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a b s t r a c t

This paper is devoted to the study of persistence and extinction of a species
modeled by nonlocal dispersal evolution equations in moving habitats with moving
speed c. It is shown that the species becomes extinct if the moving speed c is larger
than the so called spreading speed c∗, where c∗ is determined by the maximum
linearized growth rate function. If the moving speed c is smaller than c∗, it is
shown that the persistence of the species depends on the patch size of the habitat,
namely, the species persists if the patch size is greater than some number L∗ and
in this case, there is a traveling wave solution with speed c, and it becomes extinct
if the patch size is smaller than L∗.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlocal dispersal equations have been widely employed as models in the applied fields such as biology,
material science, neuroscience, chemistry and ecology [1–7].

The current paper is to investigate the following nonlocal dispersal equation,

∂u(t, x)
∂t

=
∫
R
k(y − x)u(t, y)dy − u(t, x) + f(x− ct, u)u(t, x), x ∈ R. (1.1)

We assume that k(·) : R → R+ is a C1 convolution kernel function that satisfies the following:

(H1) k(·) ∈ C1(R, [0,∞)), k(z) = k(−z),
∫
R k(z)dz = 1, k(0) > 0, and there exist µ,M > 0 such that

k(z) < e−µ|z| and |k′(z)| < e−µ|z| for |z| > M .
Typical examples satisfying (H1) include the probability density function of the normal distribution

k(x) = 1√
2π e

− x2
2 and any C1 symmetric convolution kernel functions supported on a bounded interval.
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Biologically, in (1.1), the term
∫
R k(y − x)u(t, y)dy − u(t, x) characterizes the dispersal of the organisms

that exhibits long range internal interactions. f(x− ct, u) is the reaction term that is related to the growth
of species. Noting a speed c in the reaction term f(x − ct, u), biologically we assume the reaction of the
populations will change with the moving habitat of speed c due to some external environment change, like
climate change. Without loss of generality, we assume that c ≥ 0. If c < 0, biologically it means that the
habitat moves in an opposite direction. Mathematically, by changing variables with c̃ = −c and x̃ = −x,
we can obtain an equivalent equation as (1.1) for c̃ > 0 and x̃. Let ϕ±(x) be C1 functions satisfying that
ϕ±(±x) = 1 for x ≤ 0, ϕ±(±x) = 0 for x ≥ 1, ϕ+(x) = ϕ−(−x), ϕ′

+(x) ≤ 0 and ϕ′
−(x) ≥ 0 for x ∈ R. We

assume that f satisfies

(H2) There are r, q, L, L0 > 0 such that f(x, u) is C1 in (x, u); f(x, u) = −q for |x| ≥ L + L0;
f(x, u) = r(1 − u) for |x| ≤ L; f(x, u) = −q + (r(1 − u) + q)ϕ+

(
x−L
L0

)
for L < x < L + L0; and

f(x, u) = −q + (r(1 − u) + q)ϕ−
(
x+L
L0

)
for −L− L0 < x < −L.

Observe that f(x, ·) = f(−x, ·) and

lim
L0→0+

f(x, u) =

⎧⎪⎨⎪⎩
−q for x > L

r(1 − u) for − L ≤ x ≤ L

−q for x < −L.

Here is an example of f(x, u) which satisfies (H2),

f(x, u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−q for x ≥ L0 + L

−q + r(1−u)+q
2

(
1 + cos π(x−L)

L0

)
for L < x < L0 + L

r(1 − u) for − L ≤ x ≤ L

−q + r(1−u)+q
2

(
1 + sin π(2x+2L+L0)

2L0

)
for − L0 − L < x < −L

−q for x ≤ −L0 − L.

Assumption (H2) indicates that the region |x| ≤ L is the favorable habitat for the species; there is a
finite mortality rate q outside of the region |x| ≤ L+ L0; and the region L ≤ |x| ≤ L+ L0 is the transition
region. It should be pointed out that the specific form of f(x, u) in the transition region in (H2) is just
for concreteness. It can be replaced by a general form in this region as long as f(x, u) is C1 in (x, u), is
non-increasing in u for u ≥ 0, and is non-decreasing with respect to L.

Recently, modeling the effects of global climate change on populations has drawn a lot research attention
in the scientific community [8–12]. Berestycki et al. in [8] and Li et al. in [10] considered the following
reaction–diffusion equation, for c > 0

∂u(t, x)
∂t

= D
∂2u(t, x)
∂x2 + f(x− ct, u)u(t, x), x ∈ R. (1.2)

but with different reaction term f . In [8], f is assumed to be

f(x− ct, u) =
{
r − u for |x− ct| ≤ L

−q otherwise
(1.3)

for some L > 0, which indicates that favorable habitat is bounded and surrounded by unfavorable habitat.
It should be pointed out that the paper [11] addresses the same question as in [8], but focuses on the effect
of a moving climate on the outcome of competitive interactions between two species, and that it is in [11]
that terms of the form f(x− ct, u) appear for the first time. It should also be pointed out that the [9] gives
a comprehensive study of the problem in terms of integrodifference equations in the presence of climate
change. One is also referred to [12] for a study on the critical speed for extinction, and the role that the
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dispersal and growth play in persistence in integrodifference equations with shifting species ranges. In [10],
f is of the form

f(x− ct, u) = r(x− ct) − u, (1.4)

where r is continuous, non-decreasing and bounded with r(−∞) < 0 and r(∞) > 0. Note that, in this
case, the favorable habitat is unbounded. The reader is also referred to [13] and [14] for the study of lattice
differential equations and for nonlocal dispersal equations with the nonlinear reaction term (1.4).

Interesting dynamical issues for (1.1) and (1.2) include the persistence and extinction of the population,
in particular, the dependence of the persistence and extinction on the speed c and the patch size of the
moving habitat. It will be seen that the persistence and existence of traveling wave solutions with speed c

are strongly related, and the extinction and nonexistence of traveling wave solutions with speed c are also
strongly related. In the current paper, we are interested in the existence and nonexistence of traveling wave
solutions of (1.1) with speed c, i.e., positive solutions of the form u(t, x) = v(x− ct).

To this end, we consider solutions of (1.1) of the form u(t, x) = v(t, x−ct) with v(t, x) being differentiable.
Then letting ξ = x− ct, v(t, ξ) satisfies

∂v(t, ξ)
∂t

= c
∂v(t, ξ)
∂ξ

+
∫
R
κ(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ, v)v(t, ξ), ξ ∈ R. (1.5)

We remark that Eq. (1.5) models the nonlocal dispersal, advection and reaction of a single species in a
heterogeneous environment. The number c measures the advection velocity. The term c∂v(t,ξ)

∂ξ describes the
drift of the population with the constant speed c. Advective processes occur, for example, in a river or ocean,
where organisms may drift, sink or rise due to the water flows and their own relative weights compared with
the surrounding medium (i.e water).

Note that any nontrivial stationary solution v(ξ) of (1.5) satisfies

cv′(ξ) +
∫
R
κ(η − ξ)v(η)dη − v(ξ) + f(ξ, v)v(ξ) = 0, ξ ∈ R, (1.6)

and gives rise to a traveling wave solution u(t, x) = v(x− ct) of (1.1).
Let

X = Cbunif(R) = {u ∈ C(R) | u is uniformly continuous and bounded on R}

with norm ∥u∥ = sup
x∈R

|u(x)|, and

X+ = {u ∈ X | u(x) ≥ 0}.

Consider initial value problem for (1.1) and (1.5) on X. By semigroup theory (See [15,16]), for any u0 ∈ X,
(1.1) has a unique local classical solution u(t, x;u0) with u(0, x;u0) = u0(x), and for any u0 ∈ X, and (1.5)
has a unique local mild solution v(t, ξ;u0) with v(0, ξ;u0) = u0(ξ). Moreover, if u0 is differentiable and
u′

0(·) ∈ X, then v(t, ξ;u0) is the classical solution of (1.5).
We say that persistence occurs in (1.1) if for any u0 ∈ X+ with inf

x∈R
u0(ξ) > 0,

lim inf
t→∞

inf
|ξ|≤K

v(t, ξ;u0) > 0

for any K > 0. We say that extinction occurs in (1.1) if for any u0 ∈ X+,

lim
t→∞

sup
ξ∈R

v(t, ξ;u0) = 0.

For r > 0, let c∗ be the spreading speed of

ut =
∫
R
k(y − x)u(t, y)dy − u(t, x) + r(1 − u)u, x ∈ R, (1.7)
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that is,

c∗ = inf
µ>0

∫
R e

−µzk(z)dz − 1 + r

µ
(1.8)

(see Proposition 2.4).
For given λ > −q, let

g(µ;λ) = cµ+
∫
R
eµηk(η)dη − 1 − q − λ.

Then
gµµ =

∫
R
η2eµηk(η)dη > 0,

and g(0;λ) = −q − λ < 0. Note that g(µ;λ) → ∞ as µ → ±∞. Hence there are µ−(λ) < 0 < µ+(λ) such
that

g(µ±(λ);λ) = 0. (1.9)

The main results of the current paper can then be stated as follows.
• (Tail properties of traveling wave solutions) Suppose that v(ξ) = Φ(ξ) is a bounded positive solution of
(1.6). Then

lim sup
ξ→±∞

Φ(ξ)
eµ∓ξ

< ∞,

where µ∓ = µ∓(0) (see Theorem 3.1).
• (Equivalence of persistence and existence of traveling wave solutions) The following two statements are
equivalent: persistence occurs in (1.1) and there are traveling wave solutions of (1.1) with speed c, which
implies that the following two statements are equivalent: extinction occurs in (1.1) and there are no traveling
wave solutions of (1.1) with speed c (see Theorem 4.1 and Remark 4.1).
• (Existence, uniqueness, and nonexistence of traveling wave solutions) There is 0 ≤ L∗ ≤ ∞ such that if
L∗ < L < ∞, then (1.5) has a unique positive stationary solution v(t, ξ) = Φ(ξ). On the other hand, if
0 < L < L∗, then there is no positive stationary solution of (1.5). Moreover, if 0 ≤ c < c∗, then 0 ≤ L∗ < ∞,
and if c ≥ c∗, then L∗ = ∞ (see Theorems 5.1 and 5.2).

Observe that persistence and extinction in (1.5) are strongly related to the spectral problem of the
linearization of (1.5) at the trivial solution v ≡ 0,

∂v(t, ξ)
∂t

= c
∂v(t, ξ)
∂ξ

+
∫
R
κ(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ, 0)v(t, ξ), ξ ∈ R. (1.10)

Let λ(c, L) be the principal spectral point (see Definition 6.1) of the spectral problem associated with (1.10).
We also prove that
• (Principal eigenvalue) λ(c, L) is a principal eigenvalue. It is continuous in (c, L) ∈ (0,∞) × (0,∞), and for
fixed c > 0, it is strictly increasing in L > 0 (see Theorem 6.2(1)–(3)). Moreover, if 0 < c < c∗, then there is
0 ≤ L∗∗ ≤ ∞ such that λ(c, L) > 0 for all L > L∗∗, and for any 0 < L < L∗∗, λ(c, L) ≤ 0. If c > c∗, then
λ(c, L) < 0 for all L > 0 (see Theorem 6.2(4)–(5)).
• (Persistence/extinction) If λ(c, L) > 0, then there is a positive stationary solution of (1.5), and for any
K > 0 and u0 ∈ X++ := {u ∈ X|u > 0} satisfying lim inf

ξ→∞

u0(ξ)
eµ−(λ(c,L))ξ > 0 and lim inf

ξ→−∞

u0(ξ)
eµ+(λ(c,L))ξ > 0,

lim inf
t→∞

inf
|ξ|≤K

v(t, ξ;u0) > 0,

where v(t, ξ;u0) is the solution of (1.5) with v(0, ξ;u0) = u0(ξ), and µ±(λ(c, L)) are as in (1.9). If λ(c, L) ≤ 0,
then for any u0 ∈ X+,

lim
t→∞

sup
x∈R

v(t, ξ;u0) = 0.

(see Theorem 6.3).
• (Dependence of L∗ and L∗∗ on c) L∗ = L∗∗, and L∗ → ∞ as c → (c∗)− (see Corollary 6.1).
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We conclude the introduction with the following three remarks.
First, as was pointed above, the specific form of f(x, u) in the transition region in (H2) can be replaced

by a more general form. But, in general, the number L∗ depends on the form which f takes in the transition
region.

