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a b s t r a c t

Marine protected areas (MPAs) are regions in the oceanwhere fishing is restricted or prohibited. Although
several measures for MPA performance exist, here we focus on a specific one, namely the ratio of the
steady state fish densities inside and outside the MPA. Several 2 patch models are proposed and analyzed
mathematically. One patch represents the MPA, whereas the second patch represents the fishing ground.
Fish move freely between both regions in a diffusive manner. Our main objective is to understand how
fish mobility affects MPA performance. We show that MPA effectiveness decreases with fish mobility for
single speciesmodelswith logistic growth, and that densities inside and outside theMPA tend to equalize.
This suggests that MPA performance is highest for the least mobile species. We then consider a 2 patch
Lotka–Volterra predator–prey system. When one of the species moves, and the other does not, the ratio
of the moving species first remains constant, and ultimately decreases with increased fish mobility, again
with a tendency of equalization of the density in both regions. This suggests that MPA performance is not
only highest for slow, but also for moderately mobile species. The discrepancy in MPA performance for
single species models and for predator–prey models, confirms that MPA design requires an integrated,
ecosystem-based approach. The mathematical approaches advocated here complement and enhance the
numerical and theoretical approaches that are commonly applied tomore complexmodels in the context
of MPA design.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Marine protected areas (MPAs) are regions in the ocean where
fishing is restricted or prohibited. They have been used to manage
fisheries for conservation and for habitat restoration, while taking
the economic interests of the fishing fleet into account, both at
local as well as regional scales. For example, MPAs have been
shown to increase the densities of harvested species inside of
MPAs (Halpern, 2003; Claudet et al., 2010), and MPAs may also
increase fish densities outside of the MPA via spillover and/or
larval export (Roberts et al., 2001; Sale, 2005; Goñi et al., 2008).
Spillover is the net movement of adult fish from the reserve
into the fishing grounds. To increase yield from the fishery, the
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density of fish in the fishing grounds must increase enough to
more than compensate for creation of theMPAs and the associated
reduction in the area of the fishing grounds (Roberts et al., 2001;
Kellner et al., 2007; Abesamis and Russ, 2005). Spillover and
larval export are essential to successfully increase fisheries yield,
highlighting the importance of explicitly incorporating movement
into models of MPA function and design (Botsford et al., 2001;
Moffitt et al., 2009; Langebrake et al., 2012). Although some early
mathematical models of MPAs did not explicitly include spatial
movement (Mangel, 1998; Hastings and Botsford, 1999), there
has also been an extensive numerical modeling literature where
models do include fish mobility dating back to the work (Beverton
and Holt, 1957) by Beverton and Holt, see for instance Polacheck
(1990) for single speciesmodels, and (Walters et al., 1999;Walters,
2000; Micheli et al., 2004; White, 2008; White and Samhouri,
2011; Takashina et al., 2012) for numerical models that include
predators and prey, or (Baskett et al., 2007; Kellner and Hastings,
2009; Kellner et al., 2010; Barnett and Baskett, 2015) for numerical
models with multiple trophic levels and structure.
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Aprevailing conclusion of these numerical investigations is that
MPAs are believed to be effective for slow species, but far less so
for more mobile species. This aligns with most field assessments
of MPAs that show that densities of fish inside MPAs are much
greater than densities outside of MPAs (Halpern, 2003; Claudet
et al., 2008, 2010), but that increased species mobility diminishes
this effect. In Moffitt et al. (2009) it is shown that in a model with
both larval and adult movement, species persistencemay decrease
sharply when the home range of the adults increases, and is less
dependent on larval dispersal distances. This suggest that the adult
dispersal rates and distances are important features inMPA design.
However, recent studies have suggested that some of the putative
beneficial effects of MPAs have alternative explanations, e.g. due
to biases in siting of MPAs (Osenberg et al., 2011) or differential
movement of fishes inside vs. outside of MPAs (Eggleston and
Parsons, 2008; Langebrake et al., 2012). In the recent review
Baskett and Barnett (2015), it is shown that alternative hypotheses
may lead to opposing effects of MPAs on disease prevalence, on
density-dependent fish movement, and on the strength of trophic
cascades withinMPAs. On the other hand, the same review Baskett
and Barnett (2015) indicates that MPAs tend to increase species
diversity, and tend to decrease the variability of several measures,
including fish biomass.

These findings indicate that there is currently not always a
consensus about the factors that promote MPA effectiveness,
and therefore a continued (re-)evaluation is necessary. We
propose to contribute to this effort by using a more rigorous
analytical approach, instead of the more traditional numerical and
simulation-based methods. One of our findings is that MPAs can
also be effective for species with intermediate movement rates,
especially in the context of predator–prey systems. This agrees
with the more recent empirical findings, and would enlarge the
class of species that would benefit from protected areas.

The purpose of this paper in particular, is to mathematically
investigate how differences in species impact MPA performance.
We considered two kinds of variations in species ecology. First,
species have variable mobility, which is represented by diffusivity
parameters in our mathematical models. Second, species interact
through a simple predator–prey relation, rather than considering
isolated species.

Throughout the paper wewill use a traditional measure of MPA
effectiveness, namely the ratio of the densities of each species
inside versus outside the MPA. Our analysis is guided by two
specific questions which are part of the folklore in ecological
modeling:

• Is increased mobility always stabilizing? That is, if species
mobility is increased, will the system display a higher degree
of stability, both locally as well as globally?

• Is increased mobility always equalizing? That is, if species
mobility is increased, will the density ratio get closer to 1?

There are several other measures for MPA effectiveness that
are commonly used in the theoretical and empirical literature,
such as the fisheries yield, and the ratio of total biomass inside
versus outside, or before versus after MPA implementation. For a
similar mathematical analysis of the behavior of these other MPA
measures with respect to fish mobility for a related single-species,
spatially-explicit model, see Langebrake et al. (2012). As discussed
in White et al. (2011), the interpretation of the numerical values
of all these MPA efficiency measures should always be considered
in the appropriate context by MPA designers andmanagers. This is
accomplished by incorporating as many features as possible about
size and scale of theMPA, as well as the life-histories of the species
that the MPA is intended to protect.

Empirical data (Claudet et al., 2010) shows that the ratio of the
density of fish inside versus outside an MPA increase as mobility

of the fish increase. Specifically, among commercially exploited
fishes, the least mobile species showed an approximately 2-fold
increase and the most mobile species showed a 2.64-fold increase
in abundance in response to protection.We first show that a simple
model with only a single fish species contradicts this empirical
result. However, as already mentioned, many fish species are
part of a foodweb or of trophic cascades. Here we consider a
predator–prey system with one predator and one prey. In some
cases, this additional feature in the model does allow the ratios
of both predator and prey to increase when the mobilities of
either the predator or the prey is increased. For example, we will
show that the prey steady state ratio increases with prey mobility,
provided that the predator mobility is low.

2. One-species MPA-FG model

We considered an environment that consists of two patches.
One is the MPA, and the other is the Fishing Ground (abbreviated
to FG henceforth). The variable u1(t) is the fish density in the
MPA at time t and u2(t) is the fish density in the FG. Inside each
patch, fish densities follow the logistic differential equation (Kot,
2001), with per-capita growth rates r(1 − u/K). In the FG, there
is removal of fish at the per-capita harvesting rate f . Fish migrate
between the two patches according to Fick’s law: the migration
rate is proportional to the difference of the fish densities in both
patches, in the direction of the patch with lower density. These
assumptions yield the system of equations:

du1

dt
= ru1(1 − u1/K) + D(u2 − u1),

du2

dt
= ru2(1 − u2/K) − fu2 + D(u1 − u2)

= r̃u2(1 − u2/K̃) + D(u1 − u2),

(1)

where

r̃ := r − f and K̃ := K
r̃

r
, (2)

where the sign of r̃ , or equivalently of K̃ , may or may not be pos-
itive. We cannot directly solve for the non-extinction equilibrium
of (1), but we can characterize this equilibrium. It satisfies
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r
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(3)

where ρ := u1
u2

is the ratio of the fish densities. Dividing the first

by the second, noting that K

r
= K̃

r̃
, and rearranging gives the cubic

equation for the equilibrium ratio

F(ρ,D) := ρ3 +
�

r̃

D
− 1

�
ρ2 −

�
r

D
− 1

�
ρ − 1 = 0. (4)

For a fixed value of the diffusivity parameter D, any solution ρ of
(4) such that the corresponding values of u1 and u2 in (3) are pos-
itive, yields a positive steady state. It is shown in Theorem 1 in the
Appendix A that such a positive steady state is always unique, that
it is globally stable, and that the corresponding ratio ρ is always
larger than 1. More precisely, if f ≤ 2r , then there is a positive
steady state for every positive value of D. If f > 2r on the other
hand, a positive steady state exists only if D < r r̃/(r + r̃) =: Dmax.
Furthermore, it can be shown by implicit differentiation of (4) that
the ratio ρ is a decreasing function of D in all cases. If f ≤ 2r , then
ρ → 1 as D → ∞. But if f > 2r , then ρ → (f − r)/r > 1
as D → Dmax. The expressions (3), and the fact that ρ > 1 for
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all D, show that the steady state fish density in the MPA is always
decreasing with D, whereas the steady state FG density is increas-
ing. Hence, more mobile species will have higher FG densities, but
lower MPA densities than less mobile species.

Note also that increasing diffusivity never destabilizes the
unique positive steady state. Moreover, increased mobility is in-
deed equalizing because the steady-state ratio of MPA versus FG
densities is always larger than 1, and decreases with higher mo-
bility. These conclusions are similar to those in Polacheck (1990),
Walters et al. (1999), Walters (2000), although those papers con-
sider different models, different MPAmeasures, and use a numeri-
cal instead of analytical approach. In contrast, empirical data shows
that this ratio increases (Claudet et al., 2010).

3. Predator–prey MPA-FG model

The classic, appropriately scaled (see Appendix B), Lotka–
Volterra model of the population dynamics of predator and prey
fish is

dx

dt
= x(r − y),

dy

dt
= y(x − d),

(5)

where x and y are the densities of prey and predator fish,
respectively (Lotka, 1932; Volterra, 1926). The per capita growth
rate of the prey is r , and it is assumed to be positive, and the death
rate of the predator is d, which is also assumed to be positive.

