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A B S T R A C T

We consider the phenomenon of partial migration which is exhibited by populations in which some individuals
migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach,
we show that partial migration can be explained on the basis of negative density dependence in the per capita
fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes
that make up the population. We present an exact formula for the optimal proportion of migrants which is
expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation
strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish
the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from
linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These
results clarify precisely when the notion of a “weak ESS”, as proposed in Lundberg (2013) for a related model, is
a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial
migration can be attributed to negative density dependence alone. In this context, the result holds even when
density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same
as the ESS stemming from the analysis based on the adaptive dynamics.

The key feature of the population models considered here is that they are monotone dynamical systems,
which enables a rather comprehensive mathematical analysis.

1. Introduction

Partial migration is the phenomenon in which some individuals of a
population migrate between habitats, whereas others remain in a single
habitat during their entire lifetime (Chapman et al., 2011). There are
many examples of populations that exhibit partial migration. In many
bird species for instance, a fraction of the population remains on site
year-round, whereas the remaining fractions migrates towards warmer
or more Southern latitudes to overwinter (Perez et al., 2013). Certain
fish populations also display partial migration. For example, in
salmonids species a fraction of individuals migrate to the ocean before
returning to spawn, and others spend their entire life in the stream
(Kendall et al., 2015; Dodson et al., 2013).

There has been a lot of interest into why and how nature has
developed such a complex system in which populations consist of a mix
of migratory and non-migratory individuals. Several mechanisms have
been implicated, including genetic control, density-dependence, and
exogenous stochastic effects in environmental variables see Lundberg
(1988, 2013), Kaitala et al. (1993), Kokko (2007), Chapman et al.

(2011), Pulido (2011), Shaw and Levin (2011) and references therein.
In this paper, motivated primarily by partial migration in the

salmonid Oncorhynchus mykiss, we take an adaptive dynamics
approach, and show that negative density dependence in the per capita
fertilities alone can explain this intriguing phenomenon, provided that
the negative density-dependence is attenuated with increasing subtype
abundances. Our results confirm and extend those of Kokko (2007),
Lundberg (2013), although the analysis in these papers is based on
different population models. Moreover, we clarify the notion of a “weak
Evolutionary Stable Strategy”, which was proposed in Lundberg
(2013), and uncover a condition on the nature of the density
dependence that guarantees that it is in fact a true Evolutionary
Stable Strategy (or ESS). But to achieve this, we must first revisit and
extend the definition of an ESS as found in most references (Eshel,
1983; Christiansen, 1991; Geritz et al., 1998; Diekmann, 2004). This is
because the classical definition is based on a linear stability analysis
near a fixed point (or, more generally near an invariant set) of a
particular nonlinear dynamical system that models the interaction
between the candidate ESS and a mutant strategist. As it turns out,
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here such a linear stability analysis near the fixed point corresponding
to a candidate ESS, is inconclusive because the linearization is critical.
However, it is possible to perform a nonlinear stability analysis of this
fixed point, avoiding center manifold based approaches, but instead
exploiting an important feature of the dynamical system, known as K-
monotonicity (Hirsch and Smith, 2005).

Furthermore, we show that this ESS is also a Convergent Stable
Strategy (CSS). This implies that this strategy is an evolutionary
attractor for the adaptive dynamics. An ESS which is also a CSS is
one of the strongest notions in adaptive dynamics; not only can such a
strategy resist invasion by mutants strategists (by being an ESS), but
the strategy value adopted by the population will also eventually
converge to this strategy in the evolutionary process, via consecutive
fitness-increasing mutant substitutions.

Another aspect of our work is that we derive a formula for the ESS
in terms of the demographic model parameters for the migrant and
non-migrant populations. This formula can be used to predict the ESS
value, whenever the basic demographic parameters of the migrant and
non-migrant populations are known. Additionally, this formula may be
used to determine some of these demographic parameters in case they
are not known, provided that a reliable estimate of the ESS value exists,
possibly based on field or lab data.

To assess if our findings depend on the specific principles upon
which the theory of adaptive dynamics is built, we also investigate
whether partial migration can be explained using ideas from evolu-
tionary game theory (Vincent and Brown, 2005). We find that the exact
same ESS found using adaptive dynamics, is also the optimal allocation
strategy towards migrants in this case. This provides solid theoretical
evidence for the specific ESS value predicted by both modeling frame-
works. An interesting difference between the two approaches, is that
density dependence of the fertilities does no longer have to be
attenuated in the evolutionary game setup. Whether or not attenuation
in density dependence can be relaxed in the realm of adaptive
dynamics, is currently unknown.

2. A population model for migrants and non-migrants with
fixed allocation strategy

2.1. Population model

We consider the following density-dependent model.
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where x t( )1 , xM(t) and xN(t) are non-negative real numbers, respec-
tively representing the abundances of eggs, migrant adults and non-
migrant adults at time t, where t is a non-negative integer. A fraction
ϕ ∈ [0, 1] of eggs at time t will become migrant adults, provided they
survive a season, which is captured by the survival probability
s ∈ (0, 1]M in the model. Similarly, a fraction ϕ1 − of eggs will become
non-migrant adults, after surviving a season, with survival probability
s ∈ (0, 1]N . The parameter ϕ represents an allocation strategy whereby
each morph (migrant or non-migrant) produces offspring that can
become either type of morphs. In this way, the population is completely
integrated and does not represent two separately evolving populations.
For now, we assume that ϕ is fixed, although later on, when taking an
adaptive dynamics perspective, we will think of ϕ as a varying strategy
value that will be subject to evolution.

2.2. Density dependence assumptions

We assume that the number of eggs for both migrant and non-
migrant adults is negatively affected by their respective abundances.
This implicitly assumes that the migrant abundance does not affect the

fertility of non-migrants, and vice versa. This is based on the biological
system of steelhead (migrants) and rainbow trout (non-migrants) (both
of the species O. mykiss), because the two morphs have segregated
spawning times or habitats (Pavlov et al., 2010).

Mathematically, we make the following assumptions:

(H1) f : [0, ∞) → (0, ∞)M and f : [0, ∞) → (0, +∞)N are smooth
functions, with negative derivatives, i.e. f z′ ( ) < 0M , and f z′ ( ) < 0N ,
for all z ≥ 0. We set f f z= lim ( )M z M,∞ →∞ and f f z= lim ( )N z N,∞ →∞ , for
appropriate non-negative constants fM,∞ and fN ,∞.
(H2) g z f z z( )≔ ( )M M and g z f z z( )≔ ( )N N have positive derivatives, i.e.
g z′ ( ) > 0M , and g z′ ( ) > 0N , for all z ≥ 0.

(H2) expresses that, although the per capita fertilities decrease as
the adult abundances increase (by (H1)), the total fertilities of
migrants and residents are in fact increasing.

An important consequence of condition (H2), is that it ensures that
system (1) is monotone. This means that if x y(0) ≤ (0) (the latter
inequality for the two vectors means that all 3 corresponding compo-
nents of these vectors are ordered accordingly), then x y(1) ≤ (1), for
any given pair of non-negative initial population vectors x (0) and y (0).
To prove this, we apply the fundamental theorem of calculus, in
conjunction with the fact that the Jacobian matrix in any state of
system (1) is a non-negative matrix by condition (H2):

∫y x T y T x J ty t x y

x dt

(1) − (1) = ( (0)) − ( (0)) = ( (0) + (1 − ) (0))( (0)

− (0)) ≥ 0,
0

1

where T denotes the map on the right-hand side of (1), and J is the
Jacobian matrix of system (1) (i.e., the derivative of the map T).

Examples: Several well-known fertility functions satisfy the two
hypotheses (H1)–(H2):

• The Beverton-Holt function (Beverton and Holt, 1957)

f z a
b z( ) = 1 + ,B
B

B

where aB and bB are arbitrary positive constants, serves as our main
example of a fertility function that satisfies all the above conditions.
Indeed, fB(z) is a smoothly decreasing function of z ≥ 0 with zero limit
as z → ∞, hence it satisfies (H1). The function g z zf z( ) = ( )B B has
derivative

g z a
b z

′ ( ) = (1 + ) ,B
B

B 2

which is positive for z ≥ 0, hence it satisfies (H2).

• The Hassell function (Hassell, 1975) generalizes the Beverton-Holt
function:

f z a
b z( ) = (1 + ) ,H
H

H cH

where aH and bH are still arbitrary positive constants, but an
additional positive parameter cH is introduced (for cH=1, we recover
the Beverton-Holt function). The function fH(z) is a smoothly decreas-
ing function of z ≥ 0 with zero limit as z → ∞, hence it satisfies (H1).
The function g z zf z( ) = ( )H H has derivative

g z a c b z
b z

′ ( ) = (1 + (1 − ) )
(1 + ) ,H

H H H

H c +1H

which is positive for z ≥ 0, provided that

c0 < ≤ 1,H

whence satisfies (H2).

On the other hand, the Ricker function (Ricker, 1954):

f z( ) = e ,R
r z k(1− / )
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where r and k are positive parameters satisfies (H1), but does not
satisfy (H2). Indeed, the function g z zf z( ) = ( )R R has derivative

⎛
⎝⎜

⎞
⎠⎟g z r

k z′ ( ) = e 1 − ,R
r z k(1− / )

which changes sign when z crosses through the value k/r. Therefore,
the function gR(z) is not monotonically increasing for z ≥ 0, hence fails
to satisfy (H2).

2.3. The basic reproduction number

Model (1) can be re-written more compactly in vector form as

x t A x t ϕ x t( + 1) = ( ( ), ) ( ),1 (2)
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By splitting A x ϕ( , )1 as:
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we can associate the basic reproduction number to the non-negative
matrix A x ϕ( , )1 in the usual way (Cushing, 1998; Caswell, 2000; Li and
Schneider, 2002; Allen et al., 2008):

R x ϕ ρ F I T ϕs f x ϕ s f x
x ϕ

( , )≔ ( ( − ) ) = ( ) + (1 − ) ( ),
for every ( , ) ∈ × [0, 1].