Second, for fixed L > 0, it remains an open problem whether λ(c, L) is monotone in c > 0.
Third, in the case λ(c, L) > 0, due to the lack of compactness of v(t, ξ;u0) for u0 ∈ X++, it is a nontrivial

problem to study the convergence of v(t, ξ;u0) as t → ∞. The reader is referred to [8] and [9] for such a
convergence study in random dispersal equations, and integrodifference equations with a shifting climate,
respectively.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries such as
comparison principles for nonlocal evolution equations. In Section 3, we show the tail behaviors of the
traveling waves. We examine in Section 4 the equivalence of the occurrence of persistence and the existence
of traveling wave solutions. In Section 5, we prove the existence, uniqueness and nonexistence of the traveling
wave solutions. In Section 6, we investigate the spectral theory of nonlocal operators and discuss their
applications to species persistence and extinction.

2. Preliminaries

In this section, we present some preliminary materials to be used in the following sections.

2.1. Comparison principle of nonlocal evolution equations

A continuous function v(t, ξ) on [0, T )×R is called a super-solution or sub-solution of (1.5) if ∂v∂t ,
∂v
∂ξ exist

and are continuous on [0, T ) × R and satisfy
∂v

∂t
≥ c

∂v

∂ξ
+
∫
R
k(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ, v)v(t, ξ), ξ ∈ R

or
∂v

∂t
≤ c

∂v

∂ξ
+
∫
R
k(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ, v)v(t, ξ), ξ ∈ R

for t ∈ [0, T ), respectively. The super-/sub-solutions for the linear equation (1.10) are defined similarly.

Proposition 2.1 (Comparison Principle).

(1) If v(t, ξ) and v(t, ξ) are sub-solution and super-solution of (1.10) on [0, T ), respectively, v(0, ·) ≤ v(0, ·),
and v(t, ξ) − v(t, ξ) ≥ −β0 for (t, ξ) ∈ [0, T ) × R and some β0 > 0, then v(t, ·) ≤ v(t, ·) for t ∈ [0, T ).

(2) Suppose that v1, v2 ∈ X and v1 ≤ v2, v1 ̸= v2. Then v(t, ξ; v1) < v(t, ξ; v2) for all t > 0, ξ ∈ R, where
v(t, ξ; vk) is the solution of (1.5) with v(0, ξ; vk) = vk for k = 1, 2.

Proof. (1) This follows by modifying the arguments in [4, Proposition 2.1]. Let v(t, ξ) = eσt(v(t, ξ)−v(t, ξ)).
Then v(t, ξ) ≥ −eσtβ0, and

∂v

∂t
≥ cvξ(t, ξ) +

∫
R
k(η − ξ)v(t, η)dη + p(ξ)v(t, ξ), ξ ∈ R, (2.1)

for t ∈ (0, T ) and p(ξ) = f(ξ, 0) − 1 +σ. Choose σ > 0 such that p(ξ) > 0 for all (t, ξ) ∈ [0, T ) ×R. We claim
that v(t, ξ) ≥ 0 for (t, ξ) ∈ [0, T ) × R.

Let p0 = sup
ξ∈R

p(ξ). Let T0 = min{T, 1
p0+1 }. Let ξ = x̂− ct and η = ŷ − ct, then

∂v(t, x̂− ct)
∂t

≥
∫
R
k(ŷ − x̂)v(t, ŷ − ct)dŷ + p(x̂− ct)v(t, x̂− ct), x̂ ∈ R, (2.2)

for t ∈ (0, T ).
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Assume that there are t̃ ∈ (0, T0) and x̃ ∈ R such that v(t̃, x̃) < 0. Let

vinf := inf
(t,x̂)∈[0,t̃]×R

v(t, x̂− ct) < 0.

Observe that there are tn ∈ (0, t̃] and xn ∈ R such that

v(tn, xn − ctn) → vinf as n → ∞.

By (2.2), we have that

v(tn, xn − ctn) − v(0, xn) ≥
∫ tn

0

[∫
R
k(ŷ − xn)v(t, ŷ − ct)dŷ + p(xn − ct)v(t, xn − ct)

]
dt

≥
∫ tn

0

[∫
R
k(ŷ − xn)vinfdŷ + p0vinf

]
dt

= tn(1 + p0)vinf

≥ t̃(1 + p0)vinf

for n = 1, 2, . . . . Note that v(0, xn) ≥ 0 for n = 1, 2, . . . . We then have that

v(tn, xn − ctn) ≥ t̃(1 + p0)vinf

for n = 1, 2, . . . . Letting n → ∞, since t̃(1 + p0) < T0(1 + p0) ≤ 1
1+p0

(1 + p0) = 1 and vinf < 0, we get

vinf ≥ t̃(1 + p0)vinf > vinf .

This is a contradiction, that implies that v(t, ξ) ≥ 0 for (t, ξ) ∈ [0, T0) × R. The above procedure can be
repeated for t ∈ [kT0, (k + 1)T0)

⋂
[0, T ) for k = 1, 2.... Hence v(t, ξ) ≥ 0 for (t, ξ) ∈ [0, T ) × R and then

u(t, ξ) ≤ v(t, ξ) for (t, ξ) ∈ [0, T ) × R.
(2) This follows from similar arguments as in [4, Proposition 2.2]. □

2.2. Comparison principle for nonlocal Dirichlet boundary problems

In this subsection, we consider the following linear nonlocal equations with non-homogeneous Dirichlet
boundary conditions:{

∂φ(t,ξ)
∂t = c∂φ(t,ξ)

∂ξ +
∫
R k(η − ξ)φ(t, η)dη − φ(t, ξ) + q(ξ)φ(t, ξ), ξ ∈ (a, b)

φ(t, ξ) = g(ξ), ξ /∈ (a, b)
(2.3)

for a, b ∈ R, b > a, q(ξ), g(ξ) ∈ X.
Let LDv := cv′(ξ) +

∫
R k(η − ξ)v(η)dη − v(ξ) + q(ξ)v(ξ) for v, v′ ∈ X. A function v(t, ξ) is called a

super-solution or sub-solution of (2.3) for t ∈ [t0, t0 + T ] if v(t, ·), vξ(t, ·) ∈ X and v satisfies{
vt(t, ξ) ≥ LDv, ξ ∈ (a, b)
v(t, ξ) ≥ g(ξ), ξ /∈ (a, b)

or {
vt(t, ξ) ≤ LDv, ξ ∈ (a, b)
v(t, ξ) ≤ g(ξ), ξ /∈ (a, b),

respectively, for t ∈ [t0, t0 + T ].
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Proposition 2.2. Let u and v be the super-solution and sub-solution of (2.3) with boundary conditions g, g
respectively. Suppose that ū(t0, ξ) ≥ v(t0, ξ) for ξ ∈ [a, b], g(ξ) ≥ g(ξ) for ξ /∈ (a, b) and q(ξ) < 0 for ξ ∈ (a, b).
Then u(t, ξ) ≥ v(t, ξ) for t ∈ [t0, t0 + T ] and ξ ∈ [a, b].

Proof. Let w = u− v. Then
LDw = LDu− LDv ≤ wt.

We claim that w ≥ 0. Suppose not, then there are t0 ∈ [t0, t0 + T ], ξ0 ∈ [a, b] such that w(t0, ξ0) =
min

t∈[t0,t0+T ],ξ∈[a,b]
{w(t, ξ)} < 0. By g(ξ) ≥ g(ξ) for ξ /∈ (a, b), w(t0, ξ) ≥ 0 for ξ ∈ [a, b], we have

that t0 ∈ (t0, t0 + T ] and ξ0 ∈ (a, b), and then wt(t0, ξ0) ≤ 0 and wξ(t0, ξ0) = 0. Therefore, since
w(t0, η) − w(t0, ξ0) ≥ 0 for η ∈ (a, b), w(t0, ξ0) < 0 and q(ξ0) < 0, there holds∫ b

a

k(ξ0 − η)[w(t0, η) − w(t0, ξ0)]dη+
∫
R\(a,b)

k(ξ0 − η)dηw(t0, ξ0) + q(ξ0)w(t0, ξ0)>0.

Thus we have that LDw(t0, ξ0) > 0, which is a contradiction. □

2.3. Convergence on compact sets

In this subsection, we explore the convergence property of solutions of (1.10) and (1.5) in compact open
topology. Note that f(ξ, v) depends on r, q, L, and L0. View L as a parameter and write f(ξ, v) as f(ξ, v;L).
Let f(ξ, v; ∞) = r(1 − v). For fixed r, q, and L0, to indicate the dependence of solutions of (1.10) and (1.5)
on L, we denote the solution of (1.10) (or (1.5)) by ṽ(t, ξ;u0, L) (or v(t, ξ;u0, L)).

Proposition 2.3 (Convergence on Compact Subsets). Suppose that u0n, u0 ∈ X+ (n = 1, 2, . . .) and {∥u0n∥}
is bounded.

(1) If as n → ∞, u0n(ξ) → u0(ξ) uniformly in ξ on bounded sets and Ln → ∞, then for each t > 0,
ṽ(t, ξ;u0n, Ln) → ṽ∞(t, ξ;u0) as n → ∞ uniformly in ξ on bounded sets, where ṽ(t, ξ;u0n, Ln) is the
solution of (1.10) with ṽ(0, ξ;u0n, Ln) = u0n and ṽ∞(t, ξ;u0) is the solution of

vt = cvξ +
∫
R
κ(η − ξ)v(t, η)dη − v(t, ξ) + rv(t, ξ), ξ ∈ R (2.4)

with ṽ∞(0, ξ;u0) = u0(ξ) for ξ ∈ R.
(2) Fix L. If u0n(ξ) → u0(ξ) as n → ∞ uniformly in ξ on bounded sets, then for each t > 0, v(t, ξ;u0n) →

v(t, ξ;u0) as n → ∞ uniformly in ξ on bounded sets, where v(t, ξ;u0n) and v(t, ξ;u0) are the solutions of
(1.5) with v(0, ξ;u0n) = u0n and v(0, ξ;u0) = u0 respectively.

Proof. It can be proved by the similar arguments as those in [17, Proposition 3.3]. For completeness, we
provide a proof in the following.

(1) Let vn(t, ξ) = ṽ(t, ξ;u0n, Ln) − ṽ∞(t, ξ;u0). Then vn(t, ξ) satisfies

vnt (t, ξ) = cvnξ (t, ξ) +
∫
R
κ(η − ξ)vn(t, η)dη − vn(t, ξ) + an(ξ)vn(t, ξ) + bn(t, ξ),

where an(ξ) = f(ξ, 0;Ln) and bn(t, ξ) = ṽ∞(t, ξ;u0)
(
an(ξ) − r

)
.

Note that {an(ξ)} is uniformly bounded and continuous in ξ with |an(ξ)| ≤ max{r, q}. By (H2),
bn(t, ξ) → 0 as n → ∞ uniformly in (t, ξ) on bounded sets of [0,∞) × R.

Take a ρ > 0. Let
X(ρ) = {u ∈ C(R,R) | u(·)e−ρ∥·∥ ∈ X}
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with norm ∥u∥ρ = ∥u(·)e−ρ∥·∥∥. Let

Au = cu′ +
∫
R
k(η − ξ)u(η)dη − u(ξ)

for u ∈ X(ρ) with u′(·) ∈ X(ρ). Let D : X1(ρ) → X(ρ) be defined by Du = u′ for u ∈ X1(ρ) := {u ∈
X(ρ)|u′(·) ∈ X(ρ)}. Since the resolvent, denoted by R(λ,D), can be computed explicitly as

R(λ,D)u =
∫ ξ

−∞
e−λ(ξ−s)u(s)ds, ξ ∈ R.

Moreover, ∥R(λ,D)∥X(ρ) ≤ 1
λ+ρ for all λ > 0. Thus, D is dissipative and λI−D is surjective for λ > 0,where

I denotes the identity operator. Hence, by Lumer–Phillips theorem (See Section 1.4 of [16]) D generates a
C0-semigroup on X(ρ). Therefore, by perturbations of bounded linear operators (Theorem 1.1 in Section 3.1
of [16]), A generates a C0-semigroup on X(ρ) denoted by eAt, and there are M > 0 and ω > 0 such that

∥eAt∥X(ρ) ≤ Meωt ∀t ≥ 0.

Hence
vn(t, ·) = eAtvn(0, ·) +

∫ t

0
eA(t−τ)an(·)vn(τ, ·)dτ +

∫ t

0
eA(t−τ)bn(τ, ·)dτ

and then

∥vn(t, ·)∥X(ρ) ≤ Meωt∥vn(0, ·)∥X(ρ) +M sup
ξ∈R

|an(ξ)|
∫ t

0
eω(t−τ)∥vn(τ, ·)∥X(ρ)dτ

+M

∫ t

0
eω(t−τ)∥bn(τ, ·)∥X(ρ)dτ

≤ Meωt∥vn(0, ·)∥X(ρ) +M sup
ξ∈R

|an(ξ)|
∫ t

0
eω(t−τ)∥vn(τ, ·)∥X(ρ)dτ

+ M

ω
sup
τ∈[0,t]

∥bn(τ, ·)∥X(ρ)e
ωt.

