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Abstract

We consider stabilization of equilibrium points of positive linear systems which are in the interior of the 1rst orthant.
The existence of an interior equilibrium point implies that the system matrix does not possess eigenvalues in the open
right half plane. This allows to transform the problem to the stabilization problem of compartmental systems, which is
known and for which a solution has been proposed already. We provide necessary and su5cient conditions to solve the
stabilization problem by means of a5ne state feedback. A class of stabilizing feedbacks is given explicitly. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Positive linear systems are linear systems that leave the 1rst orthant of Rn invariant for future times. These
systems have been studied in di9erent application 1elds ranging from biology and chemistry, over ecology to
economy and sociology, see [4] or [3] for particular examples.

In this paper we deal with the stabilization problem of equilibrium points in the interior of the 1rst orthant
of Rn+. It turns out that the existence of an equilibrium point implies that the system matrix does not possess
eigenvalues in the open right half plane. This implies that we have a nontrivial stabilization problem only if
the largest eigenvalue of the system matrix lies on the imaginary axis. This eigenvalue is real and therefore
equal to zero, by the Perron–Frobenius Theorem (see e.g. [2]) adapted to continuous-time systems (as outlined
in e.g. [4]).

The next step is then to transform parts of the system to so-called linear compartmental systems. Linear
compartmental systems constitute a subclass of positive linear systems, see [3] and [9]. Then results on
stabilization of linear compartmental systems are invoked to solve the original stabilization problem. A class
of stabilizing feedbacks is provided explicitly.

This paper is organized as follows.
Some de1nitions and known results are reviewed in Section 2. In Section 3 we show that existence of

equilibrium points puts restrictions on the spectrum of the system matrix. We show in Section 4 that, to
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solve the stabilization problem, the constraint on the input should be relaxed. Finally necessary and su5cient
conditions are given in Section 5 and a class of stabilizing feedbacks is provided. We also give examples
illustrating the main results. Finally we link our results to results on positive controllability of linear systems
in Section 6.

2. Preliminaries

Let R and C be the sets of real and complex numbers, respectively, and Rn the set of n-tuples for which
all components belong to R. R+ := [0;+∞) (R+

0 := (0;+∞)), while Rn+ (int(Rn+)) is the set of n-tuples for
which all components belong to R+ (R+

0 ). With R− := (−∞; 0] and R−
0 := (−∞; 0), Rn− and int(Rn−) have

the obvious meaning.
The set of eigenvalues of a real n× n-matrix A is denoted as �(A). A real n× n-matrix A is singular if and

only if 0∈ �(A). For z ∈C, Re(z) denotes the real part of z. The open right half plane of the complex plane is
denoted as ORHP := {z ∈C|Re(z)¿ 0} and the open left half plane is denoted as OLHP := {z ∈C|Re(z)¡ 0}.
A real n× n-matrix A is called Hurwitz if Re(�)¡ 0 for all �∈ �(A).

A real n× n-matrix A is called Metzler (see e.g. [4], p. 204) if aij ∈R+ for all i �= j.
A real n× n-matrix A is compartmental if the following two conditions are satis1ed:

1. A is a Metzler matrix.
2.
∑n

i=1 aij6 0, for all j=1; : : : ; n.

The second condition is often called the (column) diagonal dominance condition. Notice that it follows from
Gerschgorin’s Theorem (see e.g. [1]) that if A is a compartmental matrix, then �(A) ∩ ORHP= ∅.

A real n× n matrix A=(aij) is reducible if the index set N := {1; 2; : : : ; n} can be split into two sets J and
K with J ∪ K =N and J ∩ K = ∅ such that ajk =0 for all j∈ J and k ∈K .

Equivalently, A is reducible if there exists a permutation matrix P such that

PAPT =
(
B 0
C D

)

where B and D are square matrices.
Reducibility can also be characterized as follows. An m-dimensional coordinate subspace of Rn with

m∈{1; 2; : : : ; n − 1} is a subspace of Rn spanned by m distinct vectors belonging to the standard basis
{e1; e2; : : : ; en} of Rn, where ei ∈Rn is such that the i-th entry equals 1 and the other entries are 0. A matrix A
is reducible if its corresponding linear operator with respect to the standard basis of Rn maps an m-dimensional
coordinate subspace into itself.

When A is not reducible, it is called irreducible.
Singular irreducible compartmental matrices are characterized as follows.

Proposition 1. When A is a real n × n irreducible compartmental matrix; then A is singular if and only if∑n
j=1 aij =0 for all i=1; : : : ; n.

Proposition 1 is adapted from Theorem III in [8], see also [9].
We consider the class of linear systems with scalar inputs

ẋ=Ax + bu (1)

where A is a real n× n-matrix, x∈Rn, b∈Rn and u∈R. We assume that the input signals u(t) are such that
uniqueness of solutions of system (1) is guaranteed. The forward solution at time t of system (1) with initial
condition x0 and input u(�), �∈ [0; t], is denoted as x(t; x0;U[0; t]), where U[0; t] := {(�; u(�))|�∈ [0; t]}
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De�nition 1. System (1) is positive if and only if

∀x0 ∈Rn+;∀U[0; t] ⊂ [0; t]× R+: x(t; x0;U[0; t])∈Rn+;∀t ∈R+:

The following result can be found in the literature, see e.g. [4].