An interesting feature of this model concerns the values of
the unique positive steady state (x̄, ȳ) = (d, r). Indeed, the
predator steady state value is completely determined by a prey
characteristic, namely r , and similarly the prey steady state value
is determined only by a predator feature, namely d.

Althoughmodel (5) provides an explanation for the oscillations
in predator and prey densities, it has been criticized for several
reasons. We mention two of these. First, in the absence of the
predator, the prey would grow unbounded exponentially, which is
clearly an unrealistic feature. Secondly, the system is structurally
unstable. Indeed, arbitrarily small perturbations in the vector field
can lead to drastically different dynamics, including blow-up of all
solutions. These issues have been addressed in various ways. For
example, the linear term rx in the prey equation can be replaced
by a logistic term rx(1 − x/K), and the mass-action term xy can be
replaced by a Holling type II function which takes the form

mx

x + a
y, (6)

with positive parameters m and a, resulting in the Rosen-
zweig–MacArthur model (Rosenzweig and MacArthur, 1963). For
small values of K , the Rosenzweig–MacArthur model has a unique,
globally stable steady state, whereas for a certain value of K , the
steady state undergoes a Hopf bifurcation, giving rise to a unique
limit cycle. This phenomenon has been called the Paradox of En-

richment: A richer environment for the prey, encoded by a larger
carrying capacity K , may destabilize the positive steady state. Fur-
thermodelmodifications that avoid the Paradox of Enrichment are
discussed in Kuang and Beretta (1998). For more general preda-
tor–prey system modeling, see Bazykin (1998).

Despite all these attempts to buildmore realistic predator–prey
models, we will use the basic Lotka–Volterra predator model (5)
as the basic building block for the 2-patch model introduced be-
low. One reason is that this basic form allows us to perform a
more comprehensive global analysis of the 2-patch model. But
the main reason is that our analytical work on more complicated
2-patch models with Rosenzweig–MacArthur interactions, did not

behave fundamentally differently, and did not offer any new in-
sights. Including this analysis could only obscure the true causes of
the biological phenomena we wish to understand, and hence we
have decided not to include it here. Nevertheless, some numerical
evidence illustrating our findings will be presented in the Discus-
sion Section.

Coupled MPA-FG predator–prey model We extend the
Lotka–Volterramodel (5) to a 2-patchMPA-FG system.We assume
Lotka–Volterra interactions within each patch, and include con-
stant per capita fishing rates fx and fy for prey and predator respec-
tively in the FG (see Appendix B). Coupling between MPA and FG
occurs via diffusive coupling terms. The model equations are:

dx1

dt
= x1(r − y1) + Dx(x2 − x1), (7a)

dy1

dt
= y1(x1 − d) + Dy(y2 − y1), (7b)

dx2

dt
= x2

�
r̃ − y2

�
+ Dx(x1 − x2), (7c)

dy2

dt
= y2

�
x2 − d̃

�
+ Dy(y1 − y2), (7d)

where

r̃ := r − fx < r, d̃ := d + fy > d, (8)

andDx andDy are the diffusivities of prey and predator.We assume
henceforth that:

r̃ > 0,

i.e. we assume that prey fishing occurs at moderate levels. First,
when there is no diffusive coupling between the patches (i.e. when
Dx = Dy = 0), the non-extinction steady-state equals (d, r, d̃, r̃).
The corresponding steady state ratio of the prey densities inside
versus outside the MPA is

ρ0
x

:= x
∗
1

x
∗
2

= d

d̃

< 1. (9)

Notice that fishing of the predator causes the prey density to be
larger in the FG than in theMPA. This constitutes a first remarkable
difference with what happens in the single-species case described
by a logistic equation, where this steady-state ratio is larger than
1. For the predator, there is an opposite effect. Indeed, the predator
steady state ratio is

ρ0
y

:= y
∗
1

y
∗
2

= r

r̃
> 1, (10)

whenever prey is being fished. Thus, the predator density in the
MPA is larger than in the FG.

Our goal is to understand the dynamics when predator and/or
prey are moving between MPA and FG. The most complete picture
of the system’s behavior arises when one of the species moves,
but the other does not. We address these two cases first, before
continuing on to the general case where both species move.

Predators move, but prey do not: Dx = 0 and Dy > 0. It is
shown in Theorem 2 in the Appendix C that the non-extinction
steady state is

E
∗
y

= (x∗
1, y

∗
1, x

∗
2, y

∗
2)

=
�
d + Dy(1 − (ρ0

y
)−1), r, d̃ + Dy(1 − ρ0

y
), r̃

�
, (11)

where ρ0
y

> 1 was defined in (10). E∗
y
is the unique positive steady

state if and only if

0 ≤ Dy <
r̃ d̃

r − r̃
. (12)
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Fig. 1. Steady stateMPA/FG ratios when the predatormoves, but the prey does not,
versus predator diffusivity Dy (prey ratio in blue dashed line, predator ratio in solid
green). The prey ratio crosses 1 when Dy = D

crit

y
= 2/3 per time unit, showing that

increased predator diffusivity is not always equalizing. Parameters used: r = 2,
fx = 1, d = 1, fy = 1, all in units of 1/time. The positive steady state E

∗
y
exists and

is globally stable for 0 ≤ Dy < 2. The boundary steady state E
∗
MPA is globally stable

for Dy > 2.

Note that the predator steady-state values r and r̃ in MPA and
FG respectively, are constant, and do not depend on the predator
mobility Dy. This is because the steady state values of the predator,
are determined by the prey equations, and these equations are
not affected by the predator diffusivity Dy. Since the steady-state
densities for the predator do not depend on Dy, neither does their
ratio. In contrast, the prey steady-state values do depend on Dy.
The MPA prey density increases with Dy, whereas the FG density
decreases to zero. Hence, the prey ratio increaseswithDy. It crosses
the value 1 at Dcrit

y
= (d̃ − d)/(ρ0

y
− (ρ0

y
)−1), and it approaches

infinity when Dy approaches r̃ d̃/(r − r̃), see Fig. 1.
In Appendix C.5 we show that there are other steady states on

the boundary. One of these is

E
∗
MPA =

�
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

, r, 0,
rDy

d̃ + Dy

�

,

and it exists for all positive values of Dy. When Dy is in the range of
(12), then E

∗
MPA is unstable, but when

Dy >
r̃ d̃

r − r̃
,

then E
∗
MPA is stable and attracts all positive solutions. This suggests

that a transcritical bifurcation occurs at Dy = r̃ d̃/(r − r̃). The
positive steady state E

∗
y
ceases to exist when Dy is pushed beyond

this bifurcation value, and it exchanges stability with the boundary
steady state E

∗
MPA.

Let us offer a biological explanation of these results. Assume
that we start with a configurationwhere not only the prey, but also
the predator does not move, i.e. Dy = 0. Then the MPA density of
the predator equals r , which is larger than the FG density, where
it equals r̃ . Now suppose that Dy is increased slightly. A key fact is
that this increase in Dy does not change the predator steady-state
densities in MPA or FG. These remain equal to r and r̃ respectively.
This follows immediately from the prey steady state Eqs. (7a) and
(7c) because the prey does notmove (Dx = 0), and because there is
no density dependence in the prey growth. As soon as Dy becomes
positive, there will be a net flux of predators from MPA to FG. This

is a consequence of Fick’s law which stipulates that movement is
directed from locations of high towards low density. But this net
flux of predators will decrease the predator density in the MPA
(and increases it in the FG). The reduction of predators in the MPA
will benefit prey there, but similarly, the increase in predators
in the FG is harmful for prey there. Thus, MPA prey density will
increase, but FG prey density will decrease, and consequently, the
ratio of MPA/FG prey densities must increase.

What is truly remarkable, is that the same argument remains
valid when we increase the predator diffusivity starting from any

positive value, and not just starting from zero. Indeed, as already
mentioned, the increase of Dy does not affect the values of the
predator steady state values in MPA and FG. As a result the net
flux caused by an increased predator diffusivity, is always directed
from the MPA to the FG. But then just as before, the prey density
will increase in the MPA (but decrease in the FG), and thus the
ratio of the MPA/FG prey densities must increase. Of course, this
is sustainable only as long as the (decreasing) prey density in the
FG remains positive, and this only happens for a finite range of
predator diffusivities, as indicated by the range in (12). We have
shown that when Dy = 0, the prey ratio is less than one, and
when Dy approaches its upper bound, the ratio grows unbounded
(because the denominator of the ratio goes to zero, whereas its
numerator remains bounded). Since the ratio always increases
with Dy, there must be a unique value of Dy where the prey ratio
equals one. The relevance of this threshold is that it accurately
determines when increasing predator diffusivity has an equalizing
effect on prey densities: Equalization occurs as long as the predator
diffusivity remains below the threshold. For values of Dy outside
the range of (12), there is no longer a positive steady state: The
predator diffusivity has become too large, and instead a boundary
steady state for which there is no more prey in the FG is now
globally stable. In otherwords, the predator’s diffusivity has driven
the prey to extinction in the FG. Remarkably, the prey density in the
MPA is increasing with respect to predator diffusivity, and so is the
predator density in the FG.

Prey move, but predators do not: Dx > 0 and Dy = 0.
In the case where only the prey moves, there are, depending on
the value of the prey diffusivity Dx relative to 3 threshold values,
distinct possible dynamics. These thresholds for Dx are r̃, r and
D̄x = r̃ d̃/(d̃ − d). Since r̃ < r and d̃ > d, it follows that r̃ < D̄x. Let
us assume that r̃ < D̄x < r (the case r̃ < r < D̄x can be handled
in a similar way). We now let Dx vary from 0 to ∞. First, as long as
Dx < D̄x, it is shown in Theorem 3 in the Appendix C, that there is
a unique positive steady state

E
∗
x

=
�
d, r + Dx(d̃ − d)/d, d̃, r̃ − Dx(d̃ − d)/d̃

�
, (13)

and it is globally stable with respect to positive solutions. At this
steady state, both species coexist in both regions. The steady-state
densities of the prey do not depend on Dx, and therefore neither
does the prey’s steady state ratio. Once again, this is due to the
fact that the predator does not move. In contrast, the predator
steady state density is increasing in the MPA, but decreasing in
the FG when Dx increases; consequently the predator’s steady-
state ratio is increasing. This ratio is always larger than 1, and
approaches infinity as Dx approaches D̄x, see Fig. 2. In Theorem 6
in the Appendix C, we show that when Dx increases from zero
beyond the first threshold r̃ , an (unstable) boundary steady state
E

∗∗
MPA shows up where the predator exists only in the MPA:

E
∗∗
MPA =

�
d, r + r̃Dx/(Dx − r̃), dDx/(Dx − r̃), 0

�
. (14)

When Dx is further increased beyond D̄x, there is a transcritical
bifurcation, where the positive steady state E

∗
x
disappears via the

boundary steady state E∗∗
MPA, which in turn becomes globally stable.
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Fig. 2. Steady state MPA/FG ratios when the prey moves, but the predator does
not, versus prey diffusivity Dx (predator ratio in blue dashed line, prey ratio in solid
green). The predator ratio is always above 1, and it increases with Dx , showing that
increased prey diffusivity is never equalizing theMPA and FG steady state densities.
Parameters used: r = 2, fx = 1, d = 1, fy = 1, all in units of 1/time. The positive
steady state E

∗
x
exists and is globally stable for 0 ≤ Dx < 2. The boundary steady

state E
∗∗
MPA is globally stable for Dx ≥ 2.