M M M N N N0 −1

+
3 (3)

Here, ρ F I T( ( − ) )−1 denotes the spectral radius of F I T( − )−1.
For convenience, we also define

R ϕ ϕs f ϕ s f ϕ(∞, ) = + (1 − ) , for every ∈ [0, 1].M M N N0 ,∞ ,∞

2.4. Global stability for the population model

The main result, which we prove in the Appendix, is that popula-
tions with a fixed allocation strategy ϕ will settle at a globally stable
fixed point, provided that the basic reproduction number near the
extinction fixed point is larger than 1:

Theorem 2.1. Assume that (H1)–(H2) holds for system (1), and
that the basic reproduction numbers satisfy:

R ϕ R ϕ for all ϕ(∞, ) < 1 < (0, ), ∈ [0, 1].0 0 (4)

Then the following holds:

(1) For all ϕ ∈ (0, 1), system (1) has a unique, positive fixed point
x ϕ*( ) which is linearly stable, and which attracts all positive
solutions of (1).

(2) If ϕ=0, then system (1) has a unique, non-zero fixed point
x x( , 0, )∼ ∼N1 , where x > 0∼N is the unique positive solution to the
equation s f z( ) = 1N N , and x x s= /∼ ∼N N1 . This fixed point is linearly
stable, and attracts all positive solutions of system (1).

(3) If ϕ = 1, then system (1) has a unique, non-zero fixed point
x x( , , 0)M1 , where x > 0M is the unique positive solution to the
equation s f z( ) = 1M M , and x x s= /M M1 . This fixed point is linearly
stable, and attracts all positive solutions of system (1).The

function ϕ x ϕ→ *( ) is smooth, and x ϕ x xlim *( ) = ( , 0, )∼ ∼ϕ N→0 1 and

x ϕ x xlim *( ) = ( , , 0)ϕ M→1 1 .

Remark 2.2. Notice that condition (4) is equivalent to:

s f s f s f s f(0) > 1, (0) > 1, and < 1, < 1.M M N N M M N N,∞ ,∞

because R ϕ R ϕ(0, ) ( (∞, ))0 0 is a convex combination of the numbers
s f (0)M M and s f (0)N N (s fM M,∞ and s fN N ,∞).

Also note that f f= = 0M R,∞ ,∞ in case fM and fR are Beverton-Holt
or Hassell functions, and hence the condition that R ϕ(∞, ) < 10 is
automatically satisfied, because R ϕ(∞, ) = 00 .

3. Adaptive dynamics: generalizing the definition of ESS and
CSS

Theorem 2.1 shows that for a given allocation strategy ϕ, there will
be a unique globally stable fixed point. This result does not, however,
explain which value of ϕ is adopted in natural populations. One
possible choice would be to pick the value of ϕ that maximizes the
basic reproduction number R ϕ(0, )0 . Formula (3) shows that the latter
is a linear function of the variable ϕ, which would suggest that ϕ must
take on one of its extreme values, namely zero or one, at least if the
extreme values s f (0)M M and s f (0)N N of the function R ϕ(0, )0 are
different (if they are the same, then R ϕ(0, )0 is a constant function,
hence every ϕ in [0, 1] would be a maximizer). This would imply that
either only migrants (if ϕ = 1 is the maximizer), or only non-migrants
(if ϕ=0 is the maximizer) would occur, and this would obviously
contradict that a mix of migrants and non-migrants is present in
natural populations.

Instead of the above argument, here we shall take an adaptive
dynamics approach to address this question. We will show that there
exists a unique evolutionary stable strategy (ESS) ϕ*, corresponding to
a non-extreme value of the strategy parameter ϕ, i.e. ϕ* will belong to
(0, 1). Moreover, we will show that ϕ* is also a converging stable
strategy (CSS), making ϕ* an evolutionary stable attractor for the
adaptive dynamics. The latter property provides theoretical evidence
for how the ESS ϕ* has evolved dynamically. Moreover, we shall derive
an analytical formula for the ESS ϕ* in terms of the model's demo-
graphic parameters. This is relevant to natural populations for which
these parameters are known (e.g. from field work or from lab
experiments), because the formula can be used to predict the ESS ϕ*.

3.1. The coupled resident-mutant model

We consider a resident population that uses strategy value ϕ, and
assume invasion by a mutant population using strategy value ϕ ϕ′ ≠ .
The resulting dynamical population model takes the following form:

X t A X t X t( + 1) = ( ( )) ( ), (5)
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The specific form of the interaction matrix A(X) implies that the
density dependence of the fertilities by migrants, only depends on the
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total (resident plus mutant, or x y+M M) adult migrant abundance, and
not on the non-migrant abundance. Once again, this is motivated by
the species O. mykiss, in which migrants and non-migrants spawn in
segregated habitats, thereby avoiding competitive effects with each
other in this process. The fact that density dependence is assumed to
depend on the total abundances, expresses that residents and mutants
of each morph (migrant and non-migrant) spawn in the same areas,
hence experience the detrimental competitive effects of each other's
presence. Another important feature of this model is that it assumes
that there is no inter-mating between residents and mutants. Indeed,
resident adults will only generate resident eggs, and mutant adults will
only generate mutant eggs. This is a strong assumption favoring
assortative mating, although this is questionable. However, in the
context of adaptive dynamics, it is a commonly made assumption. One
problem when trying to relax this assumption, is that additional
biological knowledge is required, which may not be available. For
example, when a resident and mutant adult mate, the nature of their
offspring (resident or mutant) needs to be specified. This requires the
introduction of yet another allocation strategy parameter for the
probability that this offspring becomes a resident. This probability
depends on complex and poorly known genetic and environmental
factors. We avoid such difficulties by making an assortative mating
assumption, yet are fully aware of its limitations. The model studied
here can serve as a benchmark to compare the behavior of future
models to, which incorporate the possibility of inter-mating.

We assume that all assumptions (H1–H2) and condition (4) of
Theorem 2.1 continue to hold here for system (5). Hence, for each ϕ in
[0, 1], system (5) has a fixed point X ϕ*( ) = ( )x ϕ*( )

0 , where

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟x ϕ

x ϕ
x ϕ
x ϕ

*( ) =
*( )
* ( )
*( )
M

N

1

is the unique nonzero fixed point of system (1) featured in Theorem
2.1.

Definition 3.1. We say that ϕ* in [0, 1] is an evolutionary stable
strategy (ESS) if X ϕ*( *) is a locally asymptotically stable fixed point of
system (5) for all ϕ ϕ′ ≠ * in some neighborhood of ϕ*.

This notion captures that if the resident population has adopted an
ESS, then it cannot be invaded by mutants that use nearby strategies.
Contrary to its terminology, an ESS merely represents a fixed point for
the adaptive dynamics. This does not necessarily mean that an ESS
possesses any kind of stability properties for the adaptive dynamics. An
ESS that exhibits certain stability features for the adaptive dynamics,
requires the introduction of another concept:

Definition 3.2. We say that ϕ* in [0, 1] is a convergence stable
strategy (CSS) if there is a neighborhood N of ϕ* such that X ϕ*( *) is not
an asymptotically stable fixed point of system (5) for all pairs ϕ ϕ( , ′)
with ϕ in N that satisfy that either ϕ ϕ ϕ< ′ < * or ϕ ϕ ϕ* < ′ < , but an
asymptotically stable fixed point of system (5) for all pairs ϕ ϕ( , ′) with ϕ
in N that satisfy that either ϕ ϕ ϕ′ < < * or ϕ ϕ ϕ* < < ′.

The intuitive idea behind this definition is as follows: Suppose that
the resident has adopted a strategy that is nearby, but distinct from a
CSS. Suppose also that a mutant is introduced whose strategy is farther
away from the CSS value. This mutant will then fail to invade the
environment occupied by the resident. But over time, a mutant may
arise whose strategy value is closer to the CSS value. Such a mutant will
be able to successfully invade the resident's environment. Iterating this
process, yields a sequence of successfully invading mutants whose
strategies converge monotonically towards the CSS.

Definitions 3.1 and 3.2 are more general than the corresponding
ones usually found in the literature, as they cover the latter. For
instance, no reference is made to any kind of fitness function, which is
what is normally done when defining ESS and CSS. The main reason
for the more general definitions proposed here, is that whereas notions

of ESS and CSS in the literature are invariably based on linearization
arguments near fixed points of coupled models, we encounter a
situation here where such arguments are inconclusive. In particular,
we find that the linearization of the coupled model (5) near the
boundary fixed point X ϕ*( *), where ϕ* is the candidate ESS, is critical
due to the occurrence of 2 eigenvalues having modulus equal to 1.
According to the classical ESS definition based on linearization
arguments, ϕ* would not be called on ESS. However, a more detailed
non-linear analysis reveals that the fixed point X ϕ*( *) is locally
asymptotically stable for all values ϕ ϕ′ ≠ *. In other words, no mutant
ϕ ϕ′ ≠ * can successfully invade the resident ϕ*, and this is exactly the
key property exhibited by an ESS as captured by Definition 3.1.