Proposition 2. System (2) is positive if and only if A is a Metzler matrix and b∈Rn+.

If A is a compartmental matrix (and therefore also a Metzler matrix) and if b∈Rn+, then the positive system
(1) is called compartmental. Notice that compartmental systems without input (u=0) possess a dissipation
property since the total mass, given by the sum over all components of the state vector x, is not increasing
along forward solutions of the system. Indeed, for M :=

∑n
i=1 xi holds that Ṁ6 0.

3. Equilibria and stability for positive linear systems

In this section it is shown that there is a link between the existence of an interior equilibrium point of a
positive linear system and the stability properties of this equilibrium point.

The following hypotheses are introduced:

H1 A is Metzler, b∈Rn+.
H2 There exists an Ox∈ int(Rn+) and a Ou∈R+ such that A Ox + b Ou=0.

By Proposition 2 hypothesis H1 implies that system (1) is positive and hypothesis H2 means that system
(1) admits an equilibrium point Ox∈ int(Rn+) for some 1xed and constant input Ou.

The following proposition is a slight modi1cation of a theorem in [4].

Proposition 3. If system (1) satis<es H1 and H2; then �(A) ∩ ORHP= ∅.

Proof. Suppose that A has an eigenvalue in ORHP. Since A is a Metzler matrix, it follows from the Perron–
Frobenius Theorem adapted to continuous-time systems (see e.g. [4]) that A possesses a real eigenvalue �0
such that:

∀�∈ �(A)\{�0}: Re(�)¡�0: (2)

Since there exists an eigenvalue of A in ORHP, we obtain that �0¿ 0. Moreover, an (left) eigenvector fT

associated with �0, belongs to Rn+\{0}: fTA= �0fT. Since A Ox+b Ou=0 by H2, we obtain that �0fT Ox+fTb Ou=0.
The 1rst term in the left hand side of this equation is strictly positive, while the second term is nonnegative.
The sum of these terms cannot be zero, so we have reached a contradiction.

Proposition 3 shows that a positive system cannot posses equilibrium points in int(Rn+) if A has an eigenvalue
in ORHP. If there exists an equilibrium point Ox in int(Rn+) for some Ou∈R+, then A is Hurwitz or 0 is an
eigenvalue of A and the other eigenvalues of A have a real part which is smaller than 0. If A is Hurwitz
then it follows from linear systems theory that Ox is globally asymptotically stable (GAS) (even with respect
to initial conditions in Rn) with u(t)= Ou; ∀t ∈R+.

If 0 is an eigenvalue of A and the other eigenvalues of A have a real part which is smaller than 0, then Ox
is not GAS with u(t)= Ou;∀t ∈R+. Summarizing, we obtain

Corollary 1. If system (1) satis<es H1 and H2 then Ox is an equilibrium point of system (1) with u(t)= Ou;
∀t ∈R+. If 0 �∈ �(A); then Re(�)¡ 0; ∀�∈ �(A) and Ox is GAS with respect to initial conditions in Rn+. If
0∈ �(A); then Re(�)¡ 0; ∀�∈ �(A)\{0} but Ox is not GAS with respect to initial conditions in Rn+.
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4. Stabilization by means of positive feedback is not possible

The discussion at the end of the previous section motivates the introduction of the following hypothesis:

H3 0∈ �(A) and for all �∈ �(A)\{0} holds that Re(�)¡ 0.

Notice that if H3 holds it is possible that 0 is an eigenvalue with algebraic multiplicity higher than 1. We
shall return to this matter below in Remark 5.

We assume that H1, H2 and H3 hold. An extra control vector 1eld is added to the right-hand side of (1):

ẋ=Ax + b Ou+ gv (3)

where g∈Rn and v∈R. Notice that g is allowed to be equal to b. The role of the old control vector 1eld b
is to obtain a nontrivial equilibrium point (see H2). The role of the new control vector 1eld g will become
clear below when we state a stabilization problem. We stress that in the remainder of the paper Ou is a 1xed
scalar, while v is a scalar input.

The extended system (3) is positive (assuming that v∈R+) if and only if g∈Rn+. We assume in addition
that g �=0:

H4 g∈Rn+\{0}.
The following stabilization problem naturally arises:

Stabilization problem 1. If system (3) satis1es H1, H2, H3 and H4, does there exist an appropriate continuous
state feedback v(x) :Rn+ → R+ such that Ox is GAS for the resulting closed loop system when restricting initial
conditions to Rn+?

If a continuous mapping v(x) :Rn+ → R+ solves the above stabilization problem, then v(x) is called a
continuous stabilizing positive feedback.