The predator can no longer survive in the fishing ground when
Dx surpasses D̄x. The prey’s steady state ratio at E∗∗

MPA is no longer
constant, but increaseswithDx, and approaches 1 asDx approaches
infinity. Finally, when Dx is pushed above r , a new steady state
E

∗∗
FG shows up, where the predator can only exist in the fishing

ground, but this steady state is always unstable. In summary, for
slow prey, the prey’s steady state densities in MPA and FG are
constant, and always higher in the FG. This causes a constant flux
of prey that move from FG into the MPA, and as long as there is
some surplus prey in the FG, the predator can survive there. But
when the prey moves too fast, there is no surplus prey left in the
FG and the predator collapses there. The prey ratio is nowno longer
constant, but increases with prey mobility. Furthermore, in this
regime, increased prey mobility has an equalizing effect on prey
densities in MPA and FG.

Both predators and prey move: Dx > 0 and Dy > 0. In
Theorem 4 in the Appendix C, we show that for any positive pair
of Dx and Dy diffusivities, there is a unique positive steady state.
The predator steady-state ratio ρy is always larger than 1, and the
prey steady-state ratio ρx is less than 1 (or larger than 1) if Dy

is less than D
crit

y
(respectively, larger than D

crit

y
), where D

crit

y
:=

(d − d̃)/(ρ0
y

− (ρ0
y
)−1):

ρy > 1 and ρx

�
< 1 if Dy < D

crit

y

> 1 if Dy > D
crit

y
.

(15)

In Theorem 5 we show that if Dy < D
crit

y
, then the following

sensitivities hold:
∂ρx

∂Dx

> 0,
∂ρy

∂Dx

> 0,
∂ρx

∂Dy

> 0,
∂ρy

∂Dy

< 0 (16)

and that the positive steady state is locally stable.
On the other hand, if Dy > D

crit

y
, then the following sensitivities

hold:
∂ρx

∂Dx

< 0,
∂ρy

∂Dx

< 0,
∂ρx

∂Dy

> 0,
∂ρy

∂Dy

< 0. (17)

In this case, we currently do not have a proof of local stability of
the positive steady state.

We can summarize some of the conclusions encoded by (15)–
(17) as follows:

Increased diffusivity of one of the species, always leads to an

equalizing effect on that same species.

Let us prove this statement for the prey species for example (the
proof is similar for the predator). We distinguish two cases, de-
pending on whether the predator diffusivity Dy is above or below
the threshold D

crit

y
. If Dy < D

crit

y
, then ρx < 1, and according to the

first sensitivity inequality in (16),ρx increaseswithDx, establishing
the claim above. Similarly, ifDy > D

crit

y
, then ρx > 1, and according

to the first sensitivity inequality in (17), ρx now decreases with Dx,
once again establishing the claim.

The effect of an increase of the mobility of one species on the
other species is more complicated. As long as Dy is small (i.e. Dy <

D
crit

y
), then (16) predicts that an increased prey mobility prevents

the predator ratios from equalizing, whereas increased predator
mobility promotes equalization of the prey densities. For large
values of Dy (i.e. Dy > D

crit

y
) however, these conclusions are

reversed, according to (17).

4. Discussion

From single species models to predator–prey systems.

Single-species models that include movement are frequently
represented as reaction–diffusion equations, see Cantrell and
Cosner (2003). In an MPA context such PDE models have been
used to investigate the effects of a higher diffusion coefficient on
various measures of MPA effectiveness, both through simulations
(Pérez-Ruzafa et al., 2008) and elementary mathematical analysis
(Langebrake et al., 2012). The results of these papers are consistent
with those presented in Theorem1, although themodel considered
here is a 2-patch model in which space is discrete and consists
of two points, rather than a continuum as in the aforementioned
PDEs. The model investigated here also ignores size structure (and
hence also possibly size-dependent fecundities). Whereas all these
single species models, including the one investigated here, predict
that higher diffusivity gives rise to a lower density ratio, this
conclusion contradicts the empirical data in Claudet et al. (2010).
This paradoxmotivated us to the shift our focus from single species
models to two species models, and in particular to predator–prey
systems.

Of course, this specific choice, is only one of many, and several
others have already been proposed elsewhere. For example, in
Langebrake et al. (2012), a single species PDE model was analyzed
that includes a specific movement bias at the boundary between
the MPA and FG. The bias was assumed to be directed towards the
MPA because the MPA affords extra protection from harvesting. It
was shown that for sufficiently high bias parameters the density
ratio is increasing with diffusivity.

In this paper, we explored a 2 patch predator–prey model.
When only one of the species moves, the steady state ratio of the
non-moving species, increases with the diffusivity parameter of
the moving species. The steady state ratio of the moving species
always tends to one with increased diffusivity, which shows that
increased diffusivity has an equalizing effect on MPA and FG
densities. If this moving species is a prey, then the prey ratio is
increasing, just like the data in Claudet et al. (2010) (if it is a
predator, the ratio is still decreasing, like in the single species
model).

In the general case where both predator and prey move, we
showed that increased diffusivity of one species, always has an
equalizing effect on that same species. For a predator, the ratio is
always decreasing. For a prey, it depends: When the predator is
slow, the prey ratio is decreasing, but when the predator is fast, the
prey ratio is increasing with prey diffusivity. The latter result can
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therefore be used to reconcile theoretical model predictions with
the empirical data in Claudet et al. (2010). For instance, if many of
the species in the study of Claudet et al. (2010) are prey species
in a predator–prey system with sufficiently slow predator, then
there is agreement betweenmodel and data. But if they are mostly
predators, this would not be the case, and other models should be
used to explain the discrepancy.

Reality is of course not that simple; many species are part of
larger networks, andmay be both predator aswell as prey. Not only
predator–prey interactions are relevant to MPA assessment and
design. For example, most fish populations exhibit stage structure
with larval, juvenile and adult stages, or more complicated trophic
structures (de Roos and Persson, 2013; Kellner et al., 2010). None
of our models include more than 2 trophic levels. Nevertheless,
nothing precludes the use of the mathematical methods exploited
here, in the analysis of more complicated models.

From synchronization to global stability. There is a rich
literature on the diffusive coupling of 2 or more systems described
by nonlinear ODEs, see Hastings (1978), Holland and Hastings
(2008), Hale (1997), Holt (1985), Kuang and Takeuchi (1994) and
Jansen (1995). In Hastings (1978) for instance, it is shown that
certain diffusively coupled Lotka–Volterra models (not necessarily
of the predator–prey type) may under certain conditions, be
globally stable. However, a crucial assumption in that work is that
the dynamics in each patch is the same. Clearly, this assumption
is violated in an MPA-FG context. From a wider perspective, the
work by Hale in Hale (1997) is focused on the diffusive coupling
of rather arbitrary nonlinear ODE models. When the dynamics of
the uncoupledmodels is the same, it is shown that synchronization
occurs. That is, the ‘diagonal’ of the state space attracts the system’s
solutions for sufficiently large diffusivity parameters. In other
words, the state of all the patches converges to the same-yet, not
necessarily constant-value, provided that the diffusivity parameter
is large enough. Although these results are related to ours, there
are three fundamental differences. First, synchronization does
not imply that the coupled system has a globally stable steady
state. Indeed, one can for example synchronize two chaotic Lorenz
attractors through diffusive coupling. Secondly, synchronization
only occurs under the assumption that the uncoupled systemshave
the same dynamics, which is obviously not the case in an MPA
context. (If the dynamics of the coupled systems are sufficiently
close to each other, then a weaker phenomenon, namely that of
almost synchronization, may occur. A system almost synchronizes
when its statemerely converges to arbitrarily small neighborhoods
of the diagonal for all sufficiently strong coupling terms.) Thirdly,
synchronization, as well as almost synchronization, requires that
the diffusivity parameter is sufficiently large. Our focus here is on
(i) cases where the uncoupled systems differ significantly (MPA
versus FG dynamics) (ii) a more detailed understanding of how
they behave asymptoticallywhen coupled diffusively; in particular
on global stability (iii) scenarios in which the diffusivities can be
small, and even zero. More recent related work in the context
of synchronization of many coupled predator–prey systems has
appeared in Holland and Hastings (2008). There, the predator
and prey interact according to the Rosenzweig–MacArthur model,
and the emphasis is on how the network structure affects the
synchronization of clusters in the resulting coupled system.

Let us now return to some of the fundamental ecological
questions underlying this work:
1. Is diffusion stabilizing? The smoothing effects of diffusion
are well-known, but when coupled with reaction terms that
model various biological and physical processes (growth, decay,
consumption, (bio)chemical reactions etc.), the combined effect of
diffusion and reactions may in fact destabilize a system, as shown
by Alan Turing. Turing considered a system of 2 reaction–diffusion
equations with homogeneous reaction terms, and showed that the

homogeneous steady state corresponding to a steady state of the
reaction terms alone, may become unstable when diffusion of both
species is allowed. However, Turing also identified which type of
reaction systems have the potential to achieve this (in addition
to pointing out that the diffusivities of both species should be
different), and he showed that predator–prey interactions are not
among these. Similar results can be obtained in diffusively coupled
patch models,1 and although the predator–prey dynamics is not
homogeneous across the patches in our models, our main results
are consistent with Turing’s observations, that diffusion cannot
destabilize our coupled predator–prey systems. Specifically, when
only one of the species moves, we have shown that the coupled
MPA-FG system exhibits a unique positive and globally stable
steady state, at least for some range of the diffusivity parameter of
the moving species (Theorems 2 and 3). When both species move,
there is still a unique positive steady state, and we have shown
that it is locally stable if the predator diffusivity is sufficiently small
(Theorem 2).