3.2. Linear invasion analysis

To investigate whether the mutant can successfully invade the
resident population, we fix a (resident, mutant) strategy pair ϕ ϕ( , ′) in
[0, 1] × [0, 1], and linearize system (5) near the fixed point X ϕ*( ). By
Theorem 2.1, the upper diagonal block of the linearization near X ϕ*( )
is a stable matrix, and thus we focus on the 3×3 matrix in the lower-
diagonal block, which takes the form:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A x ϕ ϕ

f x ϕ f x ϕ
ϕ s

ϕ s
( *( ), ′) =

0 ( * ( )) ( *( ))
′ 0 0

(1 − ′) 0 0

M M N N

M
N

1

The mutant can successfully invade if the dominant eigenvalue of
this matrix is larger than 1, and it cannot invade if it has dominant
eigenvalue less than 1. Since this dominant eigenvalue and
R x ϕ ϕ( *( ), ′)0 are always on the same side of 1 as shown in Li and
Schneider (2002), the success or failure of invasion by the mutant can
be determined by checking the sign of:

W ϕ ϕ R x ϕ ϕ ϕ s f x ϕ ϕ s f x ϕ( , ′)≔ ( *( ), ′) − 1 = ′ ( * ( )) + (1 − ′) ( *( ))
− 1,

M M M N N N0

(6)

where we have used the formula (3). In the context of adaptive
dynamics, the function W ϕ ϕ( , ′) is often referred to as the fitness of
the mutant adopting strategy ϕ′ in an environment occupied by a
resident population adopting strategy ϕ. If W ϕ ϕ( , ′) > 0, then the
mutant can successfully invade; if W ϕ ϕ( , ′) < 0, then the mutant fails
to invade.

We next simplify the function W ϕ ϕ( , ′) by using the fact that x ϕ*( )
is the unique non-zero fixed point of system (1), or equivalently of
system (2). Then the Perron-Frobenius Theorem implies in particular
that the dominant eigenvalue of A x ϕ ϕ( *( ), )1 is equal to one, and hence
by Li and Schneider (2002) that:

R x ϕ ϕ ϕs f x ϕ ϕ s f x ϕ( *( ), ) = ( * ( )) + (1 − ) ( *( )) = 1.M M M N N N0

Therefore,

W ϕ ϕ ϕ ϕ s f x ϕ s f x ϕ( , ′) = ( ′ − )( ( * ( )) − ( *( ))).M M M N N N (7)

This simplification reveals thatW ϕ ϕ( , ′) is the product of ϕ ϕ( ′ − ) and a
function that depends only on ϕ. We further investigate the latter
function, and focus on which value(s) of ϕ in [0, 1], this function is zero.
This happens if and only if s f x ϕ s f x ϕ( ( * ( ))) = ( *( ))M M M N N N . Since x ϕ*( ) is
a non-zero fixed point of (1), there holds that

x ϕ x ϕ ϕs f x ϕ ϕ s f x ϕ*( ) = *( )( ( * ( ) + (1 − ) ( *( ))).M M M N N N1 1

Theorem 2.1 shows that x ϕ*( ) > 01 for all ϕ in [0, 1], and therefore
s f x ϕ s f x ϕ( ( * ( ))) = ( *( ))M M M N N N holds, if and only if

s f x ϕ s f x ϕ( * ( )) = 1 = ( *( )).M M M N N N

But this is equivalent to

x ϕ x x ϕ x* ( ) = and *( ) = ,∼
M M N N

where we recall that xM and x∼N are the respective unique solutions of
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the equations s f z( ) = 1M M and s f z( ) = 1N N . Since x ϕ*( ) is a non-zero
fixed point of system (1) with x ϕ*( ) > 01 , this is equivalent to

x ϕ
x ϕ

x
x

s
s

ϕ
ϕ

* ( )
*( ) = = 1 − ,∼
M

N

M

N

M

N

The equation on the right can now be solved for ϕ, and this yields the
following unique solution in [0, 1]:

ϕ x x
x x s s

* = /
/ + / .

∼
∼

M N

M N M N (8)

The formula (8) clearly shows that ϕ* belongs to (0, 1), which
corresponds to a non-extreme allocation strategy, exhibiting a mix of
migrants and non-migrants. We have established that W ϕ ϕ( , ′) = 0 if
and only if

ϕ ϕ ϕ ϕ= ′ or = *.

It is now relatively straightforward to describe the sign of the function
W ϕ ϕ( , ′) for all pairs ϕ ϕ( , ′) in [0, 1] × [0, 1], as depicted in Fig. 1.
Indeed, W ϕ ϕ( , ′) is a continuous function, which is zero if and only if
either the pair ϕ ϕ( , ′) belongs to the diagonal where ϕ ϕ= ′, or to the
vertical line through ϕ*. These two lines divide the square [0, 1] × [0, 1]
in four open regions, where the sign of the function W is either positive
or negative. We label these -perhaps a bit inaccurately, compared to the
familiar compass directions- by NE, SE, SW and NW, see Fig. 1. The
sign ofW ϕ ϕ( , ′) for pairs ϕ ϕ( , ′) in the SE region is the same as the sign
of W s f(1, 0) = −(1 − (0))N N , which is positive by Remark 2.2.
Similarly, W s f(0, 1) = (0) − 1M M is positive as well, and thus
W ϕ ϕ( , ′) > 0 in the NW region. The sign of W ϕ ϕ( , ′) for pairs ϕ ϕ( , ′)
in the NE region is the same as the sign of W ϕ( , 1), where ϕ is an
arbitrary value in the open interval ϕ( *, 1). Since W can be factored as
in (7), the sign of W ϕ( , 1) is equal to the sign of the second factor
s f x ϕ s f x ϕ( * ( )) − ( *( ))M M M N N N , which is continuous in ϕ. The analysis
above has shown that the latter function can only be zero when ϕ ϕ= *,
and since ϕ ϕ> *, it follows that the sign of this second factor is equal to
the sign of s f x s f x s f( * (1)) − ( *(1)) = 1 − (0)M M M N N N N N , which is negative
by Remark 2.2. Thus, W ϕ ϕ( , ′) is negative for all pairs ϕ ϕ( , ′) in the NE
region. A similar argument shows that W ϕ ϕ( , ′) is negative for all pairs
ϕ ϕ( , ′) in the SW region.

Remark 3.3. It is rather remarkable that the Pairwise Invasibility Plot
looks exactly the same as the corresponding PIPs in Lundberg (2013)
and Kokko (2007), although the latter papers consider different
population models. The underlying population model considered here
has 3 state variables (eggs, migrant and non-migrant adults), and
differs from the one in Lundberg (2013) where there is only a single
state variable for the total (migrant plus non-migrant) number of

adults. Moreover, the model in Lundberg (2013) assumes that density
dependence takes place in the survival probabilities sM and sN , not in
fertilities fM and fN . And one more difference, is that in addition to
density dependence, there is also explicit trait dependence on the
parameter ϕ of the survival probabilities. Despite all these differences,
the PIP of both models look exactly the same. In fact, the same is true
for the model considered by Kokko (2007), where the underlying
population model resembles more closely the one considered here.
Indeed, that model has 2 state variables (for migrant and non-migrant
adults), and considers only density dependence (no frequency
dependence) in the fertilities, but not in the survival probabilities. On
the other hand, the model deviates from the one presented here in the
specific way in which density dependence occurs for the migrants,
namely by assuming that migrants experience density dependence
based on the sum of migrant and non-migrant adults. In our models,
the subtypes only experience density dependence from individuals of
the same subtype. But once again, the PIP obtained in Kokko (2007)
looks identical to the one obtained here as well. Thus, it appears that
partial migration can be based on the existence of a unique ESS which
is also a CSS for a wide variety of models. However, at this stage in the
analysis we have not yet established that ϕ* is indeed an ESS. This will
be achieved in the following subsection, using a nonlinear local stability
analysis. Such a nonlinear analysis has not been carried out in
Lundberg (2013) or Kokko (2007), which explains the proposal in
Lundberg (2013) to refer to ϕ* as a ‘weak ESS’. Our analysis will reveal
that this so-called weak ESS, is in fact a true ESS.

3.3. Nonlinear invasion analysis: ϕ* is an ESS and a CSS for convex
fertility functions

The linear invasion analysis performed above, shows that the only
candidate ESS is ϕ*, given by formula (8). However, since
W ϕ ϕ( *, ′) = 0 for all ϕ′ in [0, 1], it is not yet possible to conclude that
ϕ* is in fact an ESS in the sense of Definition 3.1. To achieve this, we
will subject system (5) to a local, but nonlinear stability analysis near
the fixed point X ϕ( *) for arbitrary values of the mutant strategy
ϕ ϕ′ ≠ *. Our main result is that ϕ* is indeed an ESS, as well as a
CSS, provided that the fertility functions fM and fN are strictly convex,
which is the case when they are both Beverton-Holt or Hassell
functions as we will show later.

Theorem 3.4. Assume that the conditions of Theorem 2.1 hold. Let
ϕ* be given by (8), and suppose that ϕ′ ∈ (0, 1), but that ϕ ϕ′ ≠ *. If

f x ϕ and f x ϕC( ) ″ ( * ( *)) > 0 ″ ( *( *)) > 0,M M N N

then the fixed point X ϕ*( *) of system (5) is locally asymptotically
stable, and hence ϕ* is an ESS. Moreover, ϕ* is the unique ESS in
[0, 1], and it is also a CSS.

Proof. The linear invasion analysis in the subsection above clearly
shows that the only candidate for an ESS is ϕ*. Indeed, if ϕ ϕ≠ *, then
there always exist mutant strategies ϕ ϕ′ ≠ , but near ϕ, such that
W ϕ ϕ( , ′) > 0. This implies that the fixed point X ϕ*( ) is a (linearly)
unstable fixed point of system (5), and hence such a ϕ cannot be an ESS
in the sense of Definition 3.1. We also note that the linear invasion
analysis above shows that ϕ* is always a CSS, by verifying that the
conditions in Definition 3.2 hold, which can be seen quite easily from
Fig. 1.

Thus, we are left with proving that ϕ* is an ESS when C( ) holds. We
will do this by showing that the fixed point X ϕ*( *) of system (5), is
locally asymptotically stable whenever ϕ′ ∈ (0, 1), yet ϕ ϕ′ ≠ *.