We have the following Proposition.

Proposition 4. If system (3) satis<es H1; H2; H3 and H4; then there is no continuous stabilizing positive
feedback.

Proof. By Brockett’s necessary condition for stabilization (see [7], p. 182 and [5]), the mapping F :Rn+×R+ →
R de1ned by F(x; v) :=Ax + b Ou + gv should be onto a neighborhood of zero in some neighborhood of
(x; v)= ( Ox; 0).

Since 0 is an eigenvalue of A, dim(Im A)¡n. Since v∈R+, this implies that the mapping F cannot be
onto a neighborhood of zero in an arbitrary neighborhood of (x; v)= ( Ox; 0).

Proposition 4 motivates one to weaken the constraint on the sign of the feedback v(x). Instead of a
nonnegative feedback v(x), one could look for a feedback that takes both positive and negative values on Rn+.
On the other hand, the resulting closed loop system should remain a positive system. The search for such a
feedback is the issue of the next section.

Remark 1. We formulate two more reasons to allow feedbacks for stabilization which take both positive and
negative values:

1. The positivity constraint for the input is not natural in many applications. Indeed, examples of positive linear
systems are found in e.g. biology, where the state components typically are concentrations of interacting
species. A nonnegative input in this context means that all species can only be fed and can never be killed.
It is clear that often this constraint is not realistic.

2. We want to stress that De1nition 1 of a positive linear system is only meaningful when dealing with open
loop control, i.e. when no information on the state is available when one applies an input to the system.
This situation di9ers from a closed loop control context, where knowledge on the state is available.
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It is clear that if the initial state of the system belongs to int(Rn+), then by continuity of solutions the
forward solution will remain inside int(Rn+) for small t, irrespective of the sign of the input during this
time interval. Only when the initial state belongs to the boundary of Rn+ the sign of the input can destroy
positivity of the system. In a closed loop-scheme, one possesses information on the present state and
therefore one can anticipate loss of positivity of the system. Inputs are therefore sometimes allowed to take
negative values in this case. On the contrary, in an open loop scheme one does not possess information on
the state. This lack of knowledge forces the input to be nonnegative to guarantee that the system is positive.

5. Stabilization by means of a&ne sign-inde�nite feedback

Motivated by the discussion at the end of the preceding section we formulate a new stabilization problem:

Stabilization problem 2. If system (3) satis1es H1, H2, H3 and H4, does there exist an appropriate continuous
state feedback v(x) :Rn+ → R such that:

1. The resulting closed loop system is a positive system.
2. Ox is GAS for the resulting closed loop system when restricting initial conditions to Rn+.

If a continuous mapping v(x) :Rn+ → R solves Stabilization problem 2, then v(x) is called a continuous
stabilizing feedback.

We will give necessary and su5cient conditions such that Stabilization problem 2 is solved by an appropriate
a>ne feedback. Therefore we restrict the admissible class of feedback mappings to a class of a5ne mappings.

H5 v(x)= kT(x − Ox)

With H5 the resulting closed loop system is

ẋ=(A+ gkT)x + (b Ou− gkT Ox) (4)

It is clear that with hypothesis H5, Stabilization problem 2 reduces to the following problem:

A&ne stabilization problem. If system (3) satis1es H1, H2, H3 and H4 and if H5 holds, does there exist
some k ∈Rn such that:

1. (A+ gkT) is Metzler and (b Ou− gkT Ox)∈Rn+.
2. (A+ gkT) is Hurwitz.

Next we show that, in order to solve the A5ne stabilization problem, it su5ces to consider feedback gains
kT with nonpositive components. This result is based on Problem 6:9:1 in [4]. Below, �0(A) is the dominating
Perron–Frobenius eigenvalue of the Metzler-matrix A.

Lemma 1. If A is a Metzler matrix and if C is a real n×n-matrix with nonnegative entries such that A−C
is also a Metzler matrix; then �0(A− C)6 �0(A).

Proposition 5. If system (3) satis<es H1; H2; H3; H4; if H5 holds and if there exists an a>ne stabilizing
feedback kT(x − Ox) for some k ∈Rn; then there exists an a>ne stabilizing feedback k̃T(x − Ox) for some
k̃ ∈Rn−.

Proof. Given k ∈Rn, the vector k̃ ∈Rn− is de1ned as follows

k̃ i =min(0; ki) for i∈N (5)

and thus k̃ i6 ki and k̃ i6 0 for i∈N . This implies that for all i �= j

aij + gik̃j =

{
aij + gikj for kj6 0;

aij for kj ¿ 0:
(6)
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Since both A and A + gkT are Metzler matrices, (5) implies that A + gk̃T is also a Metzler matrix. Also, if
(b Ou − gkT Ox)∈Rn+, then it is clear that (b Ou − gk̃T Ox)∈Rn+. On the other hand it follows from Lemma 1 that
�0(A+ gk̃T)6 �0(A+ gkT)¡ 0.

