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1 Introduction

We study the mathematical model of a chemostat:

Ṡ = D(S0 − S) −
n

∑

i=1

xifi(S)/γi,

ẋi = xi(fi(S) − D), i = 1, . . . , n, n ≥ 2

where S is the nutrient concentration and xi are the concentrations of the
competing species. The fi are the growth functions of the species and they
are assumed to be monotonically increasing. The yield constants, denoted by
γi, reflect that only a fraction of the nutrient of what the different species
consume, leads to new biomass.

The two natural control parameters are the input nutrient concentration
S0 and the dilution rate D. If these are constant, then at most one species
survives as dictated by the principle of competitive exclusion [11, 5, 17, 16].
But in practice, it often happens that S0 and/or D change over time, and
a well-established literature exists in case these variations are periodic. For
results in the case S0 is periodic, see [15, 10, 14], and for periodic variations
in D see [4, 16]. In both cases coexistence is possible under certain conditions,
contrasting the competitive exclusion principle. The case when S0 is a general
time-dependent function has been studied in [8].

More recently a program of feedback control in the chemostat has been
initiated in [6], where the dilution rate is treated as a feedback variable and
made dependent on the concentrations of the competitors in the following
simple way:

D(x) = ǫ +

n
∑

i=1

kixi,

where ǫ and the ki are non-negative design parameters. The feedback approach
is perhaps most natural in the lab setting. For instance, optical sensors can be
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used to measure turbidity, giving a rough estimate of the concentrations of the
species. An alternative way to measure concentrations is to use GFP’s (Green
Fluorescence Proteins), especially since nowadays GFP’s can emit light of
different color, thus allowing to distinguish between different species. These
concentration estimates can be processed by a computer to (online) calculate
the dilution rate. The result then determines the speed of the pump -the
device that is being actuated- which supplies the reactor with fresh medium.

The introduction of feedback controls can lead to significant changes in
the asymptotic behavior of solutions when compared to the case in which
the control parameters are fixed. These changes have been well documented
for the case n = 2. For example, it was shown in [6] that the system may
be rendered coexistent for suitable choices of the feedback parameters. This
result was generalized in [9] to include chemostat models with non-monotone
growth functions. In both cases, coexistence takes its simplest form: a globally
asymptotically stable positive steady state. For other choices of the feedback
parameters – but still assuming n = 2 – it was shown in [7] that bistability
can occur.

In [7] it was shown that if there are three competitors, no interior solution
is persistent and at least one species disappears.

Therefore we propose to investigate a different type of feedback law, and
see whether or not coexistence is possible when there are more than two
competitors. We will show that this is indeed the case when n = 3, using the
following feedback law:

D(x) = ǫ −
2

∑

n=1

kixi,

for certain values of the non-negative parameters ǫ and ki.
Now, coexistence will take the form of an interior periodic solution, bifur-

cating from a periodic solution on the boundary through what is traditionally
referred to as a transcritical bifurcation of the associated Poincaré map. In
general, it is not difficult to establish the existence of the transcritical bi-
furcation. It is considerably more difficult to determine the stability of the
bifurcating periodic solution because the precise location of the boundary pe-
riodic solution is typically unknown. Therefore, we will resort to numerical
simulations, which suggest that asymptotically stable periodic solutions may
exist.

We will show along the way that in a chemostat with n = 2 species and
controlled by a feedback law of the new type, asymptotically stable periodic
solutions are possible (these will be the boundary periodic solutions mentioned
in the previous paragraph). Perhaps this result is of interest by itself because
this type of dynamical behavior does not occur in chemostats with 2 species
which are controlled by the former feedback law, see [7].

Due to space limitations the proofs of all subsequent results are dropped.
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2 Oscillations in the chemostat

2.1 Two species

Consider the following chemostat model:

Ṡ = D(x, y)(1 − S) − xf(S) − yg(S),

ẋ = x(f(S) − D(x, y)),

ẏ = y(g(S) − D(x, y)), (1)

where
(S, x, y) ∈ T := {(S, x, y) ∈ R

3
+ |S + x + y ≤ 1}.

We assume that the f and g are nonnegative C3 functions on R+ with f(0) =
g(0) = 0 and f ′, g′ > 0. As before we assume the existence of λ ∈ (0, 1) and
D∗ > 0 such that f(λ) = g(λ) = D∗, f ′(λ) < g′(λ) and f(S) > g(S) for S ∈
(0, λ) and f(S) < g(S) for S > λ. Moreover we assume that f ′′(S), g′′(S) <
0 and f ′′′(S), g′′′(S) > 0 for all S ≥ 0.

Notice that all these assumptions hold if f and g are of Michaelis-Menten
form mS/(a + S).

The function D(x, y) is a positive C3 function to be determined later.
The model is well-posed since for V := S + x + y, we have that V̇ =

D(x, y)(1−V ), and so T is forward invariant. Moreover, an obvious reduction
argument suggests the study of the following two-dimensional system:

ẋ = x(f(1 − x − y) − D(x, y))

ẏ = y(g(1 − x − y) − D(x, y)) (2)

where (x, y) ∈ ∆ = {(x, y) ∈ R
2
+ |x + y ≤ 1}.