A key property of system (5) is that it is monotone (Hirsch and
Smith, 2005) with respect to the partial order on 6 induced by the
cone K = × (− )+

3
+
3 ; we will refer to this by saying that system (5) is

K-monotone. This cone K generates the partial order ≤K on +
6 , which

is defined by declaring that X Y≤K if and only if the vector Y X−

Fig. 1. Pairwise invasibility plot (PIP): W ϕ ϕ( , ′) is the fitness of a mutant strategist ϕ′ in
an environment set by a resident strategist ϕ, which is obtained from a linear stability
analysis of the fixed point X ϕ*( ) of system (5). W ϕ ϕ( , ′) = 0 if ϕ ϕ( , ′) belongs to one of
the two dashed lines; W ϕ ϕ( , ′) > 0 if ϕ ϕ( , ′) belongs to the NW or SE region (dark);
W ϕ ϕ( , ′) < 0 if ϕ ϕ( , ′) belongs to the NE or SW region (light).
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belongs to K. K-monotonicity of system (5) is then defined as follows:

X Y A X X A Y YIf ≤ , then ( ) ≤ ( ) .K K (9)

Thus, K-monotonicity simply expresses that 2 solutions of system (5)
that are ordered initially, will preserve the order. That system (5) is
indeed K-monotone follows from the assumptions (H1) and (H2), as
shown in Hirsch and Smith (2005).

By means of the linear coordinate change

X X X ϕ= − *( ),͠

we first translate the fixed point X ϕ*( ) of system (5) to the origin of 6,
and dropping tildes, we re-write the transformed system, which is also
K-monotone, as

X t F X t( + 1) = ( ( )). (10)

We claim that as long as ϕ ϕ* ≠ ′ ∈ (0, 1), the origin is an asymptoti-
cally stable fixed point for (10) with respect to perturbations

X x yΔ = (Δ , Δ ) near X=0 for which xΔ is arbitrary, but for which
yΔ ≥ 0. We shall first show that there are two vectors u ≤ 0K1 and

u0 ≤K 2, such that the set N X u X u= { | ≤ ≤ }K K1 2 is a compact neighbor-
hood of X=0, and such that

u F u F u u≤ ( ) ≤ 0 ≤ ( ) ≤ .K K K K1 1 2 2 (11)

To establish this claim, we start by calculating the Jacobian matrix J of
F(X) at X=0:

⎛
⎝⎜

⎞
⎠⎟J A x ϕ ϕ B B

A x ϕ ϕ= ( *( *), *) +
0 ( *( *), ′) ,1

1 (12)

where

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟B

f x ϕ x ϕ f x ϕ x ϕ
=

0 ′ ( * ( *)) * ( *) ′ ( *( *)) *( *)
0 0 0
0 0 0

.
M M M N N N

The spectrum of J consists of all the eigenvalues of the matrix
A x ϕ ϕ B( *( *), *) +1 (all of which have modulus less than 1, as shown in
the proof of Theorem 2.1), and of the matrix A x ϕ ϕ( *( *), ′)1 , a non-
negative and irreducible (as ϕ′ ∈ (0, 1)) matrix whose dominant
eigenvalue equals 1, because by assumption W ϕ ϕ( *, ′) = 0, or equiva-
lently by (6) because R x ϕ ϕ( *( *), ′) = 10 . Hence, the spectral radius of J
equals 1 as well. Now J is a K-monotone matrix (meaning that J maps
the cone K into itself), and thus the Perron-Frobenius Theorem for K-
monotone matrices (Vandergraft, 1968), implies that there is an
eigenvector V0 ≤K corresponding to the dominant eigenvalue 1. In
fact, in the Appendix we calculate V explicitly, and show that V belongs
to the interior of K for all ϕ′ ∈ (0, 1). It is also shown in the Appendix
that for all sufficiently small ϵ > 0, there holds that u F u≤ ( )K1 1 , when
u V= −ϵ1 .

The existence of a vector u0 ≤K 2 such that F u u( ) ≤K2 2 can be
established as follows. We reconsider system (5) and assume that

ϕ ϕ= *, and that ϕ′ ∈ (0, 1). Then the set
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭X y= | = 0x
y is invariant,

and the restriction of the dynamics to this invariant set, is such that all
solutions with positive initial x-vector, converge to x ϕ*( *) by Theorem
2.1. Moreover, in Case 1 of the proof of Theorem 2.1, we have shown
that there exists a positive vector b in 3 such that T b b0 ≤ ( ) ≤ , where
T x A x ϕ x( ) = ( , *)1 . In fact, b can be chosen so that all its components are
strictly larger than the corresponding components of x ϕ*( *).
Consequently, by setting

⎛
⎝⎜

⎞
⎠⎟u b x ϕ= − *( *)

0
,2

it follows that u ≥ 0K2 , and it can be verified that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟F u A b ϕ b x ϕ T b x ϕ b x ϕ u( ) = ( , *) − *( *)

0
= ( ) − *( *)

0
≤ − *( *)

0
=K2

1
2

Combining the existence of the vectors u1 and u2 with the properties
listed above, and the fact that system (10) is K-monotone, establishes
(11). Notice in particular that the vectors u1 and u2 are such that N is
indeed a compact neighborhood of X=0.

Now, since system (10) is K-monotone, (11) implies that the orbit
starting at u1 is increasing with respect to the partial order ≤K , and
bounded above (by the zero fixed point). Thus, it must converge to
some fixed point X1 in N. Similarly, K-monotonicity and (11) imply
that the orbit starting in u2 is decreasing with respect to the partial
order ≤K , and bounded below by the zero fixed point, and must also
converge to some fixed point X2 in N. We now claim that we can always
shrink N by choosing ϵ > 0 sufficiently small in the definition of u1, so
that X X= = 01 2 . To see this, suppose that x y( , )∼ ∼ is any fixed point of
system (10) in N, with y ≥ 0∼ . If y = 0∼ , we first shrink N by choosing
ϵ > 0 sufficiently small in the definition of the vector u1, so that N does
not include the fixed point x ϕ(− *( *), 0) of system (10). Then x∼ must
also be equal to 0 since (0, 0) is the unique fixed point in N of system
(10) restricted to the invariant set where y=0. Therefore, any fixed
point x y( , )∼ ∼ in N is necessarily such that y ≠ 0∼ . In fact, the system
equations (10) -see also (19) in the Appendix for the explicit functional
forms- imply that y∼ must necessarily be a positive vector because
ϕ′ ∈ (0, 1). Moreover, as shown above, for any fixed point x y( , )∼ ∼ in N,
we have made sure that x x ϕ+ *( *)∼ is a positive vector as well.
Therefore, if N would contain a fixed point x y( , )∼ ∼ , other than X=0,
then both x x ϕ+ *( *)∼ and y∼ would both be positive vectors. Then the
original system (5) would have a positive fixed point as well. In the
Appendix we show that this system can have at most one positive fixed
point. By choosing ϵ > 0 even smaller in the definition of u1, we can
then ensure that the corresponding shifted fixed point for system (10),
does not belong to N. Therefore, N is an isolating neighborhood for the
fixed point X=0, in the sense that it contains no other fixed points. In
conclusion, we have proved the claim that X X= = 01 2 by appropriately
choosing N, and therefore by K-monotonicity, all solutions in the
compact, invariant neighborhood N, converge to X=0. Going back to
the original coordinates, we have proved that the fixed point X ϕ*( *) of
the coupled system (5) is locally asymptotically stable, which completes
the proof of the theorem.□.

Examples. We have shown earlier that the Beverton-Holt (1957) and
Hassell (1975) fertility functions satisfy the two hypotheses (H1)–
(H2). Next we show that they also satisfy the convexity condition (C),
from which follows that Theorem 3.4 applies when the fertility
functions for migrants and non-migrants are of these types:

• The Beverton-Holt function (Beverton and Holt, 1957)

f z a
b z( ) = 1 + ,B
B

B

where aB and bB are arbitrary positive constants, has the following
second derivative:

f z a b
b z

″ ( ) = 2
(1 + ) ,B

B B
B

2

3

which is positive for all z ≥ 0, and thus (C) holds.

• The Hassell function (Hassell, 1975):

f z a
b z( ) = (1 + ) ,H
H

H cH

where aH and bH are positive constants, and c0 < ≤ 1 (which is
imposed to make (H1)–(H2) hold), has the following second deriva-
tive:

f a b c c
b z

″ = ( + 1)
(1 + ) ,H
H H H H

H c

2

+2H

which is positive for all z ≥ 0, implying that (C) holds.
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3.4. Parameterizing models for salmonid species

Fecundity values of migrants and non-migrants vary widely by
location. In most cases, migrants have greater fecundities than non-
migrants, although in limited number of cases migrant fecundities are
approximately equal to non-migrant. Individual fecundity is highly
correlated with length (Shapovalov and Taft, 1954; Bulkley, 1967;
Schill et al., 2010) as well as age and the number of spawning
migrations (Quinn et al., 2011).

Mean non-migrant fecundities range from 170 eggs in Idaho desert
populations (Schill et al., 2010), to 1400 eggs in a central Oregon
population (Schroeder and Smith, 1989), and 3431 eggs in a western
Alaska population (Russell, 1977), to 3065 eggs in an eastern Russian
population (Kuzishchin et al., 2007).

Mean migrant fecundities range from 3438 in a coastal Oregon
population (Bulkley, 1967), 3500 eggs in a central Oregon population
(Schroeder and Smith, 1989), 4335–5706 eggs in a coastal Washington
population (Quinn et al., 2011), 7584 and 5171 in two California
populations (Satterthwaite et al., 2010), and 10,638 in an eastern
Russian population (Kuzishchin et al., 2007).

It is well documented among salmonids and their relatives (i.e.,
salmoniformes) that an increase in spawners leads to decreased
spawning success and egg survival, therefore decreasing individual
fertility (van den Berghe and Gross, 1989; Essington et al., 2000;
Moore et al., 2008). To our knowledge, no fertility studies have been
conducted directly on steelhead and rainbow trout, although they
exhibit spawning behavior similar to many salmoniformes where
density-dependent fertility taking the form of a Beverton-Holt function
has been documented (Foss-Grant et al., 2016).