By Gronwall’s inequality,

∥vn(t, ·)∥X(ρ) ≤ exp
(
(ω +M sup

ξ∈R
|an(ξ)|)t

)(
M∥vn(0, ·)∥X(ρ) + M

ω
sup
τ∈[0,t]

∥bn(τ, ·)∥X(ρ)

)
.

Note that ∥vn(0, ·)∥X(ρ) → 0 and sup
τ∈[0,t]

∥bn(τ, ·)∥X(ρ) → 0 as n → ∞. It then follows that

∥vn(t, ·)∥X(ρ) → 0 as n → ∞

and then
ṽ(t, ξ;u0n, Ln) → ṽ∞(t, ξ;u0) as n → ∞

uniformly in ξ on bounded sets.
(2) Let vn(t, ξ) = v(t, ξ;u0n) − v(t, ξ;u0). Then vn(t, ξ) satisfies

vnt (t, ξ) = cvnξ (t, ξ) +
∫
R
κ(η − ξ)vn(t, η)dη − vn(t, ξ) + an(t, ξ)vn(t, ξ) + bn(t, ξ),

where
an(t, ξ) = f(ξ, v(t, ξ;u0n)) + v(t, ξ;u0) ·

∫ 1

0
∂uf(ξ, sv(t, ξ;u0n) + (1 − s)v(t, ξ;u0))ds

and
bn(t, ξ) = v(t, ξ;u0) ·

(
f(ξ, v∞(t, ξ;u0)) − f(ξ, v(t, ξ;u0))

)
.

By the boundedness of {∥u0n∥}, {an(t, ξ)} is uniformly bounded and continuous in t and ξ. By (H2),
bn(t, ξ) → 0 as n → ∞ uniformly in (t, ξ) on bounded sets of [0,∞) × R. The rest follows from a simple
modification of the proof in (1). □
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2.4. Spreading speeds in fixed habitats

In this subsection, we review some properties about the spreading speeds of the nonlocal dispersal
equation (1.7). Let µ∗ > 0 and c∗ satisfy that

c∗ = inf
µ>0

∫
R e

−µzk(z)dz − 1 + r

µ
=
∫
R e

−µ∗zk(z)dz − 1 + r

µ∗ . (2.5)

Proposition 2.4.

(1) For any u0 ∈ X+ with nonempty compact support,

lim sup
t→∞

sup
|x|≥ct

u(t, x;u0) = 0 ∀ c > c∗

and
lim inf
t→∞

inf
|x|≤ct

(u(t, x;u0) − 1) = 0 ∀ 0 < c < c∗,

where u(t, x;u0) is the solution of (1.7) with u(0, x;u0) = u0(x).
(2) For any c ≥ c∗, (1.7) has a positive traveling wave solution u(t, x) = ϕ(x − ct) with ϕ(−∞) = 1 and

ϕ(∞) = 0. Moreover, for µ ∈ (0, µ∗) such that c =
∫
R
e−µzk(z)dz−1+r

µ , lim
x→∞

ϕ(x)
e−µx = 1.

Proof. (1) See Theorem E of [4].
(2) See Theorem 2.4 of [5]. □

3. Tail behavior of traveling waves

In this section, we study the tail behavior or decay behavior of positive stationary solutions of (1.6)
(assuming they exist), or equivalently, traveling wave solutions of (1.1). The main result of this section can
then be stated as follows.

Theorem 3.1. Suppose that Φ is a bounded positive solution of (1.6). Then there are M± such that

lim sup
ξ→∞

Φ(ξ)
eµ−ξ

≤ M+

and
lim sup
ξ→−∞

Φ(ξ)
eµ+ξ

≤ M−,

where µ± = µ±(0) and µ±(λ) is as in (1.9).

To prove the above theorem, we first prove a lemma.
For given M > 0, R+ > L + L0, R− < −(L + L0), and τ > 0, consider the following nonlocal Dirichlet

problems, {
cv′(ξ) +

∫
R k(ξ − η)v(η)dη − v(ξ) − qv(ξ) = 0, R+ < ξ < R+ + τ

v(ξ) = M, ξ /∈ (R+, R+ + τ),
(3.1)

and {
cv′(ξ) +

∫
R k(ξ − η)v(η)dη − v(ξ) − qv(ξ) = 0, R− − τ < ξ < R−

v(ξ) = M, ξ /∈ (R− − τ,R−).
(3.2)

Let
ψ+
τ (ξ) = k+

1 e
µ−(ξ−R+) + k+

2 e
µ+(ξ−R+), (3.3)
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and
ψ−
τ (ξ) = k−

1 e
µ−(ξ−R−) + k−

2 e
µ+(ξ−R−), (3.4)

where k+
1 = M eµ+τ −1

eµ+τ −eµ−τ , k+
2 = M 1−eµ−τ

eµ+τ −eµ−τ , and k−
1 = M 1−e−µ+τ

e−µ−τ −e−µ+τ , k−
2 = M e−µ−τ −1

e−µ−τ −e−µ+τ .

Lemma 3.1. ψ+
τ (ξ) is a super-solution of (3.1) and ψ−

τ (ξ) is a super-solution of (3.2), that is, they are
super-solutions of (2.3) with a = R+, b = R+ + τ , and g(ξ) ≡ M , and a = R− − τ , b = R−, and g(ξ) ≡ M ,
respectively.

Proof. Consider
cv′(ξ) +

∫
R
k(ξ − η)v(η)dη − v(ξ) − qv(ξ) = 0. (3.5)

Let v(ξ) = eµξ and then the characteristic equation of (3.5) becomes

cµ+
∫
R
eµ(η−ξ)k(ξ − η)dη − 1 − q = g(µ; 0) = 0, (3.6)

where
g(µ; 0) = cµ+

∫
R
eµηk(η)dη − 1 − q.

Note that g(µ±; 0) = 0. Thus, ψ(ξ) = k1e
µ−ξ + k2e

µ+ξ is a solution of (3.5) for any choice of the scalars
k1 and k2.

Let ψ+
τ be as in (3.3). Note that ψ+

τ (R+) = ψ+
τ (R+ + τ) = M . Then there exists a θ ∈ (R+, R+ + τ) such

that (ψ+
τ )′(θ) = 0. (ψ+

τ )′′(ξ) > 0 implies that (ψ+
τ )′(ξ) < 0 for ξ < θ and (ψ+

τ )′(ξ) > 0 for ξ > θ. Therefore
ψ+
τ (ξ) ≥ M for ξ ≤ R+ and ξ ≥ R+ + τ . By definition, ψ+

τ (ξ) is a super-solution of (3.1).
Similarly, we can prove that ψ−

τ (ξ) is a super-solution of (3.2). □

We now prove Theorem 3.1.

Proof of Theorem 3.1. Choose M = max
ξ

Φ(ξ). Observe that v(t, ξ) = Φ(ξ) is a sub-solution of (2.3)
with a = R+, b = R+ + τ , and g(ξ) ≡ M for any R+ > L + L0 and any τ > 0. Then by Lemma 3.1 and
Proposition 2.2, for any given R+ > L+ L0 and τ > 0, Φ(ξ) ≤ ψ+

τ (ξ) for ξ ∈ (R+, R+ + τ). Note that

lim
τ→∞

ψ+
τ (ξ) = Meµ−(ξ−R+).

We then have that
Φ(ξ) ≤ Meµ−(ξ−R+) ∀ ξ > R+, (3.7)

and thus
0 ≤ lim inf

ξ→∞

Φ(ξ)
eµ−ξ

≤ lim sup
ξ→∞

Φ(ξ)
eµ−ξ

≤ M+ := Me−µ−R
+
.

Similarly, we have that
Φ(ξ) ≤ Meµ+(ξ−R−) ∀ ξ < R−, (3.8)

and thus
0 ≤ lim inf

ξ→−∞

Φ(ξ)
eµ+ξ

≤ lim sup
ξ→−∞

Φ(ξ)
eµ+ξ

≤ M− := Me−µ+R
−
.

Remark 3.1. In general, it remains an open question whether the limits lim
ξ→∞

Φ(ξ)
eµ−ξ

and lim
ξ→−∞

Φ(ξ)
eµ+ξ

exist.
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4. Equivalence of the persistence and the existence of traveling wave solutions

In this section, we show that the occurrence of persistence and the existence of traveling wave solutions
are equivalent.

Theorem 4.1. The following two statements are equivalent:

(1) Persistence occurs in (1.1)
(2) There are traveling wave solutions of (1.1) with speed c.

Proof. First, we prove that (2) implies (1).
Suppose that (2) holds and that Φ is a bounded positive solution of (1.6). Then ṽ(t, ξ; γΦ) := γΦ(ξ)

satisfies
vt = cvξ +

∫
R
k(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ,Φ(ξ))v(t, ξ), ξ ∈ R (4.1)

for any γ ∈ R. Let v(t, ξ; γΦ) be the solution of (1.5) with v(0, ξ; γΦ) = γΦ(ξ). Fix T > 0. Note that
inf

|ξ|≤L+L0
Φ(ξ) > 0 and v(t, ξ; 0) ≡ 0 for all t ≥ 0 and ξ ∈ R. Then there is γ0 > 0 such that for any

0 < γ < γ0,
v(t, ξ; γΦ) ≤ Φ(ξ) for 0 ≤ t ≤ T, |ξ| ≤ L+ L0.

This implies that for any 0 < γ < γ0,

f(ξ,Φ(ξ)) ≤ f(ξ, v(t, ξ; γΦ)) for 0 ≤ t ≤ T, ξ ∈ R.

Thus v(t, ξ) = v(t, ξ; γΦ) is a super-solution of (4.1) because

vt(t, ξ) − [cvξ +
∫
R
k(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ,Φ(ξ))v(t, ξ)]

= vt − [cvξ +
∫
R
k(η − ξ)v(t, η)dη − v(t, ξ) + f(ξ, v)v(t, ξ)] + (f(ξ, v) − f(ξ,Φ(ξ)))v(t, ξ)

= (f(ξ, v) − f(ξ,Φ(ξ)))v(t, ξ)
≥ 0.

Note that v(t, ξ; γΦ) − ṽ(t, ξ; γΦ) ≥ −β0 := − max
ξ

{γΦ(ξ)} and then by the comparison principle (see
Proposition 2.1(1)) applied for (4.1), we have that for any 0 < γ < γ0,

v(t, ξ; γΦ) ≥ ṽ(t, ξ; γΦ) = γΦ(ξ), ∀ 0 ≤ t ≤ T, ξ ∈ R

and then by the strong comparison principle (see Proposition 2.1(2))

v(t, ξ; γΦ) > γΦ(ξ), ∀ t > 0, ξ ∈ R. (4.2)

Note that for any given u0 ∈ X+ with inf
ξ∈R

u0(ξ) > 0, there is 0 < γ < γ0 such that

u0(ξ) ≥ γΦ(ξ), ∀ ξ ∈ R.

Then by Proposition 2.1(2), we have that

v(t, ξ;u0) ≥ v(t, ξ; γΦ) ≥ γΦ(ξ), ∀ t ≥ 0, ξ ∈ R.

This implies that
lim inf
t→∞

inf
|ξ|≤K

v(t, ξ;u0) > 0

for any K > 0. Therefore, (1) holds.
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Next, we prove that (1) implies (2).
Assume (1) holds, that is, persistence occurs in (1.1). Choose M ≫ 1 such that uM (ξ) ≡ M is a

super-solution of (1.5). Then by the definition of persistence in (1.1)

lim inf
t→∞

inf
|ξ|≤K

v(t, ξ;uM ) > 0

for any K > 0. By Proposition 2.1,

v(t, ξ;uM ) ≤ uM (≡ M), ∀ t ≥ 0, ξ ∈ R, (4.3)

and for any t2 > t1 ≥ 0,

v(t2, ξ;uM ) = v(t1, ξ; v(t2 − t1, ·;M)) ≤ v(t1, ξ;uM ) ≤ M, ∀ ξ ∈ R. (4.4)

It then follows that there is Φ(ξ) such that

lim
t→∞

v(t, ξ;uM ) = Φ(ξ), ∀ ξ ∈ R

and
inf

|ξ|≤K
Φ(ξ) > 0, ∀K > 0.

In the following, we show that Φ(ξ) is C1 and v(t, ξ) = Φ(ξ) is a positive stationary solution of (1.5). To
this end, let u(t, x;uM ) be the solution of (1.1) with u(0, x;uM ) = uM . Note that with ξ = x− ct,

v(t, ξ;uM ) = u(t, x;uM ).

It then suffices to show that ut(t, x;uM ) and utt(t, x;uM ) are uniformly bounded on R+×R, and ux(t, x;uM )
exists and is uniformly bounded and continuous in t ≥ 0 and x ∈ R.