We will assume that D(x, y) is affine:

D(x, y) = −k1x − k2y + ǫ, (3)

where k1, k2 and ǫ are non-negative parameters to be determined later.
An interior steady state of system (2)-(3) is a solution (x∗, y∗) ∈ int(∆)

of:

x∗ + y∗ = 1 − λ

k1x
∗ + k2y

∗ = ǫ − D∗. (4)

Assuming that an interior steady state (x∗, y∗) exists, we evaluate the trace
and determinant of the variational matrix J(x∗, y∗):

tr(J(x∗, y∗)) = −x∗(f ′(λ) − k1) − y∗(g′(λ) − k2),

det(J(x∗, y∗)) = x∗y∗(f ′(λ) − g′(λ))(k1 − k2)

Notice that if we set k1 = k̄1 and k2 = k̄2 where
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f ′(λ) =: k̄1 < k̄2 := g′(λ) (5)

in the feedback (3), then tr(J(x∗, y∗)) = 0 and det(J(x∗, y∗)) = x∗y∗(k̄2 −
k̄1)

2 > 0, and hence the occurrence of a Hopf bifurcation becomes plausible.
This suggests treating (k1, k2) as a bifurcation parameter, while using ǫ > 0

to guarantee that

1. (x∗, y∗) ∈ int(∆).
2. D(x, y) > 0 in ∆.

Explicitly solving (4) for (x∗, y∗) shows that

(x∗, y∗) =
1

k̄2 − k̄1

(

k̄2(1 − λ) − (ǫ − D∗), (ǫ − D∗) − k̄1(1 − λ)
)

, (6)

and so the first condition is satisfied if

ǫ ∈ (k̄1(1 − λ) + D∗, k̄2(1 − λ) + D∗), (7)

a nonempty interval since k̄1 < k̄2.
The affine function D(x, y) = −k̄1x − k̄2y + ǫ reaches its minimum in ∆

at the point (0, 1), and so the second condition holds if

ǫ > k̄2. (8)

Notice that both constraints (7) and (8) for ǫ are compatible only if

k̄2 < k̄2(1 − λ) + D∗,

or equivalently, k̄2 < D∗/λ. The latter inequality is satisfied: by the mean
value theorem there is some c ∈ (0, λ) such that g′(c) = D∗/λ and since g′ is
decreasing as g′′ < 0, this implies that k̄2 ≡ g′(λ) < g′(c).

Therefore, if we fix an ǫ in the nonempty interval

I :=
(

max(k̄1(1 − λ) + D∗, k̄2), k̄2(1 − λ) + D∗
)

, (9)

then there is some open neighborhood N of (k̄1, k̄2), such that for all
(k1, k2) ∈ N , D(x, y) > 0 in ∆, and system (2)-(3) has an interior steady
state (x∗, y∗) (this is because both D(x, y) and the point (x∗, y∗) depend con-
tinuously on (k1, k2)). Moreover, the interior steady state (x∗, y∗) undergoes a
Hopf bifurcation at the bifurcation value (k̄1, k̄2). To be more precise, a Hopf
bifurcation occurs along any smooth parametric path (k1, k2) = (k1(σ), k2(σ))
such that (k̄1, k̄2) = (k1(0), k2(0)) and x∗k′

1(0) + y∗k′

2(0) 6= 0. The first condi-
tion ensures that the eigenvalues of J(x∗, y∗) are purely imaginary at σ = 0.
The second condition implies that this pair of complex conjugate eigenvalues
of J(x∗, y∗) crosses the imaginary axis transversally. Hence, a Hopf bifurca-
tion occurs at σ = 0. In what follows, we will make use of one particular
parametric path (k1, k2) = (k̄1 + σ, k̄2) where the value of k2 is fixed, and
k1 alone is treated as the bifurcation parameter. Such a path clearly satisfies
the above conditions for the Hopf bifurcation. To determine the nature of the
bifurcation (super- or subcritical), we followed the procedure outlined in [13].

This leads to the following result.
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Theorem 1. Fix ǫ ∈ I, and let N be a (sufficiently small) open neighborhood
of (k̄1, k̄2). Assume that either g′′(λ)− f ′′(λ) ≥ 0 holds, or that f(s) and g(s)
are of Michaelis-Menten type. Fixing k2 = k̄2, a supercritical Hopf bifurcation
occurs at the interior steady state of system (2)-(3) when k1 passes through
k̄1. There exists a δ > 0 such that for all k1 ∈ (k̄1, k̄1 + δ), (2)-(3) has an
asymptotically stable periodic solution having a Floquet multiplier in (0, 1).

Since the set {(S, x, y) ∈ R
3
+ |S+x+y = 1} is forward invariant for (1)-(3),

we immediately have:

Corollary 1. Under the conditions of Theorem 1, system (1)-(3) has an in-
terior steady state in T which undergoes a supercritical Hopf bifurcation when
k1 passes through k̄1. There exists a δ > 0 such that for all k1 ∈ (k̄1, k̄1 + δ),
(1)-(3) has an asymptotically stable periodic solution having two Floquet mul-
tipliers inside the unit circle.