Survival probabilities also vary widely by location and are highly
dependent on the age, size, and condition of an individual, as well as
environmental conditions (Satterthwaite et al., 2009). Migrants and
no-nmigrants are indistinguishable as juveniles and therefore their
early life survival is thought to be similar. Estimates derived from a
number of sources indicate that survival from egg to ocean outmigrant
or maturing non-migrant is 0.04 (Quinn, 2005), although some
estimates report juvenile annual survival at 0.0695 (Mitro and Zale,
2002). Survival to and from the ocean ranges from 0.03 to 0.17
(Shapovalov and Taft, 1954; Ward and Slaney, 1993; Ward, 2000;
Quinn, 2005).

Based on these ranges of parameter values obtained from the
literature, we now estimate the optimal allocation strategy ϕ* for a
specific example. We assume that migrants and non-migrants have
Beverton-Holt fertility functions:

f z z f z z( ) = 8000
1 + 10

and ( ) = 1000
1 + 50

,M N

given that migrant and non-migrant fecundities ranged from 3438 to
10,638, and from 170 to 3431 respectively. We were unable to find
estimates for the b-values in the above Beverton-Holt functions from
the literature, but choose 1/10 for migrants and 1/50 for non-migrants.
The ratio of five reflects that density-dependence is felt more quickly
for migrants, i.e. for smaller abundance values, because of their larger
size compared to non-migrants. Indeed, with this particular choice, the
per capita fertility for migrants drops to half its maximum of 4000 for
z=10, whereas the analogous drop for non-migrants occurs at an
abundance of z=50, which is 5 times higher. Based on the above cited
survival probabilities, we set:

s s= (0.04)(0.1) = 0.004 and = 0.04.M N

These numbers are chosen because juvenile survival is similar for
migrants and non-migrants with a probability of 0.04, but migrants
must survive their stay in the ocean which we assume occurs with
probability 0.1, given the range of 0.03–0.17 above. We also assume
that non-migrants have a 100% survival rate in the river system in the

same period of time, probably overestimating this rate somewhat.
These parameter values are all we need to find the ESS value ϕ*.
Indeed, first we note that with these values, we have that

s f s f(0) = 32, and (0) = 40,M M N N

both of which are larger than 1, which implies the existence of unique
positive solutions to the equations s f z( ) = 1M M and s f z( ) = 1N N . These
are given by

x x= 10(32 − 1) = 310 and = 50(40 − 1) = 1950∼M N

respectively. Recall also from Theorem 2.1 that xM and x∼N are the
respective fixed point abundances of migrants and non-migrants in
populations that consist of migrants, respectively non-migrants only.
Finally, we plug these values into (8) and obtain that

ϕ* = 310/1950
310/1950 + 0.004/0.04 = 94%,

which means that the optimal allocation strategy is highly skewed
towards migrants in this case.

4. Evolutionary dynamics

An alternative to adaptive dynamics is to model evolution according
to the Evolutionary Game Theory approach as advocated in Lande
(1976, 1982), Vincent and Brown (2005), Allen et al. (2013). In this
methodology, an individual's allocation strategy is denoted by v, and
the mean allocation strategy ϕ t( ) in the population is treated as a
dynamic state variable whose dynamics are governed by Lande's
equation (or the breeder's equation, Fisher's equation, or the canonical
equation of evolution). The methodology provides a coupled system for
the population dynamics and the mean allocation strategy, known as
the Darwinian dynamics:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x t
x t
x t

f x t f x t
vs

v s

x t
x t
x t

( + 1)
( + 1)
( + 1)

=
0 ( ( )) ( ( ))

0 0
(1 − ) 0 0

( )
( )
( )

M
N

M M N N

M
N v ϕ t

M
N

1

= ( )

1

(13)

ϕ t ϕ t σ λ x t v
v( + 1) = ( ) + ∂ ln( ( ( ), )

∂ ,
v ϕ t

2

= ( ) (14)

Eq. (14) states that the change in the mean strategy is proportional to
the fitness gradient. Fitness here is taken to be λ x vln ( ( , )), where λ x v( , )
is the dominant eigenvalue of the matrix

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A x v

f x f x
vs

v s
( , ) =

0 ( ) ( )
0 0

(1 − ) 0 0
.

M M N N

M
N

1

The constant σ2 is related to the (assumed constant) variance of the
strategy throughout the population (equal, or proportional to the
variance, depending on how the trait dynamics are derived) and is
referred to as the speed of evolution.

A straightforward calculation shows that λ x v( , ) equals the square
root of the basic reproduction number associated to A x v( , )1 , which we
already defined in (3):

λ x v R x v R x v vs f x v s f x( , ) = ( ( , )) , where ( , )≔ ( ) + (1 − ) ( ).M M M N N N0 1/2 0

Hence, system (13)–(14) can be re-written as:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x t
x t
x t

f x t f x t
ϕ t s

ϕ t s

x t
x t
x t

( + 1)
( + 1)
( + 1)

=
0 ( ( )) ( ( ))

( ) 0 0
(1 − ( )) 0 0

( )
( )
( )

M
N

M M N N

M
N

M
N

1 1

(15)

ϕ t ϕ t σ
R x t ϕ t

R x t v
v( + 1) = ( ) + 1

2 ( ( ), ( ))
∂ ( ( ), )

∂ ,
v ϕ t

2

0

0

= ( ) (16)

We first study this system for σ = 0, i.e. when there are no evolutionary
forces at work:
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Theorem 4.1. Assume that σ = 02 . Suppose that (H1)–(H2) hold,
and that (4) is satisfied.

Then the following holds:

(1) For every fixed ϕ0 in (0, 1), every positive solution of system (15)–
(16)with initial condition x ϕ( , )0 0 for arbitrary positive x0, converges
to a unique positive fixed point x ϕ ϕ( *( ), )0 0 , where x ϕ*( )0 is the
unique positive fixed point of system (1) with ϕ ϕ= 0 (see Theorem
2.1). The fixed point x ϕ ϕ( *( ), )0 0 is linearly stable with respect to
positive initial conditions with arbitrary positive x0, but fixed ϕ0.

(2) If ϕ = 00 , then every positive solution of system (15)–(16) with
initial condition x ϕ( , )0 0 for arbitrary positive x0, converges to a
unique non-zero fixed point x x( , 0, , 0)∼ ∼N1 , where x > 0∼N is the
unique positive solution to the equation s f z( ) = 1N N , and
x x s= /∼ ∼N N1 . This fixed point is linearly stable with respect to initial
conditions with arbitrary positive x0, but fixed ϕ = 10 .

(3) If ϕ = 10 , then every positive solution of system (15)–(16) with
initial condition x( , 0)0 for arbitrary positive x0, converges to a
unique non-zero fixed point x x( , , 0, 1)M1 , where x > 0∼N is the
unique positive solution to the equation s f z( ) = 1M M , and
x x s= /M M1 . This fixed point is linearly stable with respect to initial
conditions with arbitrary positive x0, but fixed ϕ = 00 .The func-

tion ϕ x ϕ→ *( ) is smooth, and x ϕ x xlim *( ) = ( , 0, )∼ ∼ϕ N→0 1 and
x ϕ x xlim *( ) = ( , , 0)ϕ M→1 1 .

Proof. The proof follows immediately from Theorem 2.1, and the fact
that for each ϕ0 in [0, 1], the set x ϕ ϕ ϕ{( , ) ∈ × [0, 1]| = }+

3
0 is forward

invariant for solutions of system (15)–(16) when σ = 02 .□.
We now turn to the case where σ > 02 . In addition to the

assumptions made in Theorem 4.1, we impose the following condition
which is generically satisfied:

s f s f(0) ≠ (0).M M N N (17)

Equivalently, R ϕ ϕs f ϕ s f(0, ) = (0) + (1 − ) (0)M M N N0 , considered as a
function of the variable ϕ with values in [0, 1], should not be a constant
function.

In the appendix, we prove the following result.

Theorem 4.2. Assume that σ > 02 . Suppose that (H1)–(H2) hold,
and that (4) and (17) are satisfied.

For all σ > 02 , system (15)–(16) has a unique fixed point x ϕ ϕ( *( *), *)
in × [0, 1]+

3 , where ϕ* is given by formula (8), and x ϕ*( *) is the unique
positive fixed point of system (1) with ϕ ϕ= * (see Theorem 2.1).
Moreover, there exists σ* > 02 , such that x ϕ ϕ( *( *), *) is a locally asymp-
totically stable fixed point of system (15)–(16) for all σ σ0 < < *

2 2.

5. Comparing adaptive dynamics and evolutionary game
theoretic approaches

The goal of this paper was to explain how partial migration has evolved,
first using an adaptive dynamics framework which led to Theorem 3.4, and
secondly, by applying the canonical model of evolutionary game theory
which resulted in Theorem 4.2. Perhaps the most striking conclusion is that
both approaches lead to the same, unique evolutionary stable allocation
strategy value ϕ* (for every individual in the context of adaptive dynamics,
but only for the population mean in the evolutionary game theory
methodology)1 given by the formula (8), and reproduced here:

ϕ x x
x x s s

* = /
/ + / .

∼
∼

M N

M N M N

Here, xM and x∼N are the unique roots of the equation s f z( ) = 1M M and

s f z( ) = 1N N respectively, see Theorem 2.1. These roots represent the fixed
point level of migrant adults for a model where no eggs become non-
migrants (model (1) with ϕ = 1), respectively the fixed point level of non-
migrant adults for a model where no eggs grow into migrants (model (1)
with ϕ=0). This formula can be used to predict the optimal allocation
strategy towards migrants, when the vital parameters of both subtypes are
known.

The main difference between both approaches is that we require the
convexity condition (C) in the proof that ϕ* is an ESS of the adaptive
dynamics. Condition (C) expresses that the negative density dependence in
the fertility functions fM and fN should be attenuated. The result based on
evolutionary game theory in Theorem 4.2 does not require such a condition.
This suggests that perhaps condition (C) may not be necessary in the
adaptive dynamics setting. We remark that condition (C) is only a sufficient
condition used to establish that ϕ* is an ESS for the adaptive dynamics;
currently, we do not know whether it is also a necessary condition.