In conclusion, A+gk̃T is Metzler and (b Ou−gk̃T Ox)∈Rn+, A+gk̃T is Hurwitz and thus the feedback k̃(x− Ox)
solves the A5ne stabilization problem.

Proposition 5 implies that the a5ne stabilization problem is equivalent to the following problem.

Second a&ne stabilization problem. If system (3) satis1es H1, H2, H3 and H4 and if H5 holds, does there
exist some kT ∈Rn− such that (A+ gkT) is Metzler and Hurwitz.

Finally necessary and su5cient conditions on the pair (A; g) will be given such that the second a5ne
stabilization problem can be solved. Two cases are distinguished: A is irreducible and A is reducible.

5.1. A is irreducible

In this subsection it is shown that if A is irreducible, then the a5ne stabilization problem can be transformed
to the a5ne stabilization problem for compartmental systems, a problem which has already been dealt with
in [9].

In the next proposition it is shown that every positive linear system with an irreducible system matrix can
be transformed in a new positive linear system with an irreducible compartmental system matrix.

Proposition 6. If system (3) satis<es H1; if �(A) ∩ ORHP= ∅ and if A is irreducible then there exists a
diagonal state transformation

z=Tx := diag(f)x (7)

for some f∈ int(Rn+); such that system (3) is transformed to

ż=TAT−1z + Tb Ou+ Tgv (8)

where TAT−1 is an irreducible compartmental matrix and Tb∈Rn+. If in addition H4 holds; then Tg∈Rn+.

Proof. By the Perron–Frobenius Theorem adapted to continuous-time systems (as outlined in e.g. [4]), there
exists a vector f∈ int(Rn+) and an associated dominating eigenvalue �0 ∈R− such that

fTA= �0fT (9)

where the right-hand side of Eq. (9) is a vector for which all components belong to R−. Eq. (9) can be
rewritten as

(1; 1; : : : ; 1)diag(f)A= �0fT (10)

Denoting T =diag(f) and multiplying (10) with T−1 on the right-hand side, we obtain

(1; 1; : : : ; 1)TAT−1 = �0(1; 1; : : : ; 1) (11)

where the right-hand side of Eq. (11) is also a vector for which all components belong to R−. Clearly the
state transformation z=Tx meets the required speci1cations: TAT−1 is an irreducible compartmental matrix
and Tb∈Rn+. If in addition H4 holds, then Tg∈Rn+. Notice that this implies in particular that system (8) is
also a positive system.

In [9] necessary and su5cient conditions are given for a pair (Ã; g̃) where Ã is a singular, compartmental
and irreducible matrix and g̃∈Rn+, such that there exists a vector k̃ ∈Rn− such that Ã + g̃k̃T is Metzler and
Hurwitz. For completeness these conditions are included below. The main tool to prove the following result
is Proposition 1.
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Proposition 7. Given a pair (Ã; g̃) where Ã is a singular; compartmental and irreducible matrix and g̃∈Rn+;
then there exists a k̃ ∈Rn− such that Ã+ g̃k̃T is compartmental and Hurwitz if and only if

g̃ �=0 and there exists at least one i∈N such that ∀j �= i with g̃j �=0; also ãji �=0: (12)

This result can be rephrased as follows.

Corollary 2. Suppose that A is an irreducible and compartmental matrix. The Second a>ne stabilization
problem can be solved if and only if condition (12) holds for the pair (A; g).

Remark 2. In linear systems theory a pair (Ã; g̃) is called stabilizable if and only if there exists a k̃T ∈Rn
such that Ã+ g̃k̃T is Hurwitz. It is known that (Ã; g̃) is stabilizable if and only if

rank[�I − Ã g̃] = n holds for all �∈ �(Ã) ∩ {z ∈C|Re(z)¿ 0}: (13)

Suppose that Ã is a singular, compartmental and irreducible matrix and that g̃∈Rn+. In this case, one could ask
for the relation between condition (12) and condition (13). As we show next these conditions are equivalent,
implying that classical stabilizability for a pair (Ã; g̃) where Ã is singular, compartmental and irreducible, can
be achieved by means of a feedback gain k̃T ∈Rn− and such that Ã+ g̃k̃T is compartmental.

Proposition 8. Suppose that Ã is a singular compartmental and irreducible matrix and that g̃∈Rn+. Then
the pair (Ã; g̃) is stabilizable if and only if (12) holds.

Proof. Since the pair (Ã; g̃) is stabilizable if and only if (13) holds, it su5ces to prove that (13) and (12)
are equivalent.

1. Condition (12) implies condition (13).
This follows from linear systems theory. Indeed, suppose that condition (13) does not hold. Since Ã is
a singular, compartmental and irreducible matrix we know that the set �(Ã) ∩ {z ∈C|Re(z)¿ 0} equals
singleton {0} and thus this rank-condition is not satis1ed for �=0. Then we obtain from linear systems
theory that regardless of the choice of the vector k̃, 0 is eigenvalue of the matrix Ã+ g̃k̃T. But then it is
also impossible to 1nd some k̃T ∈Rn− such that Ã+ g̃k̃T is Hurwitz, and thus by Proposition 7, condition
(12) does not hold.