On the other hand, there is an interesting phenomenon that can
occur here. Prior to coupling (i.e. when both predator and prey dif-
fusivities are zero), the uncoupled MPA-FG system has a neutrally
stable steady state, because the linearization has 4 eigenvalues on
the imaginary axis. When coupling occurs by making at least one
of the diffusivities positive, the steady state of the coupledMPA-FG
system is asymptotically stable: all 4 eigenvalues of the lineariza-
tion are to the left of the imaginary axis. But further increasing the
diffusivity parameter does not necessarily push these eigenvalues
more to the left. In fact, Theorem 2 (as well as a similar result in
Theorem 3) revealed that if r̃ d̃ > rd, then the unique positive
steady state will once again be neutrally stable whenDy = D

∗
y
. This

means that, whereas initially, larger diffusivity parameters tend to
stabilize the steady state, even larger values of this parameter will
bring the steady state closer to the region of instability again. In
otherwords, a larger diffusivity parameter does not necessarily im-
ply a more stable steady state.

In Huang and Diekmann (2003) the effect of a different kind of
coupling in a 2 patch predator–prey system is established. Rather
than assuming that the rate of movement of predator and prey is
governed by the imbalance between the densities of each species
in the 2 patches, it is assumed that the flux of the prey depends
on the density of the predator, and vice versa. The underlying
idea of this specific flux is that prey will tend to flee the patch
where the predator is at high density, whereas predators prefer to
move to the patch where the prey density is high. Interestingly,
although the coupling terms proposed here are different from
those in Huang and Diekmann (2003), the conclusions for the
models are the same: In both cases, coupling cannot destabilize
the system. In the related work Huang and Diekmann (2001) by
the same authors, a detailed bifurcation analysis is performed
for a coupled Rosenzweig–MacArthur model with two patches in
which only the predator moves. Predator movement is based on
prey densities, and parametrized by a parameter that quantifies
how mobile a predator is while it is handling its prey. The focus
of Huang and Diekmann (2001) is on whether or not this kind
of predator mobility can always dampen the severe oscillations
which are prevalent in predator–prey systems that lack a mobility
component, and it is shown that this is not the case — see also
Maciel and Kraenkel (2014) for more recent work on a PDE model.
The contrast between the stabilizing (Huang and Diekmann, 2003)

1 Interestingly, for diffusively coupled predator–prey systems with a so-called
quiescence phase considered in Hadeler (2013), diffusive instability is possible.
But such systems are characterized by an inherent heterogeneity in the reaction
dynamics in the patches (any reaction dynamics is shut off in the quiescent phase),
whereas these dynamics are assumed to be the same in Turing’s context.
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versus the non-stabilizing (Huang and Diekmann, 2001) effect
due to increased mobility, demonstrates how important it is to
understand what exactly the driving forces are behind species
mobility.

The work of Kuang and Takeuchi (1994) is closely related
to ours and also establishes the global stability of a positive
steady state in a model of a prey which moves between 2
patches, and a predator who does not perceive these patches,
and whose density is therefore modeled by a single variable.
The predator–prey interactions are allowed to be more general
than the Lotka–Volterra type, yet the coupled system has only 3
instead of 4 state variables. Also closely related is the work of Liu
(2010), whichwas in part inspired by some fascinating simulations
in Jansen (1995), used to explain the Paradox of Enrichment
by allowing the coupling of predator–prey systems of the
Rosenzweig–MacArthur type. Although the models in Liu (2010)
assume Rosenzweig–MacArthur predator–prey interactions, the
results are weaker since global stability is only proved when
the patch dynamics are the same, whereas here we prove global
stability in the case of unequal patch dynamics, provided that at
least one of the predator or prey species does not move.

To test how general our conclusions are, we explored more
realistic, diffusively coupled 2 patch predator–prey system using
Rosenzweig–MacArthur predator–prey dynamics instead of the
simple Lotka–Volterra analyzed in this paper. Although the math-
ematical analysis is more complicated than in the Lotka–Volterra
case, thesemore realistic models behave similarly as the ones con-
sidered in this paper. Since adding additional complicating features
to models that do not fundamentally change their underlying be-
havior, only has an obscuring effect – because it does not allow us
to disentangle which feature is responsible for what effect – we
have chosen not to include these analytical results for the more
general models. Nevertheless, we present some numerical results
to illustrate our findings, for the following model:

ẋ1 = rx1

�
1 − x1

K

�
− mx1

a + x1
y1 + Dx(x2 − x1)

ẏ1 = y1

�
mx1

a + x1
− d

�

ẋ2 = r̃x2

�
1 − x2

K̃

�
− mx2

a + x2
y2 + Dx(x1 − x2)

ẏ2 = y2

�
mx2

a + x2
− d̃

�
.

Here, only the preymoves, and r̃ = r−fx, K̃ = K r̃/r , and d̃ = d+fy.
In Fig. 3 we plot the steady state ratios of the positive steady state
(for those diffusivity values Dx for which it exists), as well as the
ratios corresponding to a boundary steady state corresponding to
a case where there is no more prey left in the FG.

We see that qualitatively, these steady state ratios behave like
the corresponding ratios in case of Lotka–Volterra interactions, see
Fig. 2. Thus, despite the simplicity of the Lotka–Volterra models,
they seem to be able to capture well how MPA effectiveness
changes with species mobility.

2. Is diffusion equalizing? First of all, it is natural to inquire
whether or not increased diffusivity of one species has an
equalizing effect on the steady state ratio of that same species.
When only one of the species moves – be it the predator or the
prey – the answer is always no. This is because the steady state
densities of the diffusing species are independent of the diffusivity
parameter. Consequently, the steady state ratio remains constant
for that species, and thus there is no effect whatsoever. In contrast,
when both the predator and the prey move, the answer is always
yes according to Theorem 5.

Secondly, one may inquire about the effect of an increased
diffusivity of one species, on the steady state ratio of the other

Fig. 3. Steady state MPA/FG ratios in a Rosenzweig–MacArthur coupled patch
model when the prey moves, but the predator does not, versus prey diffusivity Dx

(predator ratio in blue dashed line, prey ratio in solid green). The predator ratio is
always above 1, and it increases with Dx , showing that increased prey diffusivity
is never equalizing the predator densities. Parameters used: r = 2, fx = 1, K = 2,
m = 3, a = 1d = 0.5, fy = 0.5. The positive steady state E∗

x
exists for 0 ≤ Dx < 5/6,

and the boundary steady state E
∗∗
MPA for Dx ≥ 5/6.

species. According to Theorem 2, when the predator moves, but
the prey does not, the prey densities are equalizing as long as the
predator diffusivity is not too large. Beyond a critical threshold
however, the prey ratio is larger than one and continues to grows
with increased predator diffusivity. When the prey moves and the
predator does not, Theorem3 shows that increased prey diffusivity
is never equalizing for the predator. And when both species move,
Theorem 5 shows that there are exactly 2 situations in which
increased diffusivity is not equalizing. It occurs for the predator
with respect to an increasing prey diffusivity, provided that the
predator is slow. And it also happens for the prey with respect to
an increasing predator diffusivity, when the predator is fast.

Some remarks for policy makers Policy makers face the
important decision on when and where to implement MPAs. On
the one hand, they need to protect fish from over-harvesting
and possible collapse. And on the other hand, they should weigh
this against the economic interests of fishermen. Difficult as such
decisions may seem to be, this paper has shown that other factors
can complicatematters evenmore. The focus here has been on two
specific features:

1. How species mobility affects various measures of MPA effec-
tiveness?

2. How important is it to take into accountwhether a given species
is part of a predator–prey system?

We have shown that in case of a single adult species, the MPA/FG
ratio is always larger than one, but decreases for more mobile fish.
This is one reasonwhyMPAs are often believed to bemore effective
for less mobile species.

However, suppose that this same species is known to be the
predator in a predator–prey system in which the prey does not
move. Then the MPA/FG ratio of this predator is still always larger
than one, and it also ultimately decreases, but only after remaining
constant for a large interval of predator mobilities. In other words,
in this case, MPAs are predicted to be effective for many species,
with mobilities ranging from low to moderately high. Thus, MPAs
might be an appropriate management tool for a larger class of
species than anticipated on the basis of predictions of single species
models.
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Appendix A. One-species MPA-FG model

Theorem 1. When system (1) admits a positive steady state (u∗
1, u

∗
2),

it is unique, stable and attracts all positive solutions. The ratio ρ∗ =
u

∗
1/u

∗
2 > 1 is a decreasing function of the diffusivity D.

• If f ≤ 2r, the positive steady state exists for all values D > 0. The
ratio ρ∗

converges to 1 as D → ∞.

• If f > 2r, the positive steady state exists only if 0 < D < Dmax :=
r r̃

r+r̃
. The ratio ρ∗

converges to
f−r

r
as D → Dmax.

Proof. Recall that positive steady states satisfy (3), where ρ := u1
u2

is the ratio of the fish densities, and that therefore ρ satisfies (4).
Whenever convenient, we will also use an equivalent expression
for F :

F(ρ,D) = (ρ − 1)(ρ2 + 1) + r̃

D
ρ2 − r

D
ρ.

We begin by noting that the root of interest must be greater than
max

�
1, 1 − r̃

D

�
. Indeed, if 0 < r̃ < r , then for all 0 < ρ ≤ 1, we

have

F(ρ,D) < (ρ − 1)(ρ2 + 1) + r

D
ρ2 − r

D
ρ

= (ρ − 1)
�
ρ2 + r

D
ρ + 1

�
< 0,

hence F has no roots in the interval (0, 1] and 1 − r̃/D < 1. If, on
the other hand, r̃ < 0 < r , then the root ρ∗ corresponding to a
positive equilibriummust satisfy ρ∗ > 1− r̃/D > 1 to ensure that
uFG > 0, see (3). Nowwewill argue that Eq. (4) admits at most one
root ρ∗ > max

�
1, 1 − r̃

D

�
.