6. Conclusions

This work concisely demonstrates that partial migration can be
attributed to density dependence alone, and does not have to rely on
strategy dependence (also known as “frequency dependence” Lundberg,
2013), or other features. The density dependence used in this model is
perhaps the simplest form of density dependence wherein the densities of
migrants and non-migrants only affect a vital rate within their own type.

There are several possible extensions of the underlying population
model (1). For example, we have ignored juveniles, by only modeling eggs
and adults. It is at least conceivable that the introduction of juvenile
classes whose abundances negatively affect adult fertilities, will not
necessarily lead to an ESS with a corresponding locally stable fixed point
X ϕ*( *) for the coupled model (5), but instead exhibits a stable synchro-
nous periodic cycle. Further work is needed to examine this possibility.

Another important feature of the population model (1) is that it
assumes that the fertilities of migrants and non-migrants is not negatively
affected by the other subtype. Although this assumption is reasonable forO.
mykiss, it is not valid for other species exhibiting partial migration, with
other forms of density dependence (Kokko, 2007; Taylor and Norris, 2007;
Griswold et al., 2011). For example, in some bird populations, nonmigrants
may only experience density dependence in fertilities caused by other
nonmigrant individuals, whereas migrants experience competitive effects
caused by both migrants and non-migrants alike. Indeed, nonmigrants will
be able to select the best breeding grounds prior to the return of the
migrants. The latter will have to deal with nonmigrants that have already
established a breeding spot, and with other returning migrants.
Mathematically, scenarios like this one, can be described by replacing
f x t( ( ))M M in model (1) by f x t x t( ( ) + ( ))M M N , but retaining all other model
parameters and functionals. Although this operation may be perceived as
relatively minor, it is by no means harmless: the resulting populationmodel
is no longer monotone, and therefore alternative proof techniques will have
to be developed to understand the behavior of these models. Nevertheless,
our results can serve as a starting point and background to compare the
behavior of such models to.
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1 In the context of evolutionary game theory, a mean population strategy ϕ*
is said to be an ESS if the Darwinian dynamics has an asymptotically stable
fixed point x ϕ( *, *), and is such that λ x v( *, ), seen as a function of the variable v, has a
global maximum at v ϕ= *. Note that here, λ x v( *, ) is a constant function of v,
and equal to 1; for further discussion of the ESS concept in evolutionary game theory,

(footnote continued)
see Vincent and Brown (2005).
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A.1. Proof of Theorem 2.1

Proof. Case 1: ϕ ∈ (0, 1).
We first show that for each ϕ ∈ (0, 1), there exists a positive vector positive vector b, such that the set:

b z x b[0, ]≔{ ∈ |0 ≤ ≤ },+
3

is compact, forward invariant, and absorbing for system (1). To see this, notice first that continuity of R x ϕ( , )0 , as well as condition (4), imply the
existence of a positive vector aϕ such that R a ϕ( , ) < 1ϕ0 . Consequently, the dominant eigenvalue of the non-negative matrix A a ϕ( , )ϕ1 , denoted by
λP, is also strictly less than 1 by the results in Li and Schneider (2002). Notice that the matrix A a ϕ( , )ϕ1 is irreducible, hence by the Perron-Frobenius
Theorem there is a positive eigenvector zϕ corresponding to the dominant eigenvalue λP:

A a ϕ z λ z( , ) = .ϕ ϕ P ϕ1

We assume without loss of generality that z∥ ∥ = 1ϕ . Let γ* > 0 be such that for all γ γ≥ *:
a γz≤ .ϕ ϕ

Such a γ* clearly exists because zϕ is a positive vector. Condition (H1) then implies that for all γ γ≥ *:
A γz ϕ A a ϕ( , ) ≤ ( , ),ϕ ϕ1 1

where the former inequality holds entry-wise for both matrices. This implies that for all γ γ≥ *:
A γz ϕ γz A a ϕ γz λ γz( , )( ) ≤ ( , )( ) = ( ).ϕ ϕ ϕ ϕ P ϕ1 1 (18)

Thus, by setting b γ z≔ * ϕ, and using the monotonicity of the system, the latter shows that b[0, ] is forward invariant: If x b0 ≤ ≤ , then
T T x T b λ b b0 = (0) ≤ ( ) ≤ ( ) ≤ ≤P , because λ < 1P . The set b[0, ] is clearly compact and we have just established that it is forward invariant. To show

that it is absorbing, let y ≥ 0 be an arbitrary state. Then there is a γ γ> *y such that:

y γ z≤ .y ϕ

Monotonicity and (18) imply that

T T y T γ z λ γ z0 = (0) ≤ ( ) ≤ ( ) ≤ ( ),y ϕ P y ϕ

and more generally that:

T y λ γ z0 ≤ ( ) ≤ ( ),r
P
r

y ϕ

for all positive integers r for which λ γ γ> *P
r

y
−1 . Since λ < 1P , there exists a minimal positive integer r* such that λ γ γ≤ *P

r
y

* , and hence that

T y λ γ z γ z b0 ≤ ( ) ≤ ( ) ≤ * = ,r
P
r

y ϕ ϕ
* *

which shows that the orbit starting in y is absorbed in the set b[0, ] in the r*th step.
Next, we establish that there exists a positive fixed point. First, the right inequality in (4) implies that the zero fixed point is linearly unstable by

the results in Li and Schneider (2002). Note that the linearization of (1) at the zero fixed point is given by A ϕ(0, )1 , which is a non-negative,
irreducible matrix. Hence, this linearization has a dominant eigenvalue μ > 1, and corresponding positive eigenvector v:

A ϕ v μv(0, ) =1

We shall consider the orbit starting in sufficiently small positive scalar multiples of the vector v, and show that these orbits must be increasing. A
Taylor expansion of T yields that

T v T A ϕ v o μ v o v(ϵ ) = (0) + (0, )(ϵ ) + (ϵ) = (ϵ ) + (ϵ) ≥ ϵ ,1

where the last inequality holds for all sufficiently small and positive ϵ because μ > 1. Exploiting monotonicity, we see that the orbit starting in vϵ is
indeed increasing. Since it is bounded above (by b), it must converge, and the limit is necessarily a fixed point, which we denote by x*1 . Then x*1 is
clearly positive since x v* ≥ ϵ1 , and vϵ is a positive vector. We have already shown that T b b( ) ≤ , and exploiting monotonicity once again, we see that
the orbit starting in b is decreasing. Since it is bounded below (by 0), it converges to a fixed point, denoted by x *2 . In fact, we have that:

T v T v T b b0 = (0) ≤ ϵ ≤ (ϵ ) ≤ ( ) ≤ ,
and by monotonicity, there follows that:

x x* ≤ *.1 2

We claim that in fact

x x* = *.1 2

To see this, note that since x*1 and x *2 are fixed points, there holds that:

A x ϕ x x A x ϕ x x( *, ) * = * and ( *, ) * = *1 1 1 1 1 2 2 2

Since both above matrices are non-negative and irreducible, and the vectors x*1 and x *2 are positive vectors, the Perron-Frobenius Theorem implies
that their respective dominant eigenvalues λ1 and λ2 are both equal to 1. However, we also have that

A x ϕ A x ϕ A x ϕ A x ϕ( *, ) ≤ ( *, ) and ( *, ) ≠ ( *, ),1 1 1 2 1 1 1 2

because of condition (H1) (as before, the inequality between the above two matrices holds entry-wise). But then the Perron-Frobenius Theorem
would imply that λ λ<1 2, contradicting that λ λ= = 11 2 . Henceforth, we denote x*1 as x ϕ*( ), to emphasize that the fixed point depends on ϕ.
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We claim that the orbit of every positive initial condition x0 in b[0, ], converges to x ϕ*( ). To see this, note that there is some ϵ > 0 such that
v x bϵ ≤ ≤0 . Exploiting monotonicity, and the fact that the orbits starting in vϵ and b converge to x ϕ*( ), it follows that the orbit starting in x0
converges to x ϕ*( ) as well. In particular, x ϕ*( ) is the unique, positive fixed point in b[0, ]. Finally, since b[0, ] is absorbing, every positive orbit
eventually enters b[0, ], and the first time it enters b[0, ], this occurs in some positive vector. Therefore, every orbit starting in a positive vector must
converge to x ϕ*( ) as well. To see that x ϕ*( ) is linearly stable, consider the Jacobian matrix at x ϕ*( ):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J x ϕ A x ϕ ϕ( *( )) = ( *( ), ) +

0 − −
0 0 0
0 0 0

1

where the −signs in the matrix above represent negative values in view of condition (H1), although their actual values are irrelevant for what values.
Therefore,

J x ϕ A x ϕ ϕ J x ϕ A x ϕ ϕ( *( )) ≤ ( *( ), ), and ( *( )) ≠ ( *( ), ).1 1

Since the dominant eigenvalue of A x ϕ ϕ( *( ), )1 equals 1, as we established above, the Perron-Frobenius Theorem implies that the dominant
eigenvalue of the non-negative and irreducible matrix J x ϕ( *( )) is less than 1. This implies the linear stability of the fixed point x ϕ*( ).

Case 2: ϕ=0.
First notice that every orbit of (1) enters the invariant part of the boundary of +

3 where xM=0 in 1 step. The restriction of the dynamics to this
part of the boundary is given by a planar and monotone system:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

x t
x t

f x t
s

x t
x t

( + 1)
( + 1) = 0 ( ( ))

0
( )
( )N

N N

N N
1 1

Assumption (4) with ϕ=0 implies that the zero fixed point of the above system is linearly unstable, and that it has a compact, invariant and absorbing set of
the form b[0, ]2 for some positive vector b2. This can be proved using similar arguments we used to establish a comparable result for system (1) in the case
where ϕ ∈ (0, 1). Along the same lines, it can also be proved that there is a unique positive fixed point in b[0, ]2 , which is both locally stable, as well as
globally attractive for all positive orbits. In fact, it is straightforward to calculate this fixed point explicitly; it equals x s x( / , )∼ ∼N N N , where x∼N is the unique
solution to the equation s f z( ) = 1N N . (Note that condition (4) can be rephrased as s f s f< 1 < (0)N N N N,∞ , and since fN(z) is decreasing by condition (H1),
there must be a unique solution x∼N ). Linear stability of the corresponding fixed point x s x( / , 0, )∼ ∼N N N of system (1) with ϕ=0 can be established using a
linearization argument as before. And global convergence of positive orbits to this fixed point follows because the fixed point x s x( / , )∼ ∼N N N attracts all positive
orbits of the planar system above, in conjunction with the fact that all orbits of system (1) enter the part of the boundary where xM=0 in 1 step.