By (H2), the right hand side of (1.1) with u(t, x) being replaced by u(t, x;uM ) is uniformly continuous
in t ≥ 0 and x ∈ R. Hence ut(t, x;uM ) is uniformly continuous in t ≥ 0 and x ∈ R. This implies that
the right hand side of (1.1) with u(t, x) being replaced by u(t, x;uM ) is differentiable in t and its derivative
with respect to t is uniformly continuous in t ≥ 0 and x ∈ R. It then follows that utt(t, x;uM ) exists and is
uniformly bounded on R+ × R.

To show that ux(t, x;uM ) exists and is uniformly bounded and continuous in t ≥ 0 and x ∈ R, let

w(t, x) = ut(t, x;uM ) + u(t, x;uM ) − f(x− ct, u(t, x;uM ))u(t, x;uM ). (4.5)

By (1.1), we have that
w(t, x) =

∫
R
k(y − x)u(t, y;uM )dy.

This together with (H1) implies that w(t, x) is differentiable in x and wx(t, x) is uniformly bounded and
uniformly continuous. For fixed x, let ϕ(t;x) = u(t, x;uM ). By (4.5), ϕ(t;x) is the solution of{

dϕ
dt = −ϕ+ f(x− ct, ϕ)ϕ+ w(t, x)
ϕ(0;x) = w(0, x).

(4.6)

View x as a parameter in the initial value problem (4.6). Note that −ϕ+ f(x− ct, ϕ)ϕ+w(t, x) and w(0, x)
are continuously differentiable in x ∈ R. Then by the smooth dependence of solutions of ODEs on the
parameters, ϕ(t;x) is differentiable in x (hence ux(t, x;uM ) exists), and ψ(t;x) = ϕx(t;x) satisfies{

dψ
dt =

(
−1 + fu(x− ct, ϕ)ϕ(t;x) + f(x− ct, ϕ)

)
ψ + wx(t, x) + fx(x− ct, ϕ)ϕ(t;x)

ψ(0;x) = 0.
(4.7)
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Let µ(t;x) = −1 + fu(x− ct, ϕ)ϕ(t;x) + f(x− ct, ϕ). By the variation of constants formula, we have that

ϕx(t, x) = ψ(t;x) =
∫ t

0
e

∫ t

τ
µ(s;x)ds(

wx(τ, x) + fx(x− cτ, ϕ)ϕ(τ ;x)
)
dτ. (4.8)

It is not difficult to see from (4.8) that ψ(t;x) is uniformly bounded and continuous in t ≥ 0 and x ∈ R. We
then have that ux(t, x;uM ) exists and is uniformly bounded and continuous in t ≥ 0 and x ∈ R.

Recall that
v(t, ξ;uM ) = u(t, x;uM ).

We then have that vt(t, ξ;uM ), vtt(t, ξ;uM ), and vξ(t, ξ;uM ) exist and are uniformly bounded and continuous
in t ≥ 0 and ξ ∈ R. This implies that Φ′(ξ) exists, and

lim
t→∞

v(t, ξ;uM ) = Φ(ξ),

lim
t→∞

vt(t, ξ;uM ) = 0,

and
lim
t→∞

vξ(t, ξ;uM ) = Φ′(ξ)

locally uniformly in ξ ∈ R. It then follows that v(t, ξ) = Φ(ξ) is a positive stationary solution of (1.5). This
proves that (1) implies (2). □

Remark 4.1. By Theorem 4.1, the following two statements are equivalent:

(1) Extinction occurs in (1.1)
(2) There are no traveling wave solutions of (1.1) with speed c.

5. Existence, uniqueness, and nonexistence of traveling wave solutions

In this section, we study the existence, uniqueness, and nonexistence of positive traveling wave solutions
of (1.1) with speed c, or equivalently, of positive stationary solutions of (1.5). In the next result we refer to
the spreading speed c∗ which was defined in formula (2.5) in Section 2.4.

Theorem 5.1 (Existence/nonexistence of Traveling Wave Solutions). Fix r, q, L0 > 0.

(1) For given 0 ≤ c < c∗, there is L∗ ≥ 0 such that for L > L∗, (1.5) has a positive stationary solution
v(t, ξ) = Φ(ξ). For 0 < L < L∗, there is no positive stationary solution of (1.5).

(2) For given c > c∗, for any L > 0, there is no positive stationary solution of (1.5).

Proof. First of all, we note that f(x, u) depends on r, q, L, and L0. For clarity, for fixed r, q, and L0, we
write f(x, u) as f(x, u;L). By (H2), for 0 < L1 < L2, we have that

f(x, u;L1) ≤ f(x, u, L2), for 0 ≤ u ≤ 1, x ∈ R. (5.1)

Next, let ū(x) ≡ 1. We have that v(t, x) ≡ 1 is a super-solution of (1.5). Let v(t, x; ū, L) be the solution
of (1.5) with v(0, x; ū, L) = ū(x) ≡ 1. By the arguments in the proof of Theorem 4.1, there is Φ(x;L) such
that

lim
t→∞

v(t, x; ū, L) = Φ(x;L) ≤ 1

locally uniformly in x ∈ R, and v(x) = Φ(x;L) is a nonnegative stationary solution of (1.5). Moreover, note
that u ≡ 0 is a solution of (1.5). Then by Proposition 2.1, we have that either Φ(x;L) ≡ 0, or Φ(x;L) is a
positive stationary solution of (1.5). By (5.1) and Proposition 2.1, for any 0 < L1 < L2, we have that

v(t, x; ū, L1) ≤ v(t, x; ū, L2), ∀ t ≥ 0, x ∈ R.
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Hence
Φ(x;L1) ≤ Φ(x;L2), ∀ x ∈ R, L1 ≤ L2.

Therefore, there is 0 ≤ L∗ ≤ ∞ such that{
Φ(x;L) ≡ 0, ∀ 0 < L ≤ L∗

Φ(x;L) > 0, ∀ L > L∗.

We claim that any nonnegative stationary solution v∗(x) of (1.5) satisfies that

v∗(x) ≤ 1, ∀ x ∈ R.

In fact, suppose that v∗(x) is a nonnegative stationary solution of (1.5). Let M = sup
x∈R

v∗(x). If M > 1, then

v(t, x) ≡ M is a super-solution of (1.5). By the comparison principle (Proposition 2.1),

v∗(x) ≤ v(t, x;M) < M, ∀ t > 0, x ∈ R.

This together with the tail property (Theorem 3.1) implies that

M = sup
x∈R

v∗(x) = max
x∈R

v∗(x) < M,

which is a contradiction. Hence M ≤ 1. It then follows that

v∗(x) ≤ v(t, x; ū, L), ∀ t > 0, x ∈ R

and then
v∗(x) ≤ Φ(x;L).

Hence, if Φ(x;L) ≡ 0, then (1.5) has no positive stationary solution.
We now prove (1) and (2).
(1) It suffices to prove that L∗ < ∞. To this end, first, for 0 < c < c∗, choose c′ ∈ (c, c∗) and fix it. For

given u0 ∈ X+ with nonempty and compact support supp(u0), by Proposition 2.4,

lim inf
t→∞

inf
|x|≤c′t

(u∞(t, x;u0) − 1) = 0,

where u∞(t, x;u0) is the solution of (1.7) with u∞(0, x;u0) = u0(x). Then we have that

lim inf
t→∞

inf
−(c′+c)t≤x≤(c′−c)t

(u∞(t, x+ ct;u0) − 1) = 0.

Next, choose u0 to be C1. View x as a parameter and by the smooth dependence of solutions of ODEs
on the parameters, then u∞(t, x;u0) is also C1 in x and v∞(t, x;u0) := u∞(t, x + ct;u0) is the solution of
(2.4) with v∞(0, x;u0) = u0(x) and satisfies

lim inf
t→∞

inf
−(c′+c)t≤x≤(c′−c)t

(v∞(t, x;u0) − 1) = 0.

Now choose u0 such that u0 ≤ 1/2. Then there is T > 0 such that

v∞(T, x;u0) > 1/2, x ∈ supp(u0).

Let v(t, x;u0, L) be the solution of (1.5) with v(0, x;u0, L) = u0(x). By Proposition 2.3,

lim
L→∞

v(t, x;u0, L) = v∞(t, x;u0)
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locally uniformly in (t, x) ∈ R+ × R. Then

v(T, x;u0, L) ≥ u0(x), for L ≫ 1.

Then by the comparison principle (Proposition 2.1), we have that for L ≫ 1,

v(mT, x;u0, L) ≥ v((m− 1)T, x;u0, L) ≥ u0(x), ∀ x ∈ R, m = 1, 2, . . . .

Since v(mT, x; ū, L) ≥ v(mT, x;u0, L) and Φ(x;L) = lim
m→∞

v(mT, x; ū, L), we have that

Φ(x;L) ≥ u0(x), ∀ x ∈ R

for L ≫ 1. Hence u(t, x) = Φ(x;L) is a positive stationary solution of (1.5) when L ≫ 1, and then L∗ < ∞.
(2) It suffices to prove that L∗ = ∞. To this end, let µ∗ > 0 be such that

c∗ =
∫
R e

µ∗ηk(η)dη − 1 + r

µ∗ = inf
µ>0

∫
R e

µηk(η)dη − 1 + r

µ
.

Recall that µ− < 0 < µ+ are such that

cµ± +
∫
R
eµ±ηk(η)dη − 1 − q = 0. (5.2)

We claim that µ∗ < |µ−|.
Indeed, let

h(µ) = −cµ+
∫
R
eµηk(η)dη − 1 − q.

Then h(−µ−) = 0, h′(µ) > 0 for µ ≥ −µ−. Let

h̃(µ) =
∫
R e

µηk(η)dη − 1 − q

µ

for µ > 0. Note that
∫
R η

mk(η)dη = 0 for odd integers m = 1, 3, 5, . . . and we have that

h̃′(µ) =
∫
R ηe

µηk(η)dη · µ− (
∫
R e

µηk(η)dη − 1 − q)
µ2

= 1
µ2

[∫
R

(
η2k(η)µ2 + η4

3! k(η)µ4 + η6

5! k(η)µ6 + · · ·
)
dη

−
∫
R

(
k(η) + η2

2! k(η)µ2 + η4

4! k(η)µ4 + · · ·
)
dη + 1 + q

]
= 1
µ2

[
q +

∫
R

(
(1 − 1

2! )η
2k(η)µ2 + ( 1

3! − 1
4! )η

4k(η)µ4 + ( 1
5! − 1

6! )η
6k(η)µ6 + · · ·

)
dη
]

> 0, for µ > 0.

Then µ = −µ− = |µ−| > 0 is the only solution of h̃(µ) = c in the interval (0,∞), and

h̃(µ∗) =
∫
R e

µ∗ηk(η)dη − 1 − q

µ∗

<

∫
R e

µ∗ηk(η)dη − 1 + r

µ∗ = c∗

< c =
∫
R e

µ−ηk(η)dη − 1 − q

−µ−
(by Eq. (5.2))
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=
∫
R e

−|µ−|ηk(η)dη − 1 − q

|µ−|

=
∫
R e

|µ−|ηk(η)dη − 1 − q

|µ−|
(by k(η) = k(−η))

= h̃(|µ−|).

It then follows that |µ−| > µ∗.
We now assume that (1.5) has a positive stationary solution u = Φ(ξ). By Theorem 3.1, there is M+ > 0

such that
Φ(ξ) ≤ M+e−|µ−|ξ, for ξ ≫ 1.

Choose c̃ ∈ (c∗, c). By Proposition 2.4, (1.7) has a traveling wave solution u(t, x) = ϕ(x− c̃t) such that

ϕ(−∞) = 1, ϕ(+∞) = 0, and lim
x→∞

ϕ(x)
e−µ̃x = 1, (5.3)

where 0 < µ̃ < µ∗(< |µ−|) is such that

c̃ =
∫
R e

−µ̃ηk(η)dη − 1 + r

µ̃
.

This implies that v(t, x) = ϕ(x−(c̃−c)t) is a super-solution of (1.5). Then by (H2), v(t, x; γ) = γϕ(x−(c̃−c)t)
is a super-solution of (1.5) for any γ ≥ 1. By Theorem 3.1, there is γ ≥ 1 such that

Φ(x) ≤ γϕ(x).

Hence, by the comparison principle (Proposition 2.1), we have that

Φ(x) ≤ γϕ(x− (c̃− c)t), ∀ x ∈ R, t ≥ 0.

Letting t → ∞, since c̃ < c we have that x− (c̃− c)t → ∞ and so by (5.3), lim
t→∞

ϕ(x− (c̃− c)t) = ϕ(∞) = 0,
implying that

Φ(x) ≤ 0, ∀ x ∈ R,

which is a contradiction.
Hence for any L > 0, (1.5) has no positive stationary solution and then L∗ = ∞. □

The following corollary follows directly from the proof of the above theorem.