Consider any value ρ∗ such that F(ρ∗,D) = 0 and ρ∗ >
max(1, 1 − r̃/D). Differentiating F with respect to ρ, we obtain

Fρ(ρ,D) =
�
3ρ2 − 2ρ + 1

�
+ 2r̃ρ − r

D

=
�
3ρ2 − 2ρ + 1

�
+ r̃ρ − r

D
+ r̃ρ

D
.

Since

r̃ρ∗ − r

D
= −(ρ∗)2 + ρ∗ − 1 + (ρ∗)−1,

we find that

Fρ(ρ∗,D) = 2(ρ∗)2 − ρ∗ + (ρ∗)−1 + r̃ρ∗

D

= ρ∗(ρ∗ − (1 − r̃/D)) + (ρ∗)2 + (ρ∗)−1,

which is positive since ρ∗ > max(1, 1− r̃/D). This readily implies
the uniqueness of the root ρ∗.

Now,we analyze the existence ofρ∗. If r̃ > 0, then the existence
of ρ∗ > 1 follows from the fact that F(1,D) = (r̃ − r)/D < 0 by
(2), and limρ→+∞ F(ρ,D) = +∞. Furthermore, ρ∗ > 1 exists for
all D > 0. Now, consider the case r̃ < 0 < r (equivalently, f > r).
A direct evaluation shows that

F(1 − r̃/D,D) = 1
D

�
−r̃ − r + r r̃

D

�
= 1

D

�
f − 2r + r(r − f )

D

�
.

If r < f < 2r , we have that F(1− r̃/D,D) < 0 for all D > 0, hence
ρ∗ exists for all D > 0. If f > 2r , then F(1 − r̃/D,D) < 0 if and
only if

D < Dmax := r(f − r)

f − 2r
= r r̃

r + r̃
.

(Note that Dmax is half of the harmonic mean of r and r̃ .) Hence, if
f > 2r , a positive steady state exists only for D < Dmax.

Differentiating F with respect to D, we obtain

FD(ρ
∗,D) = − r̃(ρ∗)2 − rρ∗

D2 = (ρ∗)3 − (ρ∗)2 + ρ∗ − 1
D

.

Since ρ∗ > 1, we conclude that FD(ρ∗,D) > 0. Using the Implicit
Function Theorem, we conclude that there is a unique, smooth and
decreasing function ρ∗(D) such that F(ρ∗(D),D) = 0. A direct
calculation shows that ρ∗(D) → 1 asD → +∞ in the case f < 2r ,
and ρ∗(D) → f−r

r
> 1 as D → Dmax in the case f > 2r .

Finally, since system (1) is a strongly monotone system, it can
be shown that all positive solutions converge to the unique steady
state (u∗

1, u
∗
2), see Proposition 4.4.1 in Smith (1995). �

Appendix B. Predator–prey model

Recall the celebrated Lotka–Volterra predator–prey model:

dx

dt
= x(r − cy),

dy

dt
= y(cx − d),

(18)

where x and y are the densities of prey and predator respectively,
and r , c and d are positive constants, representing the per capita
growth rate of the prey, the capture rate, and the predator’s
mortality rate, respectively. Rescaling time by t

� = ct , r � = r

c
, and

d
� = d

c
(and suppressing the prime notation) simplifies the system

to

dx

dt
= x(r − y),

dy

dt
= y(x − d).

(19)

It is straightforward to show that there is a unique positive steady
state E

∗ = (x∗, y∗) = (d, r), which is neutrally stable. In fact, the
system is conservative and has first integral

V (x, y) =
�

x

x∗

�
1 − x

∗

s

�
ds +

�
y

y∗

�
1 − y

∗

s

�
ds, (20)

which is easily verified by a straightforward calculation.

B.1. The effect of fishing

When the prey and predator are harvested at rates fx and fy

respectively, we get the system

dx

dt
= x(r − y) − fxx,

dy

dt
= y(x − d) − fyy.

(21)

Note that (21) takes the formof the classical Lotka–Volterra system

dx

dt
= x(r̃ − y),

dy

dt
= y(x − d̃),

(22)
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where

r̃ := r − fx < r and d̃ := d + fy > d. (23)

As in the case of the single-species model, we assume that the prey
harvesting rate is small enough to avoid population collapse, fx <
r . Then r̃ > 0 and hence system (21) has a unique, neutrally stable
positive steady state Ẽ = (d̃, r̃). This system is also conservative.

Appendix C. Predator–prey MPA-FG model

C.1. Predator moves, but prey is sessile

Here we investigate the case where Dx = 0 and Dy > 0. Then

E
∗
y

= (x∗
1, y

∗
1, x

∗
2, y

∗
2)

=
�
d + Dy(1 − (ρ0

y
)−1), r, d̃ + Dy(1 − ρ0

y
), r̃

�
, (24)

where ρ0
y

> 1 was defined in (10), is the unique positive steady
state if and only if

0 ≤ Dy <
r̃ d̃

r − r̃
. (25)

Theorem 2. Suppose that Dx = 0 and Dy ∈ Iy :=
�
0, r̃ d̃

r−r̃

�
. Then

1. E∗
y
attracts all positive solutions of (7).

(a) If r̃ d̃ ≤ rd, E
∗
y
is linearly stable for all Dy ∈ Iy.

(b) If r̃ d̃ > rd, E
∗
y
is linearly stable for all Dy ∈ Iy\

�
D

∗
y

:= r̃ d̃−rd

2(r−r̃)

�
,

and neutrally stable when Dy = D
∗
y
due to the linearization at

E
∗
y
having a pair of purely imaginary eigenvalues, in addition

to two eigenvalues with negative real part.

2. The steady-state prey ratio x
∗
1/x

∗
2 is increasing with Dy. It is less

than one if Dy < (d̃ − d)/(ρy − ρ−1
y

) =: D
crit

y
, but larger than

or equal to 1 otherwise, and it tends to infinity as Dy → r̃ d̃

r−r̃
.

Consequently, increasing the diffusivityDy is equalizing for the prey

if Dy remains below D
crit

y
. But it is not equalizing when Dy exceeds

this bound.

3. The steady-state predator ratio y
∗
1/y

∗
2 = r/r̃ is constant in Dy.

Proof. The proofs of the second and third statements follow
immediately from an inspection of the steady state expressions
as functions of Dy in (11). Note in particular that (d̃ − d)/(ρ0

y
−

(ρ0
y
)−1) ∈ Iy. To prove the global attractivity in the first statement

we will start by constructing a weak Lyapunov function, and
then conclude the proof by an application of LaSalle’s invariance
principle.

Define

V (x1, y1, x2, y2)

=
�

x1

x
∗
1

�
1 − x

∗
1

s

�
ds +

�
y1

y
∗
1

�
1 − y

∗
1

s

�
ds

+ C

��
x2

x
∗
2

�
1 − x

∗
2

s

�
ds +

�
y2

y
∗
2

�
1 − y

∗
2

s

�
ds

�

,

where C > 0 is a constant determined below. Note that
V is positive semi-definite in int(R4

+), and zero if and only if
(x1, y1, x2, y2) = (x∗

1, y
∗
1, x

∗
2, y

∗
2). It is also a proper function in

int(R4
+).

We calculate the derivative along a solution of (7) in int(R4
+):

V̇ = (r − y1)
�
x1 − x

∗
1
�
+ (x1 − d)

�
y1 − y

∗
1
�

+Dy

�
y2

y1
− 1

�
(y1 − y

∗
1) + C

�
(r̃ − y2)

�
x2 − x

∗
2
�

+ (x2 − d̃)
�
y2 − y

∗
2
�
+ Dy

�
y1

y2
− 1

�
(y2 − y

∗
2)

�

= −(y1 − y
∗
1)(x1 − x

∗
1) + (x1 − x

∗
1)(y1 − y

∗
1)

+Dy

�
1 − (ρ0

y
)−1� (y1 − y

∗
1) + Dy

�
y2

y1
− 1

�
(y1 − y

∗
1)

+ C
�
−(y2 − y

∗
2)(x2 − x

∗
2) + (x2 − x

∗
2)(y2 − y

∗
2)

�

+ C

�
Dy

�
1 − ρ0

y

�
(y2 − y

∗
2) + Dy

�
y1

y2
− 1

�
(y2 − y

∗
2)

�

= Dy(y1 − y
∗
1)

�
y2

y1
− (ρ0

y
)−1

�
+ CDy(y2 − y

∗
2)

�
y1

y2
− ρ0

y

�

= Dy

y1
y2

− ρ0
y

ρ0
y

y1
y2

�
−(y1 − y

∗
1) + Cρ0

y

y1

y2
(y2 − y

∗
2)

�
.

Set

C = (ρ0
y
)−1,

and after first simplifying and factoring out y∗
2 in the last factor in

parentheses, we find that:

V̇ = Dy

y1
y2

− ρ0
y

ρ0
y

y1
y2

y
∗
2

�
y
∗
1

y
∗
2

− y1

y2

�
= −Dy

�
y1
y2

− ρ0
y

�2

ρ0
y

y1
y2

y
∗
2 ≤ 0,

which implies that all positive solutions remain bounded, and
bounded away from the boundary of int(R4

+) (both by properness
of V ). Note also that V̇ = 0 if and only if

y1

y2
= ρ0

y
, (26)

and by LaSalle’s invariance principle, every positive solution
converges to the largest invariant set contained in the set where
(26) holds. Let us consider the dynamics of the ratio y1(t)/y2(t)
along positive solutions of system (7):

d

dt

�
y1(t)

y2(t)

�
= y1(t)

y2(t)

�
x1(t) − x2(t) − (d − d̃)

�

+Dy

�

1 −
�
y1(t)

y2(t)

�2
�

.