2.2 Three species

Consider the following chemostat model:

Ṡ = D(x, y)(1 − S) − xf(S) − yg(S) − zh(S),

ẋ = x(f(S) − D(x, y)),

ẏ = y(g(S) − D(x, y)),

ż = z(h(S) − D(x, y)), (10)

where

(S, x, y, z) ∈ T := {(S, x, y, z) ∈ R
4
+ |S + x + y + z ≤ 1},

the functions f, g satisfy the assumptions made in the previous subsection and
D(x, y) is given by (3). We will choose the function h : R+ → R+ to be of
Michaelis-Menten form:

h(S) =
mS

a + S
, (11)

where the parameter a > 0 is fixed and m is treated as a bifurcation parameter.
The set T is clearly forward invariant under (10) with D(x, y) given by (3)
and h(S) given by (11). Hence, the system is well-posed. In what follows,

we use the symbol 〈F 〉 := 1/T
∫ T

0
F (t)dt to denote the time average for any

T -periodic function F (t).

Theorem 2. Let the conditions of Corollary 1 hold and denote the asymptoti-
cally stable periodic solution of system (1)-(3) by (1−p1(t)−p2(t), p1(t), p2(t)).
Then for any a > 0, there exists a unique positive number m∗ given by

m∗ =
〈D(p1(t), p2(t))〉
〈

1−p1(t)−p2(t)
a+1−p1(t)−p2(t)

〉 ,
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such that system (10) with D(x, y) given by (3) and h(s) given by (11) has
a periodic solution in int(R4

+) ∩ T , arbitrarily close to the set {(S, x, y, z) ∈
T | z = 0}, for all values of m which are sufficiently close to, and on one side
of (either left or right) m∗.

3 Numerical results

In this section, we illustrate the analytical conclusions presented above with
a numerical example of stable oscillatory coexistence of three species. The
species labeled x, y, and z have the specific growth rates of Michaelis-Menten
type, where

f(S) =
2S

0.5 + S
, g(S) =

3S

1 + S
, h(S) =

mS

0.1 + S
,

where the maximal growth rate m of species z is treated as a bifurcation
parameter.

The growth rates of species x and y have been chosen so that λ = 1/2
with D∗ = f(λ) = g(λ) = 1. Furthermore, we consider the dilution rates of
the form D(x, y) = ǫ − k1x − k̄2y, where k̄2 = g′(λ) = 4/3 is fixed and k1

is used as a bifurcation parameter to induce a Hopf bifurcation in the (x, y)
plane. For our particular choice of functions f and g and the dilution rate
D(x, y), the Hopf bifurcation occurs at the critical value k1 = k̄1 = f ′(λ) = 1.
We chose the values x∗ = y∗ = 1/4 as the (x, y) coordinates of the bifurcating
equilibrium, and set

ǫ = D∗ + x∗k̄1 + y∗k̄2 =
19

12
.

A direct calculation shows that the quantity

x∗Qxx + y∗Qyy = −
367

108

is negative and hence the Hopf bifurcation is supercritical, see [13]. Specifically,
a stable limit cycle in the (x, y) plane exists for all k1 > 1 sufficiently close to
1.

The function D(x, y) is affine in x and y and thus its range in the triangle
∆ is determined by the values at the vertices. For the chosen values of ǫ and
k̄2, we find that

D(0, 0) = ǫ > 0, D(0, 1) = ǫ − k̄2 =
1

4
> 0, D(1, 0) = ǫ − k1,

hence D(x, y) is positive for all (x, y) ∈ ∆ as long as 0 < k1 < ǫ = 19/12.
To compute a stable limit cycle in the (x, y) plane, we chose the value k1 =

1.075 which clearly satisfies 1 < k1 < ǫ. We performed a forward numerical
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integration using Mathematica and computed a numerical orbit starting at
a point close to the interior equilibrium (x∗, y∗). This orbit converged to a
stable limit cycle with estimated period T = 159.86 time units. Along this
limit cycle, we found the numerical values for the following averages:

〈

1 − x(t) − y(t)

1.1 − x(t) − y(t)

〉

= 0.810, 〈D(x(t), y(t))〉 = 0.947,

and found the bifurcation value m∗ = 1.169 at which the transcritical bifurca-
tion of limit cycles (see Theorem 2) occurs. For values m = 1.169+0.001i, i =
1, ..., 8, we used forward numerical integration with initial condition (x0, y0, z0)
where (x0, y0) were chosen on the limit cycle in the (x, y) plane and z0 = 0.001
was small. The results of these forward integrations are shown in Figure 1.
These results suggest the existence of a family of stable periodic solutions that
exist for m > m∗.
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Fig. 1. Numerically computed stable periodic solutions with all three components
(x, y, z) strictly positive. These periodic orbits are numbered according to the value
of i = 1, ..., 8 where m = 1.169 + 0.001i.
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