Corollary 5.1. Suppose that there is no positive traveling wave solution of (1.1). Then for any u0 ≥ 0,

lim
t→∞

v(t, x;u0) = 0

locally uniformly in x ∈ R, where v(t, x;u0) is the solution of (1.5) with v(0, x;u0) = u0(x).

We will prove the following theorem about the uniqueness of traveling waves of (1.1) by modifying the
proof of Theorem 2.1 in [18], where the authors dealt with the uniqueness of forced waves (traveling waves)
for nonlocal equation (1.1) with nonlinearity (1.4). Due to the different nonlinearity and tail properties of
our traveling waves, their proof cannot be applied directly.

Theorem 5.2 (Uniqueness). There are at most one positive bounded solution to Eq. (1.6).
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Proof. Let Φi(ξ), i = 1, 2 be two positive bounded solutions of Eq. (1.1), that is, Φi satisfy that

cΦ′
i(ξ) +

∫
R
κ(η − ξ)Φi(η)dη − Φi(ξ) + f(ξ,Φi)Φi(ξ) = 0, ξ ∈ R, i = 1, 2.

Define Σϵ = {σ ≥ 1|σΦ2 ≥ Φ1 − ϵ} for ϵ > 0. Note that Φ1(±∞) = 0 and then Φ1 − ϵ is nonnegative only on
a bounded region. Therefore there exists a large enough σ such that σΦ2 ≥ Φ1 − ϵ, that is, Σϵ is not empty.
Let σϵ = inf Σϵ ≥ 1. Note that σϵ is non-increasing in ϵ. Hence lim

ϵ→0
σϵ exists. Let σ∗ = lim

ϵ→0
σϵ∈ [1,∞]. We

claim that σ∗ = 1. If σ∗ = 1, then we have that Φ2(ξ) ≥ Φ1(ξ). Repeat the previous process by interchanging
Φ1 and Φ2, and then we also have that Φ1(ξ) ≥ Φ2(ξ). Thus Φ1 ≡ Φ2.

Now it suffices to prove the claim that σ∗ = 1. Suppose to the contrary that σ∗ > 1. Then σϵ0 > 1
for some ϵ0. This implies that σϵ > 1 for all 0 < ϵ ≤ ϵ0. Let wϵ(ξ) = σϵΦ2(ξ) − Φ1(ξ) + ϵ. Then, by the
definition of σϵ, wϵ(ξ) ≥ 0. Note that wϵ(±∞) = ϵ. This together with σϵ > 1 implies that there is ξ ∈ R
such that wϵ(ξ) = 0. Choose a sequence 0 < ϵn ≤ ϵ0 for n = 1, 2... such that lim

n→∞
ϵn = 0. Let ξn ∈ R be

such that wϵn(ξn) = 0. By wϵn(ξ) ≥ 0 for all ξ ∈ R, wϵn(ξ) obtains the minimum 0 at ξn. This implies that
w′
ϵn(ξn) = 0. We claim that {ξn} ⊂ [−(L+ L0), L+ L0]. Note that wϵn(ξ) satisfies that

cw′
ϵn(ξ) +

∫
R
κ(η − ξ)w(η)dη − w(ξ) + σϵnf(ξ,Φ2)Φ2(ξ) − f(ξ,Φ1)Φ1(ξ) = 0.

Suppose that |ξn| > L + L0 for some n. Then f(ξn,Φ2(ξn)) = f(ξn,Φ1(ξn)) = −q. Plugging ξn into the
above equation, we have that

0 = cw′
ϵn(ξn) +

∫
R
κ(η − ξn)w(η)dη − w(ξn) + σϵnf(ξn,Φ2)Φ2(ξn) − f(ξn,Φ1)Φ1(ξn)

=
∫
R
κ(η − ξn)w(η)dη − q(σϵnΦ2(ξn) − Φ1(ξn))

=
∫
R
κ(η − ξn)w(η)dη − q(w(ξn) − ϵn)

=
∫
R
κ(η − ξn)w(η)dη + qϵn

> 0,

which causes a contradiction. Hence {ξn} ⊂ [−(L+L0), L+L0]. This implies that σϵnΦ2(ξn)−Φ1(ξn)+ϵn =
0. Hence σϵn = Φ1(ξn)−ϵn

Φ2(ξn) is bounded and σ∗ ∈ [1,∞). Moreover, there exists a subsequence of ξn
such that lim

nk→∞
ξnk

exists, denoted by lim
nk→∞

ξnk
= ξ∗. Moreover, as nk goes to infinity, we have that

w∗(ξ) = σ∗Φ2(ξ) − Φ1(ξ) with w∗(ξ∗) = 0 and w∗′(ξ∗) = 0. Note that

0 = cw∗′(ξ) +
∫
R
κ(η − ξ)w∗(η)dη − w∗(ξ) + σ∗f(ξ,Φ2)Φ2(ξ) − f(ξ,Φ1)Φ1(ξ)

≥ cw∗′(ξ) +
∫
R
κ(η − ξ)w∗(η)dη − w∗(ξ) − qw∗(ξ).

Plugging ξ = ξ∗ into above inequality, 0 ≥
∫
R κ(η − ξ∗)w∗(η)dη, which implies that w∗(ξ) = 0 for all ξ.

Hence, we have that Φ1(ξ) = σ∗Φ2(ξ) and thus

0 = cΦ′
1(ξ) +

∫
R
κ(η − ξ)Φ1(η)dη − Φ1(ξ) + f(ξ,Φ1)Φ1(ξ)

= σ∗(cΦ′
2(ξ) +

∫
R
κ(η − ξ)Φ2(η)dη − Φ2(ξ) + f(ξ, σ∗Φ2)Φ2(ξ))

= σ∗(cΦ′
2(ξ) +

∫
R
κ(η − ξ)Φ2(η)dη − Φ2(ξ) + f(ξ,Φ2)Φ2(ξ))

+ (f(ξ, σ∗Φ2) − f(ξ,Φ2))σ∗Φ2(ξ)
= (f(ξ, σ∗Φ2) − f(ξ,Φ2))σ∗Φ2(ξ),
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which implies that f(ξ, σ∗Φ2) − f(ξ,Φ2) = 0. In particular, f(0, σ∗Φ2(0)) − f(0,Φ2(0)) = 0, which implies
that r(1 − σ∗Φ2(0)) = r(1 − Φ2(0)) and then σ∗ = 1. □

6. Spectral theory of nonlocal dispersal operators and its applications

In this section, we study the spectral theory of the linearized equation of (1.5) at v = 0, i.e., (1.10), and
discuss its applications to the persistence and extinction in (1.5).

Letting v(t, ξ) = eλtψ(ξ), (1.10) yields

cψ′(ξ) +
∫
R
k(η − ξ)ψ(η)dη − ψ(ξ) + f(ξ, 0)ψ(ξ) = λψ(ξ). (6.1)

It is obvious that v(t, ξ) = eλtψ(ξ) is a solution of (1.10) if and only if (λ, ψ) satisfies Eq. (6.1).
Let

X1 = {u ∈ X | u′(·) ∈ X}

and
(L(c)ϕ)(ξ) := cϕ′(ξ) +

∫
R
k(η − ξ)ϕ(η)dη − ϕ(ξ) + f(ξ, 0)ϕ(ξ)

for ϕ ∈ X1. Let σ(L(c)) be the spectrum of L(c) acting on X1.

Definition 6.1. Let
λ(c, L) = sup{Reλ | λ ∈ σ(L(c))}.

λ(c, L) is called the principal spectral point of L(c) or (1.10). λ(c, L) is called the principal eigenvalue of
L(c) if L(c) has an eigenfunction in X+ \ {0} associated with λ(c, L).

The objective of this section is to study the properties of λ(c, L) and their applications to the persistence
and extinction in (1.5). To do so, we first study in the next subsection the properties of the spectrum of
(6.1) with f(ξ, 0) being replaced by some periodic function.

6.1. Existence of principal eigenvalue with periodic dependence

In this subsection, we shall consider the eigenvalue problem (6.1) with f(ξ, 0) being replaced by a(ξ),
where a(·) ∈ Xp and

Xp := {a(·) ∈ X|a(·) = a(· + p)}

for p > 0, that is,

cϕ′(ξ) +
∫
R
k(η − ξ)ϕ(η)dη − ϕ(ξ) + a(ξ)ϕ(ξ) = λϕ(ξ), ϕ ∈ X1

p , (6.2)

where X1
p := {u ∈ X|u, u′ ∈ Xp}. We denote X+

p = {u ∈ Xp|u ≥ 0} and Int(X+
p ) = {u ∈ Xp|u > 0}, which

is the interior of X+
p .

For given a ∈ Xp, let

(L(c, a; p)ϕ)(ξ) := cϕ′(ξ) +
∫
R
k(η − ξ)ϕ(η)dη − ϕ(ξ) + a(ξ)ϕ(ξ)

for ϕ ∈ X1
p . Let σ(L(c, a; p)) be the spectrum of L(c, a; p) acting on X1

p , and

λp(c, a) = sup{Reλ | λ ∈ σ(L(c, a; p))}.

λp(c, a) is called the principal spectral point of L(c, a; p). λp(c, a) is called the principal eigenvalue of L(c, a; p)
if L(c, a; p) has an eigenfunction in X+

p \ {0} associated with λp(c, a). We have the following theorem.
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Theorem 6.1. Assume that a is Lipschitz continuous. Then the principal eigenvalue λp(c, a) of L(c, a; p)
always exists.

To prove the above theorem, we first prove some lemmas. In the following, if no confusion occurs, we may
write L(c, a; p) as L. Let K : Xp → Xp and T : X1

p → Xp be defined by

Ku(ξ) =
∫
R
k(η − ξ)ϕ(η)dη

and
(T ϕ)(ξ) := cϕ′(ξ) − ϕ(ξ) + a(ξ)ϕ(ξ).

Then we may write L as K + T , and write (6.2) as

(K + T )ϕ = λϕ.

Note that if (λI − T )−1 exists, then (6.2) has nontrivial solutions (λ, ϕ) with ϕ in X1
p \ {0} if and only if

K(λI − T )−1v = v (6.3)

has nontrivial solutions (λ, v) with v ∈ Xp \ {0}.
For c = 0, Theorem 6.1 has been proved in [4] (see also [19]), that is, λp(0, a) is the principal eigenvalue

of L(0, a; p) with a periodic principal eigenfunction. In the rest of the subsection, we assume that c > 0.
Let

λT = −1 + a, where ā =
∫ p

0 a(s)ds
p

. (6.4)

Lemma 6.1. Assume that c > 0.

(1) If α ∈ C and Reα > λT , then (αI − T )−1 exists.
(2) If α ∈ R and α > λT , then K(αI − T )−1 is a compact operator on Xp and is strongly positive,

i.e., K(αI − T )−1u ∈ Int(X+
p ) if u ∈ X+

p \ {0}.

Proof. (1) For given w ∈ Xp, consider (αI − T )ϕ = w, i.e.

ϕ′(ξ) − 1
c

[α+ 1 − a(ξ)]ϕ(ξ) = −w(ξ)
c

. (6.5)

If a solution ϕ in X1
p exists, then we must have that:

d

dξ

[
exp
(1
c

∫ 0

ξ

(α+ 1 − a(η))dη
)
ϕ(ξ)

]
= −exp

(1
c

∫ 0

ξ

(α+ 1 − a(η))dη
)w(ξ)

c
.

Therefore, we integrate both sides over [ξ,∞) and exploiting the fact that Re(α) > −1 + ā and that ϕ must
belong to X1

p , we can simplify the result to get that

ϕ(ξ) = 1
c

∫ ∞

ξ

exp
(1
c

∫ ξ

ζ

(α+ 1 − a(η))dη
)
w(ζ)dζ. (6.6)

For each ζ in [ξ,∞), let k be the unique non-negative integer such that ζ ∈ [ξ + kp, ξ + (k + 1)p). Then

|
∫ ξ

ζ

(ā− a(η))dη| = |
∫ ζ

ξ

(ā− a(η))dη| = |
∫ ζ

ξ+kp
(ā− a(η))dη|

≤
∫ ζ

ξ+kp
|ā− a(η)|dη ≤

∫ p

0
|ā− a(η)|dη ≤ (|ā| + max

ξ∈[0,p]
|a(ξ)|)p,
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and therefore we have that

ϕ(ξ) = 1
c

∫ ∞

ξ

exp
(1
c

∫ ξ

ζ

(α+ 1 − a(η))dη
)
w(ζ)dζ

= 1
c

∫ ∞

ξ

exp
(1
c

∫ ξ

ζ

(α+ 1 − ā)dη
)
exp
(1
c

∫ ξ

ζ

(ā− a(η))dη
)
w(ζ)dζ

≤ 1
c

· exp
(1
c

(
|ā| + max

ξ∈[0,p]
|a(ξ)|

)
p
)

· ∥w∥∞ ·
∫ ∞

ξ

exp
(1
c

∫ ξ

ζ

(α+ 1 − ā)dη
)
dζ

= 1
α+ 1 − ā

· exp
(1
c

(
|ā| + max

ξ∈[0,p]
|a(ξ)|

)
p
)

· ∥w∥∞.