Thus, if a solution is such that it is contained in the set where (26)
holds, then the left-hand side of the last equationmust be zero, and
we can set y1(t)/y2(t) = ρ0

y
in the right-hand side. Consequently,

the difference of x1(t) and x2(t) along such a positive solution is
constant:

x1(t) − x2(t) = (d − d̃) + Dy(ρ
0
y

− (ρ0
y
)−1). (27)

Moreover, when (26) holds, it follows that:

ẋ1

x1
− ρ0

y

ẋ2

x2
= 0,

and hence x1x
−ρ0

y

2 is constant as well. Together with (27), this
implies that x1(t) and x2(t)must remain constant, both necessarily
positive. Then the system Eqs. (7a) and (7c) imply that y1(t) and
y2(t) must remain constant, also both positive. Thus, any solution
satisfying (26) must coincide with the unique positive steady state
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E
∗. In summary, we have shown that every positive solution must

converge to the positive steady state.
Finally, we apply the Routh–Hurwitz Theorem to assess the

local stability properties of E∗
y
. The linearization of (7) at E∗

y
is:





0 −x
∗
1 0 0

y
∗
1 −(ρ0

y
)−1

Dy 0 Dy

0 0 0 −x
∗
2

0 Dy y
∗
2 −ρ0

y
Dy





which has characteristic polynomial:

λ4 + a3λ
3 + a2λ

2 + a1λ + a0,

where

a3 = Dy(ρ
0
y

+ (ρ0
y
)−1)

a2 = x
∗
1y

∗
1 + x

∗
2y

∗
2

a1 = Dy((ρ
0
y
)−1

x
∗
2y

∗
2 + ρ0

y
x
∗
1y

∗
1)

a0 = x
∗
1x

∗
2y

∗
1y

∗
2.

The Routh–Hurwitz Theorem states that all the roots of this
polynomial have negative real part if and only if the four entries
of the first column of the Routh–Hurwitz table are positive:

a0 > 0, a3 > 0, a2a3 − a1 > 0, and
a1a2a3 − (a21 + a0a

2
3) > 0.

The above expressions for a0 and a3 clearly show that the first
two inequalities hold because E

∗
y
is a positive steady state if Dy ∈

Iy. To check the third inequality, we use the definition of E∗
y
in (11),

and invoke the definition of ρ0
y

= r/r̃ , to express a2a3−a1 in terms
of the 4model parameters r, d, r̃ and d̃. Somemanipulations reveal
that

a2a3 − a1 = Dy

rr̃

�
r r̃(r̃d + rd̃) − Dy(r − r̃)2(r + r̃)

�
.

Note that the term in parentheses is linearly decreasing in Dy. We
evaluate it when Dy equals the upper bound of Iy, i.e. for Dy =
r̃ d̃/(r − r̃), and find that it equals r̃

2(rd + r̃ d̃), which is positive.
Hence,

a2a3 − a1 > 0 for all Dy ∈ Iy.

To check the sign of the fourth quantity from theRouth–Hurwitz
Theorem, we also express it in terms of the 4 model parameters.
After some tedious calculations, we find that it is a product of two
quadratic expressions in Dy:

a1a2a3 − (a21 + a0a
2
3) = D

2
y

�
2(r − r̃)Dy + (rd − r̃ d̃)

�2

≥ 0 if Dy ∈ Iy.

Notice that the above inequality is strict for all Dy ∈ Iy if rd ≥ r̃ d̃.
However, if rd < r̃ d̃, it is zero if and only if Dy = D

∗
y
, and in this

case, the Routh–Hurwitz criterion fails because the fourth row in
the Routh–Hurwitz table consists of zeros only. To further explore
this case, we assume that rd < r̃ d̃ and Dy = D

∗
y
, and construct an

auxiliary polynomial:
a2a3 − a1

a3
λ2 + a0,

and note that this polynomial has 2 purely imaginary roots
(the coefficient of λ2 is positive, and so is a0). Consequently,
the characteristic polynomial has two purely imaginary roots.
Furthermore, the derivative of the auxiliary polynomial with
respect to λ is 2(a2a3 − a1)/a3λ, which is used to replace the
zero in the 4th entry of the first column of the Routh–Hurwitz

table. Completing the table in the usual way yields a table with
only positive entries in the first column, and thus the characteristic
polynomial has no roots in the open right-half plane. Since it has
two roots on the imaginary axis, it must also have two roots with
negative real part. �

C.2. Prey moves, but predator is sessile

Here we investigate the case where Dx > 0 and Dy = 0. Then

E
∗
x

= (x∗
1, y

∗
1, x

∗
2, y

∗
2)

=
�
d, r + Dx((ρ

0
x
)−1 − 1), d̃, r̃ + Dx(ρ

0
x

− 1)
�

, (28)

whereρ0
x

< 1was defined in (9), is the unique positive steady state
if and only if

0 ≤ Dx <
r̃ d̃

d̃ − d

. (29)

Theorem 3. Suppose that Dx ∈ Ix :=
�
0, r̃ d̃

d̃−d

�
and Dy = 0. Then

1. E∗
x
attracts all positive solutions of (7).

(a) If r̃ d̃ ≤ rd, E
∗
x
is linearly stable for all Dx ∈ Ix.

(b) If r̃ d̃ > rd, E
∗
x

is linearly stable for all Dx ∈ Ix \�
D

∗
x

:= r̃ d̃−rd

2(d̃−d)

�
, and neutrally stable when Dx = D

∗
x
due

to the linearization at E
∗
x
having a pair of purely imaginary

eigenvalues, in addition to two eigenvalues with negative real

part.

2. The steady state prey ratio x
∗
1/x

∗
2 = d/d̃ is constant in Dx.

3. The steady state predator ratio y
∗
1/y

∗
2 increasing with Dx. It is

larger than one for all Dx ∈ Ix, and it increases to infinity as Dx

approaches r̃d̃/(d̃−d). Consequently, increasing the diffusivity Dx

is never equalizing for the predator.

Proof. This proof is very similar to that of Theorem 2, hence it will
only be presented in abbreviated form. The proofs of the second
and third statements follow immediately from an inspection of the
steady state expressions as functions ofDx in E

∗
x
. To prove the global

attractivity, we define

V (x1, y1, x2, y2)

=
�

x1

x
∗
1

�
1 − x

∗
1

s

�
ds +

�
y1

y
∗
1

�
1 − y

∗
1

s

�
ds

+ C
�
��

x2

x
∗
2

�
1 − x

∗
2

s

�
ds +

�
y2

y
∗
2

�
1 − y

∗
2

s

�
ds

�

,

where C
� > 0 is a constant to be determined below. Note that

V is positive semi-definite in int(R4
+), and zero if and only if

(x1, y1, x2, y2) = (x∗
1, y

∗
1, x

∗
2, y

∗
2). It is also a proper function in

int(R4
+).

Similar calculations as in the previous section show that the
derivative of V satisfies:

V̇ =
Dx

�
x2
x1

− (ρ0
x
)−1

�

x2
x1

�
(x1 − x

∗
1)

x2

x1
− C

�ρ0
x
(x2 − x

∗
2)

�

=
−x

∗
1Dx

�
x2
x1

− (ρ0
x
)−1

�2

x2
x1

≤ 0,

by choosing C
� = (ρ0

x
)−1. We find that V̇ = 0 if and only if

x2
x1

= (ρ0
x
)−1, and by LaSalle’s invariance principle, every positive

solution converges to the largest invariant set contained in the set
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where this identity holds. Consider a solution with x2
x1

≡ (ρ0
x
)−1.

Differentiating the ratio x2
x1

and setting the derivative equal to zero,
we find that

0 ≡ (ρ0
x
)−1(r̃ − r + y1 − y2) + Dx(1 − (ρ0

x
)−2),

hence y1 − y2 remains constant along such solution. In addition,
we have that
ẏ1

y1
− ρ0

x

ẏ2

y2
≡ 0,

therefore the product y1y
−ρ0

x

2 remains constant as well. Combining
these two results, we conclude that both y1 and y2 remain constant,
hence x1 ≡ x

∗
1 and x2 ≡ x

∗
2. From this, it follows that y1 ≡ y

∗
1 and

y2 ≡ y
∗
2. Thus, the only solutionwith x1

x2
≡ ρ0

x
is the positive steady

state which attracts all positive solutions.
Finally, we apply the Routh–Hurwitz Theorem to assess the

local stability properties of E∗
x
. The linearization of (7) at E∗

x
is:





−(ρ0
x
)−1

Dx −x
∗
1 Dx 0

y
∗
1 0 0 0

Dx 0 −ρ0
x
Dx −x

∗
2

0 0 y
∗
2 0





which is similar bypermuting first and second, and third and fourth
variables to:




0 y
∗
1 0 0

−x
∗
1 −(ρ0

x
)−1

Dx 0 Dx

0 0 0 y
∗
2

0 Dx −x
∗
2 −ρ0

x
Dx





which by the proof in the previous section has characteristic
polynomial:

λ4 + a3λ
3 + a2λ

2 + a1λ + a0,

where

a3 = Dx(ρ
0
x

+ (ρ0
x
)−1)

a2 = x
∗
1y

∗
1 + x

∗
2y

∗
2

a1 = Dx((ρ
0
x
)−1

x
∗
2y

∗
2 + ρ0

x
x
∗
1y

∗
1)

a0 = x
∗
1x

∗
2y

∗
1y

∗
2.

The Routh–Hurwitz Theorem states that all the roots of this
polynomial have negative real part if and only if the four entries
of the first column of the Routh–Hurwitz table are positive:

a0 > 0, a3 > 0, a2a3 − a1 > 0, and
a1a2a3 − (a21 + a0a

2
3) > 0.

As before a0 and a3 are positive for all Dx ∈ Ix. Furthermore,
some algebra shows that:

a2a3 − a1 = Dx

dd̃

�
dd̃(r̃d + rd̃) + Dx(d̃ − d)2(d̃ + d)

�
> 0,

for all non-negative Dx. Finally,

a1a2a3 − (a21 + a0a
2
3) = D

2
x

�
2(d̃ − d)Dx − (r̃ d̃ − rd)

�2

≥ 0 if Dx ∈ Ix.

This inequality is strict for all Dx ∈ Ix if rd ≥ r̃ d̃. However,
if rd < r̃ d̃, it is zero if and only if Dx = D

∗
x
, and in this case,

the Routh–Hurwitz criterion fails because the fourth row in the
Routh–Hurwitz table consists of zeros only. Continuing as in the
proof in the previous section we see that if rd < r̃ d̃ and Dx = D

∗
x
,

then the characteristic polynomial has a pair of purely imaginary
roots, in addition to a pair of roots with negative real part. �

C.3. Both predator and prey move

Here we consider the case where both Dx > 0 and Dy > 0. We
start by establishing that there always is a unique positive steady
state.

Theorem 4. Suppose that Dx > 0 and Dy > 0. Then (7) has a unique,
positive steady-state E

∗
xy

= (x∗
1, y

∗
1, x

∗
2, y

∗
2). Moreover, the prey and

predator steady state ratios ρx := x
∗
1/x

∗
2 and ρy := y

∗
1/y

∗
2 satisfy:

ρy > 1, and ρx






< 1, if Dy < D
crit

y
:= d − d̃

ρ0
y

− (ρ0
y
)−1

= 1, if Dy = D
crit

y

> 1, if Dy > D
crit

y
.