2. Condition (13) implies condition (12).
Suppose that condition (12) does not hold. If g̃=0, then condition (13) cannot hold for �=0 because Ã
is singular. Thus we assume that g̃ �=0 and that

for all i∈N there exists a j∈N with g̃j �=0 and ãji =0: (14)

On one hand it is obvious that since Ã is singular, the dimension of Im(Ã) is less than n. On the other
hand it is obvious that the dimension of Im(Ã) is at least equal to (n− 1) (Indeed, if we suppose that this
dimension is less than (n− 1), then it is not possible to satisfy (13) for �=0). Therefore the dimension
of Im(Ã) equals (n− 1), which implies that we can choose (n− 1) linearly independent columns of Ã that
span Im(Ã) (Recall that by de1nition Im(Ã) is the linear space which is spanned by the columns of A).
Then we obtain by (14) that Im(Ã) is a subset of the set {x∈Rn|xi =0 for at least one i∈N}. But this
contradicts with the fact that Ã is irreducible. Indeed, the linear operator corresponding to an irreducible
matrix and with respect to the standard basis of Rn, does not map an m-dimensional coordinate subspace
into itself for some m∈{1; 2; : : : ; n− 1}.

Finally we would like to point out that there exists an interpretation of condition (12) in terms of particular
graphs associated with the pair (Ã; g̃), see [9] for details.
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Remark 3. Suppose that the pair (Ã; g̃) satis1es the conditions of Proposition 7 and that we would like to
1nd a vector k̃T ∈Rn− such that Ã+ g̃k̃T is compartmental and Hurwitz. Then we can construct such a k̃T as
follows:

We denote by I∗ ⊂ N the set of indices i for which (12) holds and de1ne the sets Z1, Z2 ⊂ I∗ as follows:

1. Z1 := {i∈ I∗|g̃j �=0 for some j �= i}.
2. Z2 := {i∈ I∗|g̃j =0;∀j �= i and g̃i �=0}.

Notice that since (12) holds, I∗ �= ∅ and I∗ =Z1 ∪ Z2.
Then for every k̃, satisfying the following constraints, see [9]:

max
j �=i; g̃j¿0

−ãji
g̃j

¡



k̃ i6 0 for i∈Z1;

k̃ i6 0 for i∈Z2;

k̃ i =0 for i∈N \(Z1 ∪ Z2);

(15)

and such that at least one k̃ i �=0, the matrix Ã+ g̃k̃T is compartmental and Hurwitz.

Returning to the Second a5ne stabilization problem, we obtain

Theorem 1. Suppose that H1; H2; H3; H4 and H5 hold. When A is an irreducible matrix; the Second a>ne
stabilization problem can be solved if and only if

g �=0 and there exists at least one i∈N such that ∀j �= i with gj �=0; also aji �=0: (16)

Proof. Necessity. If condition (16) is not satis1ed, then condition (12) is also not satis1ed for the pair (Ã; g̃)
where Ã :=TAT−1 and g̃ :=Tg and T is the diagonal matrix with positive diagonal elements, de1ned in
Proposition 6. Then it follows from Proposition 7 that there does not exist a k̃T ∈Rn− such that Ã + g̃k̃T is
compartmental and Hurwitz. This implies that the Second a5ne stabilization problem cannot be solved either.
Su>ciency. If condition (16) is satis1ed, then condition (12) is also satis1ed for the pair (Ã; g̃) where

Ã :=TAT−1 and g̃ :=Tg and T is the diagonal matrix with positive diagonal elements, de1ned in Proposition 6
(Notice that g̃ �=0 because H4 holds and since T has positive diagonal elements). Then it follows from
Proposition 7 that there exists a k̃T ∈Rn− such that Ã+ g̃k̃T is compartmental and Hurwitz (k̃T can be chosen
as in (15)). But then also (k̃TT )∈Rn− and A + g(k̃TT ) is Metzler and Hurwitz, and thus the Second a5ne
stabilization problem can be solved.

Example. Consider the following pair (A; g):

A=

(
−1 1

1 −1

)
and g=

(
1

1

)
(17)

and suppose that we consider the equilibrium point Ox=(1 1)T with Ou=0. The pair (A; g) satis1es (16) and
thus the Second a5ne stabilization problem can be solved. All k ∈Rn+ such that k1 ∈ [ − 1; 0], k2 ∈ [ − 1; 0]
and such that at least one of the components of k is not equal to zero, solves the second a5ne stabilization
problem.