Then with C := 1
α+1−ā · exp

(
1
c

(
|ā| + max

ξ∈[0,p]
|a(ξ)|

)
p
)

, we have just shown that ∥ϕ∥∞ ≤ C∥w∥∞.

Moreover, letting ζ̂ = ζ − p, we have that

ϕ(ξ + p) = 1
c

∫ ∞

ξ+p
exp
(1
c

∫ ξ+p

ζ

(α+ 1 − a(η))dη
)
w(ζ)dζ

= 1
c

∫ ∞

ξ

exp
(1
c

∫ ξ+p

ζ̂+p
(α+ 1 − a(η))dη

)
w(ζ̂ + p)d(ζ̂ + p)

= 1
c

∫ ∞

ξ

exp
(1
c

∫ ξ

ζ̂

(α+ 1 − a(η))dη
)
w(ζ̂)dζ̂

= ϕ(ξ).

These arguments establish the existence of a solution ϕ in X1
p to Eq. (6.5), for each w in Xp. Uniqueness

of ϕ follows from standard results in the theory of linear ODEs. This concludes the proof of part (1) of this
Lemma.

(2) This follows from the compactness and the positivity of K and the strong positivity of (αI−T )−1. □

Lemma 6.2. Assume that c > 0. Then λT is an eigenvalue of T and its associated eigenfunction is
ϕ(ξ) = exp

( 1
c

(
āξ −

∫ ξ
0 a(s)ds

))
.

Proof. This can be verified by direct computation. □

Lemma 6.3. Assume that α > λT and c > 0. Let ρ(α) be the spectral radius of K(αI − T )−1.

(1) ρ(α1) > ρ(α2) if α2 > α1.
(2) ρ(α) → 0 as α → ∞.
(3) ρ(α) is continuous in α > λT .
(4) For some α0 > λT , if ρ(α0) > 1 then there exists a λ such that ρ(λ) = 1.

Proof. (1) By Lemma 6.1, K(αI− T )−1 is a strongly positive and compact operator and then by Theorem
19.3 (Krein–Rutman theorem) in [20], ρ(α) is its principal eigenvalue with a positive eigenvector. Note that
for given w ∈ Xp,

(αI − T )−1w = 1
c

∫ ∞

ξ

exp
(1
c

∫ ξ

ζ

(α+ 1 − a(η))dη
)
w(ζ)dζ.

Hence for w ∈ X+
p \ {0},

(α1I − T )−1w > (α2I − T )−1w

and then
K(α1I − T )−1w > K(α2I − T )−1w.
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By Theorem 19.3 (d) in [20], ρ(α1) > ρ(α2).
(2) From the arguments of Lemma 6.1(1), we have that lim

α→∞
∥(αI − T )−1w∥ = 0 for any w ∈ Xp. The

assertion holds since ρ(α) ≤ ∥K∥∥(αI − T )−1∥.
(3) This follows from Lemma 2 in [21].
(4) This follows from (1), (2), and (3). □

Lemma 6.4. Assume that c > 0. Let V (t; c, a) be the solution operator of (1.10) with f(ξ, 0) being replaced
by a(ξ), that is, v(t, ·; v0) = V (t; c, a)v0 is the solution of (1.10) with f(ξ, 0) being replaced by a(ξ) and
v(0, ·; v0) = v0(·) ∈ Xp. Then

λp(c, a) = lim sup
t→∞

ln ∥V (t; c, a)∥
t

.

Proof. This follows from similar arguments as those in [22, Proposition 2.5]. For completeness, we provide
a sketch of the proof in the following.

First, let λL = lim sup
t→∞

ln ∥V (t; c, a)∥
t

. For any given λ̃ > lim sup
t→∞

ln ∥V (t; c, a)∥
t

, there is M > 0 such that

∥V (t; c, a)∥ ≤ Meλ̃t ∀ t ≥ 0.

Then for any ϵ > 0, we have that

∥e(−λ̃−ϵ)tV (t; c, a)∥ ≤ Me−ϵt ∀ t ≥ 0. (6.7)

Let ṽ = e(−λ̃−ϵ)tv. Then ṽ satisfies

ṽt = cṽx +
∫
R
k(y − x)ṽ(t, y)dy − ṽ(t, x) + a(x)ṽ(t, x) − (λ̃+ ϵ)ṽ. (6.8)

Let Ṽ (t; c, a) be the solution operator of (6.8). For any w ∈ Xp, let

ṽ(t, x) =
∫ t

−∞
Ṽ (t− τ ; c, a)w(·)dτ. (6.9)

Then, by Leibniz integral rule, for −∞ < a(x), b(x) < ∞,

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= f

(
x, b(x)

)
· d

dx
b(x) − f

(
x, a(x)

)
· d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt,

we have that

∂ṽ(t, x)
∂t

= w(x) +
∫ t

−∞

∂

∂t
Ṽ (t− τ ; c, a)w(·)dτ

= cṽx +
∫
R
k(y − x)ṽ(t, y)dy − ṽ(t, x) + a(x)ṽ(t, x) − (λ̃+ ϵ)ṽ + w(x).

Thus it is a solution of

ṽt = cṽx +
∫
R
k(y − x)ṽ(t, y)dy − ṽ(t, x) + a(x)ṽ(t, x) − (λ̃+ ϵ)ṽ + w(x) (6.10)

on t ∈ R. Letting t → ∞ in (6.9),

lim
t→∞

ṽ(t, x) =
∫ ∞

0
Ṽ (τ ; c, a)w(·)dτ =: ṽ(x;w)∈ Xp.
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Moreover,
∥ṽ(·;w)∥ ≤ M

ϵ
∥w∥.

Suppose that ṽ1(x;w) and ṽ2(x;w) are two stationary solutions of (6.10) in Xp and then ṽ1(x;w) − ṽ2(x;w)
is a stationary solution of Eq. (6.8). The estimate (6.7) implies that Eq. (6.8) has only trivial stationary
solution and so ṽ1(x;w) = ṽ2(x;w), that is, ṽ(x;w) is the unique stationary solution of (6.10). This implies
that (K + T − (λ̃+ ϵ)I)−1 exists for any ϵ > 0 and so (λ̃,∞) is in the resolvent of the operator K + T . While
λp(c, a) = sup{Reλ | λ ∈ σ(K + T )}, we have that λ̃+ ϵ > λp(c, a). Hence, as ϵ > 0 was arbitrary,

λp(c, a) ≤ lim sup
t→∞

ln ∥V (t; c, a)∥
t

.

Next, for any ϵ > 0 and M > 0, let λ̄ = λp(c, a) + ϵ and vM (x) be the unique solution of

cvx +
∫
R
k(y − x)v(y)dy − v(x) + a(x)v − λ̄v(x) +M = 0, x ∈ R. (6.11)

Then with λ̃ = 1+q+|λ̄|
c > 0 and f̃(x, v) = 1

c (
∫
R k(y−x)v(y)dy+(q+a(x))v(x)+(|λ̄|− λ̄)v(x)+M) ≥ M

c ,
Eq. (6.11) is equivalent to that:

cvx +
∫
R
k(y − x)v(y)dy − v(x) − qv(x) − |λ̄|v(x) + (q + a(x))v + (|λ̄| − λ̄)v(x) +M = 0, x ∈ R,

and thus
λ̃v − v′ = f̃(x, v), x ∈ R. (6.12)

Then multiply (6.12) by e−λ̃x to get that [−e−λ̃xv(x)]′ = e−λ̃xf̃(x, v(x)), and integrate both sides over [x,∞)
to

v(x) = eλ̃x
∫ ∞

x

(e−λ̃sf̃(s, v(s)))ds ≥ eλ̃x
∫ ∞

x

(e−λ̃sM

c
)ds = M

cλ̃
, x ∈ R.

Choose M ≥ |λ̄| + 1 + q and then we have that vM (x) ≥ 1.
Note that vM (x) is a super-solution of (6.8). By the comparison principle (Proposition 2.1) for (6.8), we

have that
0 < e−λ̄tV (t; c, a) · 1 ≤ vM (x), ∀t ≥ 0, x ∈ R.

This implies that
lim sup
t→∞

ln ∥V (t; c, a)∥
t

≤ lim sup
t→∞

ln ∥V (t; c, a) · 1∥
t

≤ λ̄,

for all ϵ > 0, and thus also that lim sup
t→∞

ln ∥V (t; c, a)∥
t

≤ λp(c, a). This concludes the proof of the lemma. □

We now prove Theorem 6.1.

Proof of Theorem 6.1. For c = 0, it has been proved in [4]. Now we assume that c > 0.
Suppose that λ > λT and let (λT , ϕ) be as in Lemma 6.2 such that

cϕ′(ξ) − ϕ(ξ) + a(ξ)ϕ(ξ) = λT ϕ(ξ),

and then
−cϕ′(ξ) + (λ+ 1 − a(ξ))ϕ(ξ) = (λ− λT )ϕ(ξ),

denoted by
(−c∂ξ + (λ+ 1 − a(·))I)ϕ = (λ− λT )ϕ.
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Hence
(−c∂ξ + (λ+ 1 − a(·))I)−1(λ− λT )ϕ = ϕ.

This implies that
K(−c∂η + (λ+ 1 − a(·))I)−1(λ− λT )ϕ = Kϕ > (λ− λT )ϕ

for 0 < λ− λT ≪ 1. It then follows that

ρ(K(−c∂η + (λ+ 1 − a(·))I)−1) > 1

for 0 < λ− λT ≪ 1.
By Lemma 6.3

ρ(K(−c∂η + (λ+ 1 − a(·))I)−1) → 0

as λ → ∞. Hence there are λ̂ > λT and a p-periodic positive function ψ such that

ρ(K(−c∂η + (λ̂+ 1 − a(·))I)−1) = 1.∫ ∞

−∞
κ(η − ξ)

(
−c∂η + (λ̂+ 1 − a(·))I

)−1
ψ(η)dη = ψ(η). (6.13)

and thus
cϕ̃′(ξ) +

∫ ∞

−∞
κ(η − ξ)ϕ̃(η)dη − ϕ̃(ξ) + a(ξ)ϕ̃(ξ) = λ̂ϕ̃(ξ), (6.14)

where ϕ̃(ξ) =
(
−c∂ξ + (λ̂ + 1 − a(·))I

)−1
ψ(ξ). Note that ϕ̃(ξ) > 0 on R because ψ(ξ) > 0 on R, and since(

−c∂ξ + (λ̂+ 1 − a(·))I
)−1 is strongly positive (see Lemma 6.1).Therefore, λ̂ ∈ σ(L).

Next, we show that λ̂ = λp(c, a). Let V (t; c, a) be as in Lemma 6.4, the solution operator of (1.10) with
f(ξ, 0) being replaced by a(ξ), We have that

V (t; c, a)ϕ̃ = eλ̂tϕ̃ ∀ t > 0.

For any ϕ ∈ Int(X+
p ) with ∥ϕ∥∞ = 1, there exist positive σ1 and σ2 such that σ1ϕ̃ ≤ ϕ ≤ σ2ϕ̃. By

comparison principle (Proposition 2.1), σ1V (t; c, a)ϕ̃ ≤ V (t; c, a)ϕ ≤ σ2V (t; c, a)ϕ̃ and thus σ1∥V (t; c, a)ϕ̃∥ ≤
∥V (t; c, a)ϕ∥ ≤ σ2∥V (t; c, a)ϕ̃∥. Since ϕ is arbitrary and ∥ϕ∥∞ = 1, σ1∥V (t; c, a)ϕ̃∥ ≤ ∥V (t; c, a)∥ ≤
σ2∥V (t; c, a)ϕ̃∥. Therefore, ln(σ1∥V (t;c,a)ϕ̃∥)

t ≤ ln(∥V (t;c,a)∥)
t ≤ ln(σ2∥V (t;c,a)ϕ̃∥)

t for t > 0. Then ln(σ1∥eλ̂tϕ̃∥)
t ≤

ln(∥V (t;c,a)∥)
t ≤ ln(σ2∥eλ̂tϕ̃∥)

t , and thus λ̂+ ln(σ1∥ϕ̃∥)
t ≤ ln(∥V (t;c,a)∥)

t ≤ λ̂+ ln(σ2∥ϕ̃∥)
t . Letting t → ∞, we have

that
lim sup
t→∞

ln ∥V (t; c, a)∥
t

= λ̂

and hence λ̂ = λp(c, a) by Lemma 6.4 . □

The following lemma shows the dependence of λp(c, a) on a(ξ).