Case 3: ϕ=1.
The proof is similar to the case ϕ=0.
To conclude the proof, we remark that the smoothness of the fixed point x ϕ*( ) when ϕ belongs to [0, 1] follows from the Implicit Function

Theorem, applied to the fixed point equation x A x ϕ x= ( , )1 , and the fact established above that the Jacobian matrix J x ϕ( *( )) has dominant
eigenvalue less than 1. The statements regarding the limiting values of x ϕ*( ) as ϕ approaches 0 or 1, follow from the uniqueness of the positive fixed
point (when ϕ ∈ (0, 1)), and of the non-negative fixed point (when ϕ=0 or 1).□.

A.2. Dynamics along a dominant eigenvector

Recall system (10), where the map F(X) is given explicitly by:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

f x y x ϕ x x ϕ f x y x ϕ x x ϕ x ϕ
s ϕ x x ϕ x ϕ

s ϕ x x ϕ x ϕ
y f x y x ϕ y f x y x ϕ

s ϕ y
s ϕ y

( + + * ( *))( + * ( *)) + ( + + *( *))( + *( *)) − *( *)
*( + *( *)) − * ( *)

(1 − *)( + *( *)) − *( *)
( + + * ( *)) + ( + + *( *))

′
(1 − ′)

M M M M M M N N N N N N

M M

N N

M M M M M N N N N N

M

N

1

1 1

1 1

1

1 (19)

Let us start by determining an eigenvector V0 ≤K corresponding to the dominant eigenvalue 1 of the Jacobian matrix J, obtained by linearizing
F at X=0, and given in (12). There must hold that JV=V, or more explicitly, by denoting V v v v v v v= ( ) = ( , , , , , )∼ ∼ ∼v

v
T1 2 3 1 2 3∼ , that:

A x ϕ ϕ v v( *( *), ′) =∼ ∼1 (20)

A x ϕ ϕ B v Bv v( ( *( *), *) + ) + = ,∼1 (21)

where

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A x ϕ ϕ

s s
s ϕ

s ϕ
( *( *), ′) =

0 1/ 1/
′ 0 0

(1 − ′) 0 0
,

M N
M

N
1

and

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A x ϕ ϕ B

s f x ϕ x ϕ s f x ϕ x ϕ
s ϕ

s ϕ
( *( *), *) + =

0 1/ + ′ ( * ( *)) * ( *) 1/ + ′ ( * ( *)) * ( *)
* 0 0

(1− *) 0 0
.

M M M M N N N N

M

N

1

We first find a nonzero solution v∼ for (20). This must be a non-positive vector because we're looking for an eigenvector V in the cone K:
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟v s ϕ

s ϕ
=

− 1
− ′

− (1 − ′)
∼ M

N

Plugging this into (21), and rearranging yields that v must satisfy:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f x ϕ x ϕ f x ϕ x ϕ
s ϕ

s ϕ
v

b− 1 + ′ ( * ( *)) * ( *) + ′ ( * ( *)) * ( *)
* − 1 0

(1 − *) 0 − 1
= 0

0
,

s M M M s N N N

M

N

1 1
M N

(22)

where b f x ϕ x ϕ s ϕ f x ϕ x ϕ s ϕ= ′ ( * ( *)) * ( *) ′ + ′ ( * ( *)) * ( *) (1 − ′) < 0M M M M N N N N because of H1( ). Solving (22) for the vector v yields:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟v det

b
s ϕ b

s ϕ b
ϕ s f x ϕ x ϕ ϕ s f x ϕ x ϕ= 1 *

(1 − *)
, where det= * ′ ( * ( *)) * ( *) + (1 − *) ′ ( * ( *)) * ( *) < 0,M

N
M M M M N N N N′ ′

again because of (H1). The vector v is a positive vector, as expected. In summary, an eigenvector V0 ≤K for the dominant eigenvalue 1 of the matrix
J is given by:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

V

b det
s ϕ b det

s ϕ b det

s ϕ
s ϕ

=

/
* /

(1 − *) /
− 1

− ′
− (1 − ′)

M

N

M
N

Note also that V belongs to the interior of K because ϕ′ ∈ (0, 1). Next, for any ϵ > 0, we set

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

u V

b det
s ϕ b det

s ϕ b det

s ϕ
s ϕ

= −ϵ = ϵ

− /
− * /

− (1 − *) /
1

′
(1 − ′)

,
M

N

M
N

1

(23)

and therefore

u ≤ 0.K1

We now proceed to show that for all sufficiently small ϵ > 0, there also holds that:

u F u≤ ( ).K1 1 (24)

By using a Taylor expansion for F near X=0,

F u Ju h u O u u h u O u( ) = + ( ) + (∥ ∥ ) = + ( ) + (∥ ∥ ).1 1 1 1 3 1 1 1 3 (25)

Here, h h h h h h h= ( , , , , , )T1 2 3 4 5 6 with each h u u H u( ) =i
T

i1 1 1 and Hi being the Hessian with respect to F.i One can verify that h h h h= = = = 02 3 5 6 and
that the corresponding higher order terms O O O O= = =2 3 5 6 vanish too because F F F, ,2 3 5 and F6 are affine functions in X. Henceforth, we focus on
finding the sign of h u( )1 1 and h u( )4 1 .

We start by calculating h u u H u( ) = T
1 1 1 1 1 where H1 is the Hessian corresponding to F1, where from now on we drop the argument ϕ* from the

functions x ϕ* ( *)M and x ϕ*( *)N to economize on the notation:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

H

f x x f x f x x f x
f x x f x f x x f x

f x x f x f x
f x x f x f x

=

0 0 0 0 0 0
0 ′′ ( * ) * + 2 ′ ( * ) 0 0 ′′ ( * ) * + ′ ( * ) 0
0 0 ′′ ( *) * + 2 ′ ( *) 0 0 ′′ ( *) * + ′ ( *)
0 0 0 0 0 0
0 ′′ ( * ) * + ′ ( * ) 0 0 ′ ( * ) 0
0 0 ′′ ( *) * + ′ ( *) 0 0 ′ ( *)

M M M M M M M M M M

N N N N N N N N N N

M M M M M M M

N N N N N N N

1

We denote u u u u u u u= ( , , , , , )T1 1 1 1 1 1 11 2 3 4 5 6 , and simplify h u( )1 1 to:

h u c α u u d β u u αu u u βu u u( ) = ( − )( + ) + ( − )( + ) + ( + ) + ( + ),1 1 1 1 2 1 1 2 1 1 1 1 1 12 5 3 6 5 2 5 6 3 6 (26)

where c f x x d f x x α f x β= ′′ ( * ) * , = ′′ ( *) *, = −2 ′ ( *) and = −2f′ (x*)M M M N N N M M N N . Our goal is te re-write h u( )1 1 as a function of the variable z ϕ ϕ= * − ′. The
coefficients c d α, , and β only depend on ϕ*, but not on ϕ′. Moreover, we can express u u( + )1 12 5 , u u( + )1 13 6 , u15 and u16 in terms of z using the various
values of the components of u1 from (23):

u u det f x x s s z C ϕ z+ = − ϵ ′ ( *) * ≕ − ϵ ( *)N N N M N1 1 12 5 (27)

u u det f x x s s z C ϕ z+ = ϵ ′ ( * ) * ≕ϵ ( *)M M M M N1 1 23 6 (28)

u s z s ϕ= ϵ(− + *)M M15 (29)
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u s z s ϕ= ϵ( (1 + ) − *)N N16 (30)

By plugging (27)–(30) into (26), we obtain h u( )/ϵ1 1 2 as a function of z, denoted by Q z( )1 :

Q z c α C ϕ d β C ϕ αs C ϕ βs C ϕ z αs ϕ C ϕ βs ϕ C ϕ z( ) = [( − ) ( *) + ( − ) ( *) + ( *) + ( *)] + [− * ( *) + (1 − *) ( *)]M N M N1 1
2

2
2

1 2 2 1 2

Clearly, Q (0) = 01 ,

Q αs ϕ C ϕ βs ϕ C ϕ det s s f x f x s ϕ x s ϕ x′ (0) = − * ( *) + (1 − *) ( *) = 2 ′ ( *) ′ ( *)[ * * − (1 − *) *] = 0,M N M N M M N N M M N N1 1 2

were we have used that x s ϕ x* = * *M M 1 and that x s ϕ x* = (1 − *) *N N 1 . These latter two equalities can also be used to show that:

Q det f x x s s f x x f x x s s f x x′′ (0) = 2 [( ′ ( *) * ) ′′ ( * ) * + ( ′ ( * ) * ) ′′ ( *) *] > 0,N N N M N M M M M M M M N N N N1 2
2 2

where we have used the convexity assumption that f x′′ ( *) > 0N N and f x′′ ( * ) > 0M M . This implies that Q z( ) > 01 for all z ≠ 0, and thus that h u( ) > 01 1
for all ϕ ϕ′ ≠ *.