5.2. A is reducible

In this subsection we deal with the Second a5ne stabilization problem in case A is an reducible matrix.
By de1nition a reducible matrix A can be brought in the following form by means of a suitable permutation:(

B 0

C D

)
(18)
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where B and D are square matrices. Now if B is a reducible matrix, then it can also be brought in a form
like (18) and then A takes the following form


B1 0 0

B2 B3 0

C1 C2 D




where B1 and B3 are square matrices.
Continuing this process, the reducible matrix A can be brought in the following form by means of a linear

transformation y=P1x for some suitable permutation matrix P1.

Ared :=P1APT
1 =



A11 0 : : : 0
A21 A22 : : : 0
...

...
. . .

...
Ak1 Ak2 : : : Akk




for some k ∈{2; : : : ; n} where

1. The blocks All, l∈{1; : : : ; k}, on the diagonal of Ared are square irreducible Metzler matrices. In addition,
�(All) ∩ ORHP= ∅ for all l∈{1; : : : ; k} by H3 and since �(A)=

⋃n
l=1 �(All).

2. The matrices Aqr with q �= r have nonnegative entries.

By Proposition 6 there exists a diagonal matrix

T =



T11 0 : : : 0
0 T22 : : : 0
...

...
. . .

...
0 0 : : : Tkk


 ; (19)

where for all l∈{1; : : : ; k}, Tll is a diagonal matrix with strictly positive diagonal elements such that the
linear transformation z=Ty puts Ared in the following form:

A′ :=TAredT−1 =



A′
11 0 : : : 0

A′
21 A′

22 : : : 0
...

...
. . .

...
A′
k1 A′

k2 : : : A′
kk


 ; (20)

where

1. For all l∈{1; : : : ; k}, A′
ll :=TllAllT−1

ll is a square irreducible compartmental matrix.
2. A′

qr for q �= r are matrices with nonnegative entries.

Since 0∈ �(A′) by H3, there are a number of blocks A′
jj on the diagonal of A′ such that 0∈ �(A′

jj). The sum
of the entries of every column of these singular irreducible blocks equals zero by Proposition 1. Suppose that
there are m(6 k) blocks with this property. The linear transformation z=TP1x that transformed matrix A into
the form (20) puts the vector g in the following form

g′ :=TP1g=



g′1
...
g′k


 ; (21)

where the entries of this vector are nonnegative by the nature of the linear transformation TP1x.
Summarizing, we obtain the following
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Proposition 9. If system (3) satis<es H1; H3 and H4 and if A is reducible and singular; then there exists a
state transformation

z=TP1x (22)

for some suitable permutation matrix P1 and some diagonal matrix T with strictly positive diagonal elements;
such that system (3) is transformed to the following positive system:

ż=A′z + TP1b Ou+ g′v; (23)

where A′ and g′ have form (20) and (21); respectively.

Next we provide two necessary conditions to solve the Second a5ne stabilization problem.

Proposition 10. The Second a>ne stabilization problem can be solved only if m=1; where m is the number
of singular blocks on the diagonal of A′.

Proof. Suppose that m¿ 1. Then there exist at least two blocks A′
rr en A′

ss on the diagonal of A′ which are
singular, compartmental and irreducible. Assume that r ¡ s. From the existence of an a5ne stabilizing feedback
and singularity of A′

rr and A′
ss follows that there exist nonpositive k ′r �=0 and k ′s �=0 such that A′

rr + g′rk
′T
r and

A′
ss + g′sk

′T
s are Metzler and Hurwitz. This implies that the nonnegative vectors g′r and g′s are di9erent from

zero and thus that the matrix g′rk
′T
s is nonpositive and di9erent from zero (Here we have used the fact that

the input v is scalar). But then A′ + g′k ′T is not a Metzler-matrix since its (r; s)-block equals g′rk
′T
s .

It follows from Proposition 10 that for the Second a5ne stabilization problem to be solvable, A′ should
contain only one singular block matrix on its diagonal. Thus we obtain that A′ has the following form

A′ =




A′
11 : : : 0 : : : 0

A′
21

. . .
... : : : 0

A′
31 : : : 0 : : : 0
... : : : A′

rr : : : 0
A′
r+11 : : : A′

r+1r : : : 0
... : : :

...
. . . 0

A′
k1 : : : A′

kr : : : A′
kk




(24)

where

1. A′
rr is a square, singular, compartmental and irreducible matrix.

2. For all l �= r, A′
ll are square, nonsingular, compartmental and irreducible matrices.

3. Aij, for i �= j are matrices with nonnegative entries.

Proposition 11. If the Second a>ne stabilization problem is solvable; then there exists i∈N such that the
following conditions are satis<ed:

1. A column of the matrix A′
rr is contained in the ith column of the matrix A′.

2.

g′r �=0 and ∀j∈N with j �= i: if [g′]j �=0 then also [A′]ji �=0 (25)

Remark 4. Notice that condition (25) is equivalent to the following three conditions:

1. The vectors g′1; g
′
2; : : : ; g

′
r−1 are zero.

2. The conditions of Proposition 7 hold for the pair (A′
rr ; g

′
r).