If ρx ≤ 1, or equivalently if Dy ≤ D
crit

y
, then E

∗
xy

is locally

asymptotically stable.

Proof. We seek a positive solution (x1, y1, x2, y2) to the system

0 = x1(r − y1) + Dx(x2 − x1)

0 = y1(x1 − d) + Dy(y2 − y1)

0 = x2(r̃ − y2) + Dx(x1 − x2)

0 = y2(x2 − d̃) + Dy(y1 − y2).

Defining the ratios ρx := x1/x2 and ρy := y1/y2, we can uniquely
express all state variables in terms of ρx and ρy as follows:

y1 = r + Dx(1/ρx − 1), (30)
x1 = d − Dy(1/ρy − 1), (31)

y2 = r̃ + Dx(ρx − 1), (32)

x2 = d̃ − Dy(ρy − 1). (33)

These values, in turn, must satisfy

ρx = d − Dy(1/ρy − 1)
d̃ − Dy(ρy − 1)

= (d + Dy)ρy − Dy

ρy(d̃ + Dy − Dyρy)
:= F(ρy),

ρy = r + Dx(1/ρx − 1)
r̃ + Dx(ρx − 1)

= (r − Dx)ρx + Dx

ρx(r̃ − Dx + Dxρx)
:= G(ρx).

Positive equilibria correspond to solutions of the system ρx =
F(ρy), ρy = G(ρx) in the region where the following inequalities
are satisfied

(d + Dy)ρy − Dy > 0, d̃ + Dy − Dyρy > 0,
(r − Dx)ρx + Dx > 0, r̃ − Dx + Dxρx > 0.

(34)

We will study this system graphically. First, consider the curve
ρx = F(ρy) in the first quadrant. It is a graph of an increasing
function starting at the point (ρx, ρy) = (0, Dy

d+Dy
) and approaching

a horizontal asymptote ρy = d̃+Dy

Dy
. Note the relation Dy

d+Dy
< 1 <

d̃+Dy

Dy
. Also note that the quantities (d+Dy)ρy−Dy and d̃+Dy−Dyρy

are simultaneously positive if and only if ρy ∈
�

Dy

d+Dy
,

d̃+Dy

Dy

�
.

Second, the shape of the curve ρy = G(ρx) varies slightly with
the value of Dx. We recall that 0 < r̃ < r .

1. If Dx ≤ r̃ < r , the curve ρy = G(ρx) in the first quadrant
is a graph of a decreasing function with a vertical asymptote
at ρx = 0 and a horizontal asymptote ρy = 0. Therefore, the
system ρx = F(ρy), ρy = G(ρx) has a unique positive solution.
Furthermore, it is clear that this solution satisfies (34).
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2. If r̃ < Dx ≤ r , the curve ρy = G(ρx) in the first quadrant
is a graph of a decreasing function with a vertical asymptote
at ρx = Dx−r̃

Dx
and a horizontal asymptote ρy = 0. Again, the

system ρx = F(ρy), ρy = G(ρx) has a unique positive solution
which satisfies (34).

3. If r̃ < r < Dx, the curve ρy = G(ρx) in the first quadrant
is graph of a decreasing function with a vertical asymptote at
ρx = Dx−r̃

Dx
< 1 and a zero at ρx = Dx

Dx−r
> 1. Again, the system

ρx = F(ρy), ρy = G(ρx) has a unique positive solution which
satisfies (34).

We conclude that for any positive combination (Dx,Dy), the system
admits a unique positive equilibrium E

∗
xy

= (x1, y1, x2, y2).
In all three cases, we have that F(1) = d/d̃ < 1 with F

increasing and G(1) = r/r̃ > 1 with G decreasing, therefore the
point of intersection (ρx, ρy) always occurs in the region where
ρy > 1.Whether or not ρx is less or larger than 1, ismore intricate:

• If r/r̃ = G(1) ≥ (d̃ + Dy)/Dy, then r/r̃ is outside the domain of
the function F in the first quadrant, and hence then ρx > 1 in all
three cases. But the condition r/r̃ > (d̃ + Dy)/Dy is equivalent
to:

Dy ≥ r̃ d̃

r − r̃
. (35)

• On the other hand, if r/r̃ = G(1) < (d̃+Dy)/Dy, or equivalently
if Dy < r̃ d̃/(r − r̃), then r/r̃ does belong to the domain of
the function F in the first quadrant in all three cases. Since F

is invertible (as it is increasing there), it follows that ρx satisfies
the following:

ρx

�
> 1 if and only if F(r/r̃) > 1
= 1 if and only if F(r/r̃) = 1
< 1 if and only if F(r/r̃) < 1.

(36)

Using the definition of the function F , it is easily verified that
this is equivalent to

ρx






> 1 if and only if Dy > D
crit

y

= 1 if and only if Dy = D
crit

y

< 1 if and only if Dy < D
crit

y
,

(37)

where D
crit

y
= (d̃ − d)/(ρ0

y
− (ρ0

y
)−1).

Since D
crit

y
< r̃ d̃/(r − r̃), we can summarize the location of ρx with

respect to 1, in terms of the value of Dy: For all positive Dx and Dy,
we have that the prey steady state ratio satisfies

ρx






> 1 if and only if Dy > D
crit

y

= 1 if and only if Dy = D
crit

y

< 1 if and only if Dy < D
crit

y
.

The Jacobian matrix at E∗
xy

takes the form




r − y1 − Dx −x1 Dx 0
y1 x1 − d − Dy 0 Dy

Dx −0 r̃ − y2 − Dx −x2

0 Dy y2 x2 − d̃ − Dy



 ,

which after substituting the equilibrium relationships and using
the previously defined ratios ρx = x1/x2 and ρy = y1/y2 simplifies
to




−Dxρ
−1
x

−x1 Dx 0
y1 −Dyρ

−1
y

0 Dy

Dx −0 −Dxρx −x2
0 Dy y2 −Dyρy



 .

The characteristic polynomial of this matrix is given by

p(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ + a0,

where

a3 = DxAx + DyAy,

a2 = DxDyAxAy + x1y1 + x2y2,

a1 = (Dxρx + Dyρy)x1y1 +
�
Dxρ

−1
x

+ Dyρ
−1
y

�
x2y2,

a0 = DxDy

�
x1ρy + x2ρ

−1
x

� �
y1ρx + y2ρ

−1
y

�
+ x1x2y1y2,

Ax := ρx + ρ−1
x

,

Ay := ρy + ρ−1
y

.

All coefficients of p(λ) are clearly positive. Furthermore,

a2a3 − a1 = (DxAx + DyAy)AxAy + (Dxρx + Dyρy)x2y2

+ (Dxρ
−1
x

+ Dyρ
−1
y

)x1y1 > 0.

The key quantity, determining the stability of the positive equilib-
rium, isD = a1(a2a3−a1)−a0a

2
3, which after tedious calculations

can be expressed as

D =
�
D
2
x
+ DxDy(ρxρ

−1
y

+ ρyρ
−1
x

) + D
2
y

�
(x1y1 − x2y2)

2

+D
2
x
Dy(DxAx + DyAy)x2y2(ρx − 1)(ρ2

x
+ 1)(1 − ρ−2

x
ρy)

+DxD
2
y
(DxAx + DyAy)x2y2(ρy − 1)(ρ2

y
+ 1)(1 − ρ−2

y
ρx).

The term on the first line is always nonnegative. The terms on
the second and third lines are strictly positive provided that at
the positive equilibrium the inequality Dy ≤ D

crit

y
, or equivalently,

ρx ≤ 1 < ρy holds. Thus, D > 0, and E
∗
xy

is locally asymptotically
stable by the Routh–Hurwitz criterion in this case.Wewere unable
to show that D > 0 even if Dy > D

crit

y
, although we believe it to be

the case. �

C.4. Sensitivity of the steady-state ratios to the diffusivities

Theorem 5. Suppose that Dx > 0 and Dy > 0, and let ρx and ρy be

the prey and predator steady-state ratios from Theorem 4. If ρx < 1,
or equivalently, if Dy < D

crit

y
, then

∂ρx

∂Dx

> 0,
∂ρy

∂Dx

> 0,
∂ρx

∂Dy

> 0,
∂ρy

∂Dy

< 0.

If ρx > 1, or equivalently, if Dy > D
crit

y
, then

∂ρx

∂Dx

< 0,
∂ρy

∂Dx

< 0,
∂ρx

∂Dy

> 0,
∂ρy

∂Dy

< 0.

Proof. The proof of Theorem 4 revealed that the positive steady
state E

∗
xy

can be expressed in terms of the ratios ρx = x1/x2
and ρy = y1/y2, see (30)–(33). Consequently, we can study the
changes in these ratios as the diffusion rates Dx and Dy are varied.
Specifically, implicit differentiationwith respect toDx results in the
following system
∂ρx

∂Dx

− ∂F

∂ρy

∂ρy

∂Dx

= 0,
∂ρy

∂Dx

− ∂G

∂ρx

∂ρx

∂Dx

= ∂G

∂Dx

,

which implies that

∂ρx

∂Dx

=
∂F
∂ρy

∂G
∂Dx

1 − ∂F
∂ρy

∂G
∂ρx

,
∂ρy

∂Dx

=
∂G
∂Dx

1 − ∂F
∂ρy

∂G
∂ρx

.

Similarly, implicit differentiation with respect to Dy results in the
following system
∂ρx

∂Dy

− ∂F

∂ρy

∂ρy

∂Dy

= ∂F

∂Dy

,
∂ρy

∂Dy

− ∂G

∂ρx

∂ρx

∂Dy

= 0,
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which implies that

∂ρx

∂Dy

=
∂F
∂Dy

1 − ∂F
∂ρy

∂G
∂ρx

,
∂ρy

∂Dx

=
∂F
∂Dy

∂G
∂ρx

1 − ∂F
∂ρy

∂G
∂ρx

.

The specific functional forms of F and G imply that

sign
�

∂F

∂Dy

�
= sign(ρy − 1), sign

�
∂G

∂Dx

�
= sign(1 − ρx),

and we have previously shown that

∂F

∂ρy

> 0,
∂G

∂ρx

< 0.

