that every principal sub-matriz of A is stable and thus
that system (14) is uniformly bounded.

The following result is an immediate application of results in [10, 7]. The
support set of z € R? is defined as supp(z) := {y € R} | y; > 0 if z; > 0}.

Lemma 3. (Theorem 15.3.1, p.191 in [7]) If A is a stable Metzler matriz, then
system (14) possesses a unique equilibrium point T which is globally asymp-
totically stable with respect to initial conditions in its support set supp(Z).
Suppose that z¢ is an equilibrium point of (14). Then z¢ is globally asymptot-
ically stable with respect to initial conditions in supp(x®) (and hence x¢ = T)
if and only if the following condition is satisfied:

Az +71 <0 (17)
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The previous results allow us to state a boundedness result for system (2).

Lemma 4. The solutions of system (2) are uniformly bounded provided H
holds.

Now we consider Lotka-Volterra systems with inputs:
z = diag(z)(Az + r + Bu) (18)

where z € R”, u € U is the input. We assume that U = R} or U = —R7". The
input signals u(.) : R — U are Lebesgue measurable and locally essentially
bounded functions. It can be shown that R? is forward invariant, see [4] and
therefore we restrict initial conditions to R} .

Lemma 5. If A is a stable Metzler matriz, then system (18) possesses a con-
tinuous I/S quasi-characteristic ky : U — R} .

Finally, we consider a scalar discrete-time system:

Tpt1 = 9(@k) (19)
where g : Ry — R, is some given, possibly non-smooth map.

Lemma 6. Suppose that T is a fized point of system (19) in Ry . If there exists
an a € [0, 1) such that for all z € Ry with x # Z:

lg(z) — 2| < ale - 2| (20)

then T is globally asymptotically stable.

3 Main results

We return to the study of system (2) or equivalently, (3) — (5) and summarize
some of its properties assuming H holds.

1. Following [1], the I/O systems (3) and (4) are monotone.

2. The systems (3), (4) have continuous I/S quasi-characteristics k., respec-
tively k, (and I/O quasi-characteristics k,, = k., respectively k, = k;) by
lemma 5.

3. By lemma 4 the solutions of system (2) are uniformly bounded.

Next we state and prove the main result of this paper.

Theorem 3. If H holds, then system (2) possesses an almost globally attrac-
tive equilibrium point (Z,Z) € R}, provided that the discrete-time system

uktr = —(ky © k) (ur) (21)

which is defined on —Ri, possesses a globally attractive fized point u. In that
case (2,7) = (kz(u), (ks © kuw) ().
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In general it is hard to determine whether the discrete-time system (21)
has a globally attractive fixed point, but easier under the following condition:

R: Rank (B) = Rank (C) = 1.
The biological interpretation is that to a prey species it is irrelevant by which
predator its individuals are eaten and, there is no prey-selection by the preda-
tor species.

If H and R hold, one can find nonzero vectors b,y € ]R’jr and ¢, f € ]RSf_k)
with B = b3T and C = c¢y” and such that system (2) simplifies to:

3 = diag(2)(Dz + 1o + cu), w= "2 (22)
& = diag(z)(Az +71 + ), y=1"z (23)
v=w, u=—Y (24)

where u € —Ry and v € Ry. Then another application of theorem 2 yields:

Corollary 1. If H and R hold, then system (22) — (24), possesses an almost
globally attractive equilibrium point (Z,7) € R%, if the scalar discrete-time
system

whtt = —(ky © ko) (i) (25)
which is defined on =R, has a globally attractive fized point G. In this event,
(2,7) = (k=(), (kz 0 BTk:)(7@)).

Ezxample (continued)

Defining b = (1 0)7, 8 =1, ¢ = k and v = (0 1)7, system (1) can be
re-written in the form (22)-(24). The characterization (17) in lemma 3 allows
to compute the I/O quasi-characteristics k., and k,. Then the transformation
U, = —uy, transforms system (25) to:
kY~ k ~ 3
-3 1+ 3) f 0,1+ =
i = (1 3)u~k-i-(3+ 3) for @y, € [0, 1 + 5] (26)

5 for aj > %

It is easy to verify that system (26) has a fixed point @ in the interval (0, 1+
2). If we choose a > 0 as follows::
k

a=q <1 (27)
the conditions of lemma 6 are satisfied. Note that condition (27) is close to
a necessary condition for global asymptotic stability of 4. (indeed, if % >1
then @ is unstable) By corollary 1, we get that system (1) possesses an almost
globally attractive equilibrium point at (1,1,1)7 under condition (27). The
small-gain condition (27) also yields that the equilibrium point is locally stable
by recalling that (1,1,1)7 is locally asymptotically stable if 0 < k < k, = 57.
It can be shown that the domain of attraction of (1,1,1)7 is the interior of
R3 , see [4]. Simulations performed in [4], suggest that the equilibrium point
remains almost globally asymptotically stable for intermediate k-values (i.e.
k€ (3, 57)).
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