3. ∀j∈N with [g′r+l]j �=0, holds that [A′
r+lr]ji �=0, l=1; : : : ; k − r.
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Proof. To prove the proposition it su5ces to show that the Second a5ne stabilization problem is solvable
only if the three conditions in Remark 4 are satis1ed.

First we prove necessity of the 1rst condition in Remark 4. Suppose that there exists a nonzero vector g′s
with s∈{1; : : : ; r − 1}. The Second a5ne stabilization problem is solvable only if there exists a nonzero and
nonpositive vector k ′Tr such that A′

rr + g′rk
′T
r is compartmental and Hurwitz. But then the matrix A′ + g′k ′T is

not Metzler for nonzero and nonpositive k ′T since its (s; r)-block is a nonzero nonpositive matrix.
The necessity of the second condition in Remark 4 follows immediately by application of Proposition 7.
Finally we prove necessity of the third condition in Remark 4. Suppose that this condition does not hold.

Then for all i∈N for which the ith column of A′ contains a column of A′
rr , there exists a j∗ and l∗ such that

[g′r+l∗ ]j∗ �=0 and [A′
r+l∗r]j∗i =0: (26)

Furthermore, to solve the Second a5ne stabilization problem, there should exist a nonzero and nonpositive
k ′Tr such that A′

rr + g′rk
′T
r is compartmental and Hurwitz. But then A′ + g′k ′T is not Metzler since by (26),

A′ + g′k ′T always possesses at least one negative o9-diagonal entry.

Now we are ready to state and prove the main result of this subsection.

Theorem 2. The Second a>ne stabilization problem can be solved if and only if m=1; where m is the
number of singular blocks on the diagonal of A′; and both conditions of Proposition 11 hold.

Proof. Necessity. This follows immediately from Propositions 10 and 11.
Su>ciency. Suppose that both conditions of Proposition 11 hold. De1ne the set I∗ ⊂ N as the set of indices

for which condition (25) holds. Next, de1ne the sets Z1, Z2 ⊂ I∗ as follows:

1. Z1 := {i∗ ∈ I∗|[g′]j �=0 for some j �= i∗}.
2. Z2 := {i∗ ∈ I∗|[g′]j =0;∀j �= i∗ and [g′]i∗ �=0}.

Since condition (25) holds we obtain that I∗ �= ∅ and I∗ =Z1 ∪ Z2.
If k ′ is chosen as to satisfy the following constraints:

max
j �=i∗ ;[g′]j¿0

−[A′]ji∗
[g′]j

¡




[k ′]i∗ 6 0 for all i∗ ∈Z1;
[k ′]i∗ 6 0 for all i∗ ∈Z2;
[k ′]i∗ =0 for all i∗ ∈N \(Z1 ∪ Z2)=N \I∗;

(27)

and such that a least one component of k ′ is di9erent from zero, then A′+g′k ′T is Metzler and Hurwitz. Indeed,
denoting k ′T = (k ′T1 ; : : : ; k

′T
r ; : : : ; k

′T
k ), we obtain by Proposition 7 that the matrix A′

rr + g′rk
′T
r is compartmental

and Hurwitz when k ′T satis1es (27). Also the o9-diagonal elements of A′ + g′k ′T are nonnegative when k ′T

satis1es (27).
But then also (k ′TTP1)∈Rn− by the nature of the transformation z=TP1x de1ned in Proposition 9 and

A+ g(k ′TTP1) is Metzler and Hurwitz. Therefore the Second a5ne stabilization problem can be solved.

Remark 5. We point out that the class of positive linear systems for which the stabilization is nontrivial, are
those with a system matrix that possesses zero as a simple eigenvalue and therefore only for a very small
class of systems. Indeed, 1rst we have shown in Proposition 3 that the dominating eigenvalue does not belong
to the open right half plane. Since the system matrices are Metzler, this dominating eigenvalue should be
zero to have a nontrivial problem. Notice that at this point the open loop system (3) with v=0 could still
be unstable. If for example zero has algebraic multiplicity 2, but geometric multiplicity 1, then the open loop
system is unstable. However we have shown next that such a situation could not occur. Indeed, when the
system matrix is irreducible, then zero is a simple eigenvalue by the Perron–Frobenius Theorem adapted to
continuous-time systems, and when the system matrix is reducible we have shown in Proposition 10 that zero
is also a simple eigenvalue.
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Examples.

1. Consider the following pair (A; g):

A=
(−1 0

0 0

)
and g=

(
1
1

)
(28)

and suppose that we are considering the Second a5ne stabilization problem for the equilibrium point
Ox=(1 1)T when b Ou=(1 0)T.

Notice that A is already of the form (24) with k = r=2 and that m=1. But (25) is not satis1ed. Indeed,
g1 = 1 �=0 and thus condition 1 in Remark 4 is not satis1ed.

2. Consider the following pair (A; g):

A=


−1 0 0

0 0 0
0 0 −3


 and g=


 0

1
1


 (29)

and suppose that we are considering the Second a5ne stabilization problem for the equilibrium point
Ox=(1 0 1

3)
T when b Ou=(1 0 1)T.