Therefore, in the case Dy < D
crit

y
(ρx < 1 < ρy), we have that

∂ρx

∂Dx

> 0,
∂ρy

∂Dx

> 0,
∂ρx

∂Dy

> 0,
∂ρy

∂Dy

< 0.

In the case Dy > D
crit

y
(1 < ρx, ρy), we have that

∂ρx

∂Dx

< 0,
∂ρy

∂Dx

< 0,
∂ρx

∂Dy

> 0,
∂ρy

∂Dy

< 0.

We conclude that if the predator diffusivity is sufficiently small,
then increasing both diffusion rates has a positive effect on the
prey ratios,whereas the predator ratios increasewith increasingDx

but decrease with increasing Dy. If the predator diffusivity is large,
then the trends changes, namely: increasing both diffusivities has
a negative effect on the predator ratios, while the prey ratios
increase with increasing Dy but decrease with increasing Dx. �

C.5. Other equilibria

Recall the 2-patch predator–prey model.

ẋ1 = x1(r − y1) + Dx(x2 − x1)

ẏ1 = y1(x1 − d) + Dy(y2 − y1)

ẋ2 = x2(r̃ − y2) + Dx(x1 − x2)

ẏ2 = y2(x2 − d̃) + Dy(y1 − y2).

(38)

We have previously focused on the existence and stability of
positive steady states, and here we consider boundary steady
states. We have that

Theorem 6. E
∗
0 = (0, 0, 0, 0) is always an unstable steady state of

system (38).
When Dx = 0, then in addition to the positive steady state E

∗
y
,

which exists for all Dy < r̃ d̃/(r − r̃), there are boundary steady states

E
∗
FG =

�

0,
r̃Dy

d + Dy

,
(d + Dy)(d̃ + Dy) − D

2
y

d + Dy

, r̃

�

(39)

and

E
∗
MPA =

�
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

, r, 0,
rDy

d̃ + Dy

�

, (40)

which exist for all Dy. E
∗
FG

is always unstable, whereas E
∗
MPA

is unstable

if Dy < r̃ d̃/(r − r̃), but globally stable with respect to positive

solutions if Dy > r̃ d̃/(r − r̃).
When Dy = 0, then in addition to the positive steady state E

∗
x
,

which exists for all Dx < r̃ d̃/(d̃−d), there are boundary steady states

E
∗∗
FG =

�
d̃Dx

Dx − r
, 0, d̃, r̃ + rDx

Dx − r

�

, (41)

which exists if and only if Dx > r, and

E
∗∗
MPA =

�
d, r + r̃Dx

Dx − r̃
,

dDx

Dx − r̃
, 0

�
, (42)

which exists if and only if Dx > r̃ . E
∗∗
FG is unstable whenever it exists,

and E
∗∗
MPA is unstable if r̃ < Dx < r̃ d̃/(d̃− d), but globally stable with

respect to positive solutions if Dx > r̃ d̃/(d̃ − d).

Proof. System (38) has Jacobian matrix:

J =





r − y1 − Dx −x1 Dx 0
y1 x1 − d − Dy 0 Dy

Dx 0 r̃ − y2 − Dx −x2

0 Dy y2 x2 − d̃ − Dy



 .

(43)

Clearly,

E
∗
0 = (0, 0, 0, 0) (44)

is always an equilibrium and the Jacobian at E∗
0 has the form





r − Dx 0 Dx 0
0 −d − Dy 0 Dy

Dx 0 r̃ − Dx 0
0 Dy 0 −d̃ − Dy





and after rearranging thematrix,we find that twoof its eigenvalues
are the eigenvalues of the submatrix
�
r − Dx Dx

Dx r̃ − Dx

�
.

This submatrix has a positive eigenvaluewhenever r+ r̃ > 0. Thus,
E

∗
0 is always unstable.
Case: Dx = 0.
It is easily verified that E∗

FG and E
∗
MPA are boundary steady states

which exist for all Dy. The Jacobian at E∗
FG has an eigenvalue

r − Dyr̃

d + Dy

> r − r̃ ≥ 0, (45)

so E
∗
FG is always unstable. The Jacobian at E∗

MPA is

J(E∗
MPA) =





0 −
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

0 0

r
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

− d − Dy 0 Dy

0 0 r̃ − rDy

d̃ + Dy

0

0 Dy

rDy

d̃ + Dy

−d̃ − Dy





.

(46)

The eigenvalues are

λ1 = r̃ − rDy

d̃ + Dy

= r̃ d̃ − fxDy

d̃ + Dy

, (47)

and the eigenvalues of




0 −
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

0

r
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

− d − Dy Dy

0 Dy −d̃ − Dy




, (48)
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which has characteristic polynomial

λ3 + a1λ
2 + a2λ + a3 = 0,

a1 =
(d̃ + Dy)

2 + D
2
y

d̃ + Dy

,

a2 = r
(d + Dy)(d̃ + Dy) − D

2
y

d̃ + Dy

,

a3 = r

�
(d + Dy)(d̃ + Dy) − D

2
y

�
.

(49)

The Routh–Hurwitz stability conditions are satisfied: a1 > 0, a3 >
0, and

a1a2 − a3 =
rD

2
y

(d̃ + Dy)2

�
(d + Dy)(d̃ + Dy) − D

2
y

�
> 0, (50)

so these three eigenvalues have negative real parts. Therefore, the
stability of E∗

MPA is determined exclusively byλ1: forDy < r̃ d̃

r−r̃
, E∗

MPA

is unstable and for Dy > r̃ d̃

r−r̃
, it is stable. Recall that the positive

steady state E
∗
y
exists so long as Dy < r̃ d̃

r−r̃
, and that it is globally

stable. When Dy = r̃ d̃

r−r̃
, E∗

y
ceases to exist as a positive steady state

because it collides with E
∗
MPA, which becomes locally stable when

Dy > r̃ d̃

r−r̃
. Thus, there appears to be a transcritical bifurcation at

Dy = r̃ d̃

r−r̃
.

As before, if Dy > r̃ d̃

r−r̃
, we let

φ0
y

:= y
∗
1

y
∗
2

= Dy + d̃

Dy

,

and use the familiar Lyapunov function to establish that E
∗
MPA is

globally stable with respect to positive solutions:

V (x1, y1, x2, y2) =
�

x1

x
∗
1

�
1 − x

∗
1

s

�
ds +

�
y1

y
∗
1

�
1 − y

∗
1

s

�
ds

+ (φ0
y
)−1

�

x2 +
�

y2

y
∗
2

�
1 − y

∗
2

s

�
ds

�

, (51)

where now (x∗
1, y

∗
1, x

∗
2, y

∗
2) = E

∗
MPA. After some algebraic

manipulations, we find that

V̇ = −Dy

y1

y2
y
∗
1

�
y2

y1
− 1

φ0
y

�2

+ x2

φ0
y

(r̃ − y
∗
2), (52)

which is clearly nonpositive since r̃ − y
∗
2 < 0 due to the stability

conditionDy > r̃ d̃

r−r̃
. We also have that V̇ = 0 if and only if y1

y2
= φ0

y

and x2 = 0. Consider a solution that satisfies V̇ = 0 for all t . We
have that

ẏ2(t)

y2(t)
≡ −d̃ + Dy(φ

0
y

− 1) = 0, (53)

hence y2(t) must be constant. Consequently, y1(t) must also be
constant. Therefore,

0 ≡ ẏ1(t)

y1(t)
= x1(t) − d + Dy

�
1
φ0
y

− 1

�

= x1(t) − x
∗
1, (54)

implying that x1(t) ≡ x
∗
1. This, in turn, implies that y1(t) ≡ y

∗
1 and

y2(t) ≡ y
∗
2. Thus the only invariant set contained in the set where

V̇ = 0, is {E∗
MPA} and this equilibrium attracts all positive solutions.

Case:Dy = 0. It is easily verified that E∗∗
FG and E

∗∗
MPA are boundary

steady states which exist for the values of Dx indicated in the

theorem. The Jacobian matrix at E∗∗
FG has an eigenvalue λ = d̃Dx

Dx−r
−

d > d̃ − d ≥ 0, hence E
∗∗
FG is unstable whenever it exists. The

local stability of E
∗∗
MPA is determined by the eigenvalues of the

corresponding Jacobian matrix

J(E∗∗
MPA) =





−α −d Dx 0
y
∗∗
1 0 0 0
Dx 0 −β −x

∗∗
2

0 0 0 x
∗∗
2 − d̃



 , (55)

where now E
∗∗
MPA = (x∗∗

1 , y∗∗
1 , x∗∗

2 , y∗∗
2 ), and α = D

2
x

Dx−r̃
> 0, and

β = Dx − r̃ > 0. Clearly, one of the eigenvalues is equal to

λ4 := x
∗∗
2 − d̃ = dDx

Dx − r̃
− d̃,

and it is negative if and only if

Dx >
r̃ d̃

d̃ − d

> r̃.

The three remaining eigenvalues are also eigenvalues of the
submatrix
�−α −d Dx

y
∗∗
1 0 0
Dx 0 −β

�

,

which has the characteristic polynomial of the form

p(z) = z
3 + (α + β)z2 + dy

∗∗
1 λ + βdy

∗∗
1 ,

and therefore is Hurwitz. We conclude that E∗∗
MPA is locally stable if

Dx > r̃ d̃

d̃−d
and unstable if r̃ d̃

d̃−d
> Dx > r̃ .

To show that Dx > r̃ d̃

d̃−d
implies that E∗∗

MPA attracts all positive

solutions, we define φ0
x

:= x
∗∗
1
x
∗∗
2
, and an auxiliary function

V (x1, y1, x2, y2) =
�

x1

x
∗∗
1

�
1 − x

∗∗
1

s

�
ds +

�
y1

y
∗∗
1

�
1 − y

∗∗
1

s

�
ds

+ 1
φ0
x

��
x2

x
∗∗
2

�
1 − x

∗∗
2

s

�
ds + y2

�

. (56)

After some tedious algebra, we find that

V̇ =
−x

∗∗
1 Dx

�
x2
x1

− (φ0
x
)−1

�2

x2
x1

+ y2

φ0
x

(x∗∗
2 − d̃) ≤ 0,

hence V is a Lyapunov function. An argument similar to those
given above and therefore omitted establishes that E∗∗

MPA attracts
all positive solutions. �
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