Lemma 6.5. λp(c, a1) ≤ λp(c, a2) whenever a1(ξ) ≤ a2(ξ). Moreover, λp(c, a1) < λp(c, a2) if a1(ξ) ≤ a2(ξ)
and a1(ξ) ̸= a2(ξ).

Proof. With Lemma 6.4 and the comparison principle (Proposition 2.1), we have that

λp(c, a1) = lim sup
t→∞

ln ∥V (t; c, a1)∥
t

≤ lim sup
t→∞

ln ∥V (t; c, a2)∥
t

= λp(c, a2).
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We shall prove the second statement by contradiction. Suppose that λp(c, a1) = λp(c, a2) := λ̄p and ϕi(ξ) is
the corresponding positive principal eigenfunction to λp(c, ai) for i = 1, 2, that is,

cϕ′
i(ξ) +

∫ ∞

−∞
κ(η − ξ)ϕi(η)dη − ϕi(ξ) + ai(ξ)ϕ(ξ) = λ̄pϕi(ξ).

Then ∫ ∞

−∞
κ(η − ξ)ϕi(η)dη = −cϕ′

i(ξ) + ϕi(ξ) − ai(ξ)ϕ(ξ) + λ̄pϕi(ξ),

denoted by Kϕi = (−c∂ξ+(λ̄p+1−ai(·))I)ϕi for i = 1, 2. Hence we have that K(−c∂η+(λ̄p+1−ai(·))I)−1w =
w with w(ξ) = −cϕ′

i(ξ) + ϕi(ξ) − ai(ξ)ϕ(ξ) + λ̄pϕi(ξ) =
∫∞

−∞ κ(η − ξ)ϕi(η)dη > 0 for i = 1, 2. This implies
that ρ(K(−c∂η + (λ̄p + 1 − ai(·))I)−1) = 1 for i = 1, 2. On the other hand, by the arguments in the proof
of Lemma 6.3(1), we have that ρ(K(−c∂η + (λ̄p + 1 − a1(·))I)−1) > ρ(K(−c∂η + (λ̄p + 1 − a2(·))I)−1) if
a1(ξ) ≤ a2(ξ) and a1(ξ) ̸= a2(ξ), which is a contradiction. □

6.2. Dependence of principal eigenvalue on moving speed c and patch size L

In this subsection, we explore some important properties of λ(c, L). Recall that λ(c, L) is the principal
spectrum point of the spectral problem (6.1), that is, the spectral problem associated to the linearization of
(1.5) at the trivial solution v ≡ 0. In particular, we study the dependence of λ(c, L) on c and L.

The main results of this subsection are stated in the following theorem.

Theorem 6.2.

(1) λ(c, L) is a principal eigenvalue. Moreover, let ϕ(ξ) be a corresponding positive eigenfunction, then there
are M̃± such that

lim sup
ξ→∞

ϕ(ξ)
eµ−(λ(c,L))ξ ≤ M̃+ (6.15)

and
lim sup
ξ→−∞

ϕ(ξ)
eµ+(λ(c,L))ξ ≤ M̃−, (6.16)

where µ±(λ) is defined in (1.9).
(2) λ(c, L) is continuous in (c, L) ∈ (0,∞) × (0,∞).
(3) For any fixed c > 0, λ(c, L) is strictly increasing in L > 0.
(4) If 0 < c < c∗, there is 0 ≤ L∗∗ < ∞ such that λ(c, L) > 0 for all L > L∗∗, and for any 0 < L < L∗∗,

λ(c, L) ≤ 0.
(5) If c > c∗, then λ(c, L) < 0.

To prove the above Theorem we shall first prove some auxiliary results. Pick p
2 > L0 + L and define a

p-periodic function ap(ξ;L,L0) on one period as follows:

ap(ξ;L,L0) = f(ξ, 0), ξ ∈ [−p

2 ,
p

2 ].

Observe that
ap(ξ;L,L0) ≥ a2p(ξ;L,L0) ≥ · · · ≥ a2np(ξ;L,L0) ≥ · · · ≥ f(ξ, 0) ≥ −q,

and then with a2np(0) = r > −q, Lemma 6.5 implies that

λp(c, ap) ≥ λp(c, a2p) ≥ · · · ≥ λp(c, a2np) ≥ · · ·> λp(c,−q) = −q.

Then letting p → ∞, the limit of λp(c, a2np) exists, and let

λ∞(c, L, L0) = lim
n→∞

λp(c, a2np).
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Proposition 6.1. Let V (t; c, L) be the solution operator of (1.10), that is, v(t, ·; v0) = V (t; c, L)v0 is the
solution of (1.10) with v(0, ·; v0) = v0(·) ∈ X. Then

λ(c, L) = lim sup
t→∞

ln ∥V (t; c, L)∥
t

.

Proof. It can be proved by similar arguments as those in Lemma 6.4. □

Remark 6.1. Let a(·) ∈ X and λ(a) be the principal spectral point of the eigenvalue problem (6.1) on X
with f(·, 0) being replaced by a(·). Similar to Lemma 6.5, we have that

λ(a1) ≤ λ(a2)

for a1, a2 ∈ X with a1(x) ≤ a2(x) (x ∈ R). By observation, 1 is a positive principal eigenvector of λ(−q)
and λ(−q) = −q. Since f(ξ, 0) ≥ −q, we have that

λ(c, L) ≥ λ(−q) = −q.

Proposition 6.2. λ(c, L) = λ∞(c, L, L0) and λ(c, L) is an eigenvalue.

Proof. First, let ϕ2np(ξ) be the positive 2np-periodic eigenfunction corresponding to λp(c, a2np) with
∥ϕ2np∥∞ = 1, that is, (λp(c, a2np), ϕ2np) satisfies that

cϕ′
2np(ξ) +

∫
R
κ(ξ − η)ϕ2np(η)dη − ϕ2np(ξ) + a2np(ξ;L,L0)ϕ2np(ξ) = λp(c, a2np)ϕ2np(ξ), (6.17)

Let ξ2np ∈ [−np, np] be such that ϕ2np(ξ2np) = sup
ξ∈R

ϕ2np(ξ) = 1. Plugging ϕ2np(ξ2np) = 1 and ϕ′
2np(ξ2np) = 0

into Eq. (6.17), we have that

λp(c, a2np) =
∫
R
κ(ξ2np − η)ϕ2np(η)dη − 1 + a2np(ξ2np;L,L0).

Note that ϕ2np ≤ 1 but not identical to 1 and so
∫
R κ(ξ − η)ϕ2np(η)dη < 1 for any ξ ∈ R. Then

λp(c, a2np) < a2np(ξ2np;L,L0). On the other hand, with Lemma 6.5, we have that −q < λp(c, a2np) and
so −q < a2np(ξ2np;L,L0). This implies that ξ2np ∈ (−L− L0, L+ L0) ⊂ [−np, np].

Next, recall that −q < λp(c, a2np) < a2np(ξ2np;L,L0). Then by Eq. (6.17), we have that

c|ϕ′
2np(ξ)| = | −

∫
R
κ(ξ − η)ϕ2np(η)dη + ϕ2np(ξ)(−λp(c, a2np) + 1 − a2np(ξ;L,L0))|

≤
∫
R
κ(η)∥ϕ2np∥∞dη + ∥ϕ2np∥∞(|λp(c, a2np)| + 1 + ∥a2np∥∞)

≤ 2∥ϕ2np∥∞(1 + ∥a2np∥∞).

Thus with ∥a2np∥∞ = max
ξ∈R

|a2np(ξ;L,L0)| = max{r, q} and ∥ϕ2np∥∞ = 1, we have that

sup
ξ∈R

|ϕ′
2np(ξ)| ≤ 2

c

(
1 + max{r, q}

)
.

Therefore there is nk → ∞ such that ξ2nkp → ξ∞ ∈ [−L − L0, L + L0] and ϕ2nkp(ξ) → ϕ∞(ξ) locally
uniformly in ξ ∈ R. Moreover, we have that ∂ξϕ∞(ξ) exists and

c∂ξϕ∞(ξ) +
∫
R
κ(ξ − η)ϕ∞(η)dη − ϕ∞(ξ) + f(ξ, 0)ϕ∞(ξ) = λ∞(c, L, L0)ϕ∞(ξ).
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Since ϕ∞(ξ∞) = 1, we have that ϕ∞(ξ) ̸≡ 0. By the arguments as in item (2) of Proposition 2.1, we have
that ϕ∞(ξ) > 0 for all ξ ∈ R. Therefore

λ∞(c, L, L0) ≤ λ(c, L).

Now, since f(ξ, 0) ≤ a2np(ξ), by Remark 6.1, we have that λ(c, L) ≤ λ(c, a2np) for all n ≥ 1. This implies
that

λ(c, L) ≤ λ∞(c, L, L0).

The proposition then follows. □

We now prove Theorem 6.2.

Proof of Theorem 6.2. (1) By Proposition 6.2, λ(c, L) is a principal eigenvalue. Let ϕ(ξ) be a
corresponding positive eigenfunction. Recall that λ(c, L) > −q. (6.15) and (6.16) can be proved by similar
arguments as in the proof of Theorem 3.1. (1) thus follows.

(2) By (1) again, λ(c, L) is a principal eigenvalue. Let ϕ(ξ; c, L) > 0 be such that sup
ξ∈R

ϕ(ξ; c, L) = 1 and

cϕ′(ξ; c, L) +
∫
R
κ(ξ − η)ϕ(η; c, L)dη − ϕ(ξ; c, L) + f(ξ, 0)ϕ(ξ; c, L) = λ(c, L)ϕ(ξ; c, L) (6.18)

By (6.15) and (6.16), there is ξ(c, L) ∈ R such that

ϕ(ξ(c, L); c, L) = 1. (6.19)

Suppose that cm → c > 0 and Lm → L > 0 as m → ∞. By similar arguments as those in the proof
of Proposition 6.2, ξ(cm, Lm) ∈ (−Lm − L0, Lm + L0). Without loss of generality, we may assume that
ξ(cm, Lm) → ξ0 ∈ [−L−L0, L+L0], λ(cm, Lm) → λ0, and ϕ(ξ; cm, Lm) → ϕ0(ξ) locally uniformly in ξ ∈ R.
It then follows from (6.18) that

cϕ′
0(ξ) +

∫
R
κ(ξ − η)ϕ0(η)dη − ϕ0(ξ) + f(ξ, 0)ϕ0(ξ) = λ0ϕ0(ξ). (6.20)

Note that ϕ0(ξ0) = 1. Hence ϕ0(ξ) > 0 for all ξ ∈ R. This implies that

λ0 ≤ λ(c, L).

On the other hand, let ϕ(ξ) > 0 be such that sup
ξ∈R

ϕ(ξ) = 1 and

cϕ′(ξ) +
∫
R
κ(ξ − η)ϕ(η)dη − ϕ(ξ) + f(ξ, 0)ϕ(ξ) = λ(c, L)ϕ(ξ). (6.21)

By (6.15) and (6.16) again, for any ϵ > 0, there is σ > 0 such that

σϕ0(ξ) ≥ ϕ(ξ) − ϵ ∀ ξ ∈ R.

Let
σϵ = inf{σ > 0 | σϕ0(ξ) ≥ ϕ(ξ) − ϵ ∀ ξ ∈ R}.

It is clear that σϵ is non-increasing in ϵ and is bounded below by 1. Let wϵ(ξ) = σϵϕ0(ξ) − ϕ(ξ) + ϵ. Then

cw′
ϵ(ξ) +

∫
R
κ(η − ξ)wϵ(η)dη − wϵ(ξ) + f(ξ, 0)wϵ(ξ) = λ0wϵ(ξ) + (λ0 − λ(c, L))ϕ(ξ) + (f(ξ, 0) − λ0)ϵ.



P. De Leenheer, W. Shen and A. Zhang / Nonlinear Analysis: Real World Applications 54 (2020) 103110 27

It can be proved by similar arguments as those in the proof of Theorem 5.2 that inf
ξ∈R

wϵ(ξ) = min
ξ∈[−L−L0,L+L0]

wϵ(ξ)
= 0, and that σϵ is bounded. Let

σ∗ = lim
ϵ→0

σϵ ∈ [1,∞).

We have
σ∗ϕ0(ξ) ≥ ϕ(ξ) ∀ ξ ∈ R

and σ∗ > 0. This implies that

V (t, c, L)ϕ(·) = eλ(c,L)tϕ(·) ≤ V (t, c, L)σ∗ϕ0(·) = eλ0tσ∗ϕ0(·).

Hence, we must have
λ(c, L) ≤ λ0.