Similarly, h u u H u( ) = T
4 1 1 4 1, where the Hessian H4 takes the form

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
H

p
q

p p
q q

p f x q f x=

0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0
0 0 0 0 2

, with = ′ ( *) and = ′ ( *).M M N N4

Therefore,

h u pu u u qu u u( ) = 2 ( + ) + 2 ( + )4 1 1 1 1 1 1 15 2 5 6 3 6 (31)

By plugging (27)–(30) into (31), and setting Q z h u( ) = ( )/ϵ4 4 1 2, we obtain

Q z ps C ϕ qs C ϕ z qs C ϕ ϕ ps C ϕ ϕ z( ) = [2 ( *) + 2 ( *)] + [2 ( *)(1 − *) − 2 ( *) *]M N N M4 1 2 2 2 1

It can be verified that Q Q(0) = 0 = ′ (0)4 4 , and that

Q s s f x f x
det s x s x′′ (0) = 4 ′ ( *) ′ ( *)) ( * + * ) < 0.M N M M N N

M N N M4

This implies that Q z( ) < 04 for all z ≠ 0, and thus that h u( ) < 04 1 for all ϕ ϕ′ ≠ *. Consequently, (24) holds for all sufficiently small ϵ > 0.

A.3. At most one positive fixed point

We will show that the coupled system (5) has at most one positive fixed point when ϕ ϕ= * and ϕ ϕ′ ≠ *. First recall the system equations:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

x t
x t
x t
y t
y t
y t

A

x t
x t
x t
y t
y t
y t

( + 1)
( + 1)
( + 1)
( + 1)
( + 1)
( + 1)

=

( )
( )
( )
( )
( )
( )

,
M
N

M

N

M
N

M

N

1

1

1

1

(32)

with

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟A A x t y t ϕ

A x t y t ϕ A x ϕ
f x f x

ϕs
ϕ s

= ( ( ) + ( ), *) 0
0 ( ( ) + ( ), ′) , and ( , ) =

0 ( ) ( )
0 0

(1 − ) 0 0

M M N N

M
N

1
1

1

Let x y( , )∼ ∼ be a positive fixed point of (32).
If we set

z s ϕ x ϕ y= ( * + ′ )∼ ∼M1 1 1 (33)

z s ϕ x ϕ y= ((1 − *) + (1 − ′) ),∼ ∼N2 1 1 (34)

then there must hold in particular, that:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

s ϕ s ϕ
s ϕ s ϕ

f z
f z

* (1 − *)
′ (1 − ′)

( )
( ) = 1

1 ,M N
M N

M

N

1

2 (35)

where we have used that x∼1 and y∼1 are both positive. Let
⎛
⎝⎜

⎞
⎠⎟B = s ϕ

s ϕ
s ϕ
s ϕ

*
′

(1 − *)
(1 − ′)

M
M

N
N

, and notice that det B s s ϕ ϕ( ) = ( * − ′) ≠ 0M N since ϕ ϕ′ ≠ *. Hence, the

system (35) can have at most one solution z z( , )1 2 because both functions fM and fN are decreasing by hypothesis (H1), and are therefore 1-to-1
functions. Eqs. (33)–(34) can be re-written as follows:
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

s ϕ s ϕ
s ϕ s ϕ

x
y

z
z

* ′
(1 − *) (1 − ′) =

∼
∼

M M

N N

1

1

1
2 (36)

Similarly, (36) has at most one solution x y( , )∼ ∼1 1 . Since the other components of a fixed point are uniquely determined by x∼1 and y∼1 (namely,
x s ϕ x= *∼ ∼M M 1, x s ϕ x= (1 − *)∼ ∼N N 1 and y s ϕ y= ′∼ ∼

M M 1, y s ϕ y= (1 − ′)∼ ∼
N N 1), we have just shown that the coupled system (32) can have at most one positive

fixed point.

A.4. Proof of Theorem 4.2

Proof. Step 1: We search for the fixed points x ϕ( , ) of system (15)–(16).
If we assume that x = 01 , then x x= = 0M N as well. But then the fixed point equation associated to Eq. (16) implies that s f s f(0) − (0) = 0M M N N ,

contradicting (17). Hence, we assume that the fixed point x ϕ( , ) is such that x > 01 . Then a similar argument implies that

s f x s f x( ) = ( )M M M N N N

must hold, and using x > 01 , that:

ϕ s f x s f x s f x1 = ( ( ) − ( )) + ( )M M M N N N N N N

The last two equations imply that

s f x s f x( ) = 1 = ( ),M M M N N N

but since fM and fN are decreasing functions, the values of xM and xR are uniquely determined:

x x x x= and = ,∼M M N N

see Theorem 2.1. Then it follows that

ϕ ϕ= *,

where ϕ* was defined in formula (8). Finally,

x x ϕ s x ϕ s= /( * )(= /((1 − *) ).∼M M N N1

We have shown that there is a unique fixed point for system (15)–(16), which equals the vector x ϕ ϕ( *( *), *), where x ϕ*( *) is the unique positive
fixed point of system (1) in case ϕ ϕ= *.

Step 2: To prove local asymptotic stability of the fixed point x ϕ ϕ( *( *), *) provided that σ > 02 is sufficiently small, we linearize the Darwinian
system (15)–(16) near the fixed point x ϕ ϕ( *( *), *) yielding the following Jacobian matrix:

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
J σ C x ϕ ϕ σ( ) = ( *( *), *) *

0 1
+

0 0 0 0
0 0 0 0
0 0 0 0
0 − 0

,D
s f x ϕ s f x ϕ

2 2

′ ( * ( *))
2

′ ( * ( *))
2

M M M N N N

where the * represents a 3-dimensional vector whose value is unimportant at present, and the 3×3 non-negative matrix C x ϕ ϕ( *( *), *) is defined as:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟C x ϕ ϕ A x ϕ ϕ

f x ϕ x ϕ f x ϕ x ϕ
( *( *), *) = ( *( *), *) +

0 ′ ( * ( *)) * ( *) ′ ( * ( *)) * ( *)
0 0 0
0 0 0

M M M N N N
1

By (H1), it follows that the nonzero entries in the second matrix on the right, are both negative. Moreover, since A x ϕ ϕ x ϕ x ϕ( *( *), *) *( *) = *( *)1 , it
follows that the dominant eigenvalue of the non-negative matrix A x ϕ ϕ( *( *), *)1 equals 1, and hence the Perron-Frobenius Theorem implies that the
dominant eigenvalue of the non-negative matrix C x ϕ ϕ( *( *), *) is less than 1. Consequently, the dominant eigenvalue of J (0)D is 1, and this
eigenvalue is simple. By continuity of eigenvalues, the matrix J σ( )D 2 will also have a real, simple and dominant eigenvalue λ σ( )p 2 for all sufficiently
small σ2, such that λ (0) = 1p . We claim that λ σ( ) < 1p 2 , at least for all sufficiently small σ2. To prove this, we now examine the roots of the
characteristic polynomial F λ σ λI J σ( , )≔det( − ( ))D2 2 associated to the matrix J σ( )D 2 . To avoid heavy notation, we first recall the definitions of the
functions gM and gN in (H2), and define positive constants a b c d g, , , , and h, and negative constants e and f, as follows:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
J σ

a b
c g
d h

σ e σ f

g x ϕ g x ϕ
ϕ s s x ϕ

ϕ s s x ϕ
σ σ

( ) =
0 0

0 0
0 0 −

0 − 1
≔

0 ′ ( * ( *)) ′ ( * ( *)) 0
* 0 0 * ( *)

(1 − *) 0 0 − * ( *)
0 − 1

D

M M N N

M M

N N
s f x ϕ s f x ϕ

2

2 2

1

1
2 ′ ( * ( *))

2
2 ′ ( * ( *))

2
M M M N N N

(37)

A tedious calculation shows that the characteristic polynomial of the matrix J σ( )D 2 is given by:

F λ σ λ λ σ eg fh ac bd λ ac bd λ σ af be ch dg( , ) = − − [ ( + ) + ( + )] + ( + ) + ( + )( + )2 4 3 2 2 2

Note that F λ( , 0) is positive for all λ λ> 1 = (0)p (since λ (0) = 1p is the dominant root of F λ( , 0), and F λlim ( , 0)=+∞λ→∞ ). Moreover, F λ λ∂ /∂ ( (0), 0)p
must be positive because λ (0) = 1p is a simple root of F λ( , 0) (this can also be shown directly by calculating this partial derivative using the
expression above: F λ λ ac bd∂ /∂ ( (0), 0) = 1 − ( + )p , and this is positive because ac bd+ is the basic reproduction number associated to the matrix
C x ϕ ϕ( *( *), *) which is less than 1, as shown earlier). Therefore, the claim above (namely, that λ σ( ) < 1p 2 , for all sufficiently small σ2) will be proved,
provided we can show that for all sufficiently small σ2, there holds that:

F σ(1, ) > 1.2 (38)
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Evaluating F σ(1, )2 yields:

F σ σ af be ch dg eg fh(1, ) = (( + )( + ) − ( + )).2 2

Therefore, a sufficient condition for (38) to hold, is that:

f a ch dg h e b ch dg g[ ( + ) − ] + [ ( + ) − ] > 0

Recall that e and f are negative, which implies that the above inequality holds if:

ch dg h
a ch dg g

b+ < and + <

or equivalently, by using the definitions of the various parameters in (37), if:

s g x ϕ s g x ϕ′ ( * ( *)) < 1 and ′ ( * ( *)) < 1.M M M N N N

Recalling the definition of the functions gM and gN in (H2), this holds if:

s f x ϕ x ϕ f x ϕ s f x ϕ x ϕ f x ϕ( ′ ( * ( *)) * ( *) + ( * ( *))) < 1 and ( ′ ( * ( *)) * ( *) + ( * ( *))) < 1M M M M M M N N N N N N

However, we have shown in Step 1 that s f x ϕ s f x ϕ( * ( *)) = 1 = ( *( *))M M M N N N , and thus the above inequality holds, provided that:

s f x ϕ x ϕ s f x ϕ x ϕ′ ( * ( *)) * ( *) < 0 and ′ ( * ( *)) * ( *) < 0.M M M M N N N N

By H1( ), these last two inequalities are indeed satisfied. This concludes the proof of this Theorem.□
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