Notice that A is already of the form (24) with k =3, r=2 and that m=1. But (25) is not satis1ed.
Indeed, g3 = 1 �=0 while a32 = 0 and thus condition 3 in Remark 4 does not hold. As a consequence,
every nonzero kT ∈Rn− with k2 �=0 (which is necessary to shift the eigenvalue in zero), is such that
[A+ gkT]32¡ 0. This implies that A+ gkT cannot be Metzler.

6. Relationship with positive controllability

In [6], positive controllability of arbitrary linear systems (i.e. systems which are not necessarily positive)
is investigated. In this section we review a result obtained in [6] and compare it to our results.

Consider the following linear system:

ẋ=Ax + bu; (30)

where x∈Rn and u∈R+.

De�nition 2. System (30) is completely positively controllable if for all x0, x1 ∈Rn, there exists an input u(t),
de1ned on some 1nite time interval [0; T ], such that the forward solution of system (30), starting in x0 with
input u(t), exists for all t ∈ [0; T ] and such that x(T; x0;U[0;T ]) = x1.

We single out the following result from [6].

Theorem 3 (Saperstone [6]). System (30) is completely positively controllable if and only if the following
conditions are satis<ed:

1. The pair (A; b) is controllable in the classical sense (i.e. rank[�I − A b] = n holds for all �∈ �(A)).
2. �(A) ∩ R= ∅.

For our purposes we need a weaker concept, namely that of asymptotic positive controllability.

De�nition 3. System (30) is asymptotically positively controllable if for all x0 ∈R, there exists an input u(t),
de1ned on the in1nite time interval [0;+∞), such that the forward solution of system (30), starting in x0
with input u(t), exists for all t ∈ [0;+∞) and such that limt→+∞ x(t; x0;U[0; t]) = 0.

Using the results in [6] it is then possible to prove the following result.
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Theorem 4. System (30) is asymptotically positively controllable if and only if the following conditions are
satis<ed:

1. The pair (A; b) is stabilizable (see Remark 2 for a de<nition) in the classical sense.
2. �(A) ∩ R+ = ∅.

Finally we introduce the concept of positive stabilizability.

De�nition 4. System (30) is positively stabilizable if there exists a su5ciently smooth (say locally Lipschitz)
feedback map u(x) :Rn → R+ with u(0)= 0, such that the zero solution of the closed loop system (30) and
u(x) is globally asymptotically stable in Rn.

It is straightforward that asymptotic positive controllability is a necessary condition for positive stabili-
zability.

Let us apply these results to the particular case where system (30) is a positive system. Thus according to
Proposition 2, the matrix A is a Metzler matrix and b∈R+. Then by the Perron–Frobenius Theorem adapted to
continuous-time linear systems, the matrix A possesses a real dominating eigenvalue. If we assume that system
(30) is asymptotically positively controllable, then it follows from Theorem 4 that this dominating eigenvalue
is negative and thus that A is Hurwitz. This implies that a necessary condition for positive stabilizability of
a positive linear system is that the matrix A is Hurwitz. But then the trivial feedback u(x)= 0 is positively
stabilizing. Summarizing, only trivial positive stabilizability problems occur for positive linear systems.

The origin of this triviality lies in the fact that the input is assumed to be nonnegative. We also encountered
this in our stabilization problems. We were interested in stabilization of interior equilibria and were therefore
led to consider systems for which the dominating eigenvalue is negative or zero (see Proposition 3 and
Corollary 1). Thus the only nontrivial case was the one for which the dominating eigenvalue equals zero. If
at this point we would have insisted on the use of nonnegative inputs for feedback, this problem would not
have been solvable for the same reasons we encountered in the discussion of the previous paragraph. This is
why we relaxed the input constraint and decided to allow negative inputs for feedback. On the other hand
we required for obvious physical reasons, that the resulting closed loop system was a positive system.

Acknowledgements

We thank an anonymous referee for pointing out reference [6] which led to the addition of Section 6.

References

[1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1970.
[2] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[3] J.A. Jacquez, C.P. Simon, Qualitative theory of compartmental systems, SIAM Review 35 (1) (1993) 43–79.
[4] D.G. Luenberger, Introduction to Dynamic Systems, Wiley, New York, 1979.
[5] E.P. Ryan, On brockett’s condition for smooth stabilizability and its necessity in a context of smooth feedback, SIAM J. Control

Optim. 32 (6) (1994) 1597–1604.
[6] S.H. Saperstone, Global controllability of linear systems with positive controls, SIAM J. Control 11 (3) (1973) 417–423.
[7] E.D. Sontag, Mathematical Control Theory, Springer, New York, 1990.
[8] O. Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56 (4) (1949) 672–676.
[9] J.M. van den Hof, Positive linear observers for linear compartmental systems, SIAM J. Control Optim. 36 (2) (1998) 590–608.