Therefore, λ(c, L) = λ0 and λ(c, L) is continuous in (c, L) ∈ (0,∞) × (0, L).
(3) Fix c > 0 and 0 < L1 < L2. To denote the dependence of f(ξ, 0) on L, we denote it by fL(ξ). Let

ϕi(ξ) > 0 (i = 1, 2) be such that sup
ξ∈R

ϕi(ξ) = 1 and

cϕ′
i(ξ) +

∫
R
κ(ξ − η)ϕi(η)dη − ϕi(ξ) + fLi

(ξ)ϕi(ξ) = λ(c, Li)ϕi(ξ) (6.22)

(i = 1, 2). Assume by contradiction that λ(c, L1) = λ(c, L2) = λ(c). For given ϵ > 0, let

σϵ = inf{σ > 0 | σϕ1(ξ) ≥ ϕ2(ξ) − ϵ ∀ ξ ∈ R}.

Let
wϵ(ξ) = σϵϕ1(ξ) − ϕ2(ξ) + ϵ.

Then we have

cw′
ϵ(ξ) +

∫
R
κ(η − ξ)wϵ(η)dη − wϵ(ξ) + fL1(ξ)wϵ(ξ)

= λ(c)wϵ(ξ) + (fL1(ξ) − fL2(ξ))ϕ2(ξ) + (fL1(ξ) − λ(c))ϵ.

Again, we have inf
ξ∈R

wϵ(ξ) = min
ξ∈[−L1−L0,L1+L0]

wϵ(ξ) = 0 and σϵ is bounded and nonincreasing. Let

σ∗ = lim
ϵ→0

σϵ

and
w∗(ξ) = lim

ϵ→0
wϵ(ξ).

We have w∗(ξ) ≥ 0, min
ξ∈[−L1−L0,L1+L0]

w∗(ξ) = 0, and

cw′
∗(ξ) +

∫
R
κ(η − ξ)w∗(η)dη − w∗(ξ) + fL1(ξ)w∗(ξ) = λ(c)w∗(ξ) + (fL1(ξ) − fL2(ξ))ϕ2(ξ).

Let ξ∗ ∈ [−L1 − L0, L1 + L0] be such that w∗(ξ∗) = 0. Then we have

0 ≤
∫
R
κ(η − ξ∗)w∗(η)dη = (fL1(ξ∗) − fL2(ξ∗))ϕ2(ξ∗) ≤ 0.

This together with (H1) implies that there is l∗ > 0 such that

w∗(ξ) = 0 for |ξ − ξ∗| ≤ l∗.
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By the above arguments with ξ∗ being replaced by ξ ∈ [ξ∗ − l∗, ξ∗ + l∗], we obtain

0 ≤
∫
R
κ(η − ξ)w∗(η)dη = (fL1(ξ) − fL2(ξ))ϕ2(ξ) ≤ 0 for |ξ − ξ∗| ≤ l∗

and then
w∗(ξ) = 0 for |ξ − ξ∗| ≤ 2l∗.

Repeating this processes, we have

0 ≤
∫
R
κ(η − ξ)w∗(η)dη = (fL1(ξ) − fL2(ξ))ϕ2(ξ) ∀ ξ ∈ R,

which is a contradiction. Hence λ(c, L) is strictly increasing in L > 0.
(4) By (3), λ(c, L) is increasing in L. Hence there is 0 ≤ L∗∗ ≤ ∞ such that λ(c, L) > 0 for L > L∗∗ and

λ(c, L) ≤ 0 for L < L∗∗. It suffices to show that there exists an L > 0 such that λ(c, L) > 0.
To this end, first, for 0 < c < c∗, take c′ ∈ (c, c∗) and fix it. Consider (1.7) with r(1 − u)u being replaced

by r(1 − ϵ− u)u for some 0 < ϵ ≪ 1. For given u0 ∈ X+ with nonempty and compact support supp(u0), by
Proposition 2.4,

lim inf
t→∞

inf
|x|≤c′t

(u∞(t, x;u0) − (1 − ϵ)) = 0,

where u∞(t, x;u0) is the solution of (1.7) with r(1 − u)u being replaced by r(1 − ϵ− u)u and u∞(0, x;u0) =
u0(x). Then we have that

lim inf
t→∞

inf
−(c′+c)t≤x≤(c′−c)t

(u∞(t, x+ ct;u0) − (1 − ϵ)) = 0.

Next, it was proved in Theorem 5.1 that u∞(t, x;u0) is C1 in x if u0 ∈ X1, and v∞(t, x;u0) :=
u∞(t, x+ ct;u0) is the solution of

vt = cvx +
∫
R
κ(y − x)v(t, y)dy − v(t, x) + r(1 − ϵ− v)v, x ∈ R (6.23)

with v∞(0, x;u0) = u0(x) and satisfies

lim inf
t→∞

inf
−(c′+c)t≤x≤(c′−c)t

(v∞(t, x;u0) − (1 − ϵ)) = 0.

Now choose u0 such that u0 ≤ (1 − 3ϵ)/2. Then there is T0 > 0 such that for any T > T0,

v∞(T, x;u0) > (1 − ϵ)/2, x ∈ supp(u0). (6.24)

Let ṽ∞(t, x;u0) be the solution of

vt = cvx +
∫
R
κ(y − x)v(t, y)dy − v(t, x) + r(1 − ϵ)v, x ∈ R. (6.25)

Note that ṽ∞(t, x;u0) is a solution and thus also a super-solution of (6.25), while v∞(t, x;u0) is a sub-solution
of (6.25) because

∂v∞

∂t
− (c∂v∞

∂x
+
∫
R
κ(y − x)v∞(t, y;u0)dy − v∞(t, x) + r(1 − ϵ)v∞)

= ∂v∞

∂t
− (c∂v∞

∂x
+
∫
R
κ(y − x)v∞(t, y;u0)dy − v∞(t, x;u0) + r(1 − ϵ− v∞)v∞)

+ r(1 − ϵ− v∞)v∞ − r(1 − ϵ)v∞

= r(1 − ϵ− v∞)v∞ − r(1 − ϵ)v∞

= −rv2
∞

≤ 0.
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With (6.24) and ṽ∞(0, x;u0) = v∞(0, x;u0) = u0, by the comparison principle (Proposition 2.1) for (6.25),
we have that

ṽ∞(T, x;u0) ≥ v∞(T, x;u0) ≥ (1 − ϵ)/2, ∀x ∈ supp(u0), T > T0. (6.26)
Let v(t, x;u0, L) be the solution of (1.10) with v(0, x;u0, L) = u0(x). Replacing f(ξ, 0) in (1.10) by
f(ξ, 0) − rϵ, we have that

∂v(t, ξ)
∂t

= c
∂v(t, ξ)
∂ξ

+
∫
R
κ(η − ξ)v(t, η)dη − v(t, ξ) + (f(ξ, 0) − rϵ)v(t, ξ), ξ ∈ R. (6.27)

Then (6.27) has a solution e−rϵtv(t, x;u0, L). Apply Proposition 2.3 with replacing (1.10) by (6.27) and
(2.4) by (6.25) and get that

lim
L→∞

e−rϵtv(t, x;u0, L) = ṽ∞(t, x;u0)

locally uniformly in (t, x) ∈ R+ × R. Then there exists a large enough L such that

e−rϵT v(T, x;u0, L) ≥ ṽ∞(T, x;u0) − ϵ, ∀x ∈ supp(u0), T > T0.

Thus, with (6.26) and u0 chosen such that u0 ≤ (1 − 3ϵ)/2 in the beginning, we have that

v(T, x;u0, L) ≥ erϵT (ṽ∞(T, x;u0) − ϵ) ≥ erϵT ((1 − ϵ)/2 − ϵ) = erϵT (1 − 3ϵ)/2 ≥ erϵTu0(x),

for any x ∈ supp(u0) and T > T0. This together with Proposition 6.1 implies that for L ≫ 1, λ(c, L) ≥ rϵ >

0.
(5) By (1), λ(c, L) is a principal eigenvalue. Hence there exists a ϕ > 0 such that

cϕ′(ξ) +
∫
R
κ(ξ − η)ϕ(η)dη − ϕ(ξ) + f(ξ, 0)ϕ(ξ) = λ(c, L)ϕ(ξ). (6.28)

Let µ∗ > 0 and c∗ be as in (2.5), i.e., c∗ =
∫
R
e−µ∗zk(z)dz−1+r

µ∗ . Let (λ∗, ψ) be such that ψ = eµ
∗ξ and

λ∗ =
∫
R e

−µ∗zk(z)dz − 1 + r − µ∗c. Then (λ∗, ψ) satisfies that

− cψ′(ξ) +
∫
R
κ(ξ − η)ψ(η)dη − ψ(ξ) + rψ(ξ) = λ∗ψ(ξ), (6.29)

because

− c(eµ
∗ξ)′ +

∫
R
κ(ξ − η)eµ

∗ηdη − eµ
∗ξ + reµ

∗ξ

= −µ∗c(eµ
∗ξ) +

∫
R
κ(ξ − η)eµ

∗ηdη − eµ
∗ξ + reµ

∗ξ

= (−µ∗c+
∫
R
κ(ξ − η)e−µ∗(ξ−η)dη − 1 + r)eµ

∗ξ

= λ∗ψ(ξ).

Multiply (6.28) by ψ and (6.29) by ϕ, integrate both sides of the above equations and subtract, then we
have that

(λ(c, L) − λ∗)
∫
R
ψϕdξ =

∫
R
[cϕ′(ξ) +

∫
R
κ(ξ − η)ϕ(η)dη − ϕ(ξ) + f(ξ, 0)ϕ(ξ)]ψ(ξ)dξ

−
∫
R
[−cψ′(ξ) +

∫
R
κ(ξ − η)ψ(η)dη − ψ(ξ) + rψ(ξ)]ϕ(ξ)dξ

=
∫
R
c[ϕ′(ξ)ψ(ξ) + ψ′(ξ)ϕ(ξ)]dξ

+
∫
R
κ(ξ − η)ϕ(η)ψ(ξ)dηdξ −

∫
R
κ(ξ − η)ϕ(ξ)ψ(η)dηdξ

+
∫
R
[f(ξ, 0) − r]ϕ(ξ)ψ(ξ)dξ.
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In addition, by the results of (1) in this theorem, we have that ϕ is bounded and

lim sup
ξ→∞

ϕ(ξ)
eµ−(λ(c,L))ξ ≤ M̃+.

Then lim
ξ→−∞

ϕ(ξ)ψ(ξ) = lim
ξ→−∞

ϕ(ξ)eu
∗ξ = 0 and with µ∗ < −µ−(λ(c, L)), we have that

0 ≤ lim
ξ→∞

ϕ(ξ)ψ(ξ) = lim
ξ→∞

ϕ(ξ)eu
∗ξ ≤ lim

ξ→∞
M̃+e

(µ∗+µ−(λ(c,L)))ξ = 0.

Therefore we have that
∫
R c[ϕ

′(ξ)ψ(ξ) +ψ′(ξ)ϕ(ξ)]dξ =
∫
R c[ϕ(ξ)ψ(ξ)]′dξ = 0. By Fubini’s theorem,

∫
R κ(ξ−

η)ϕ(η)ψ(ξ)dηdξ =
∫
R κ(η − ξ)ϕ(ξ)ψ(η)dηdξ. With k(z) = k(−z), we have that

∫
R κ(ξ − η)ϕ(η)ψ(ξ)dηdξ −∫

R κ(ξ − η)ϕ(ξ)ψ(η)dηdξ = 0. Therefore we have that

(λ(c, L) − λ∗)
∫
R
ψϕdξ =

∫
R
[f(ξ, 0) − r]ϕ(ξ)ψ(ξ)dξ ≤ 0,

and thus λ(c, L) ≤ λ∗. Since λ∗ =
∫
R e

−µ∗zk(z)dz − 1 + r − µ∗c = µ∗(c∗ − c), λ∗ < 0 if c > c∗. This implies
that λ(c, L) < 0 if c > c∗. □

6.3. Applications of principal eigenvalue theory

In this subsection, we discuss the persistence and extinction in (1.5) by applying the principal eigenvalue
theory established in the previous subsection. Our main results of this subsection are stated in the following
Theorem 6.3. In the statement of Theorem 6.3, we use µ±(λ(c, L)) which were defined in (1.9). Let v(t, ξ; v0)
be the solution of (1.5) with v(0, ξ; v0) = v0(ξ) ∈ X+.

Theorem 6.3.

(1) (Persistence) If λ(c, L) > 0, then there is a positive stationary solution of (1.5), and for any K > 0 and
v0 ∈ Int(X+) satisfying lim inf

ξ→∞

v0(ξ)
eµ−(λ(c,L))ξ > 0 and lim inf

ξ→−∞

v0(ξ)
eµ+(λ(c,L))ξ > 0,

lim inf
t→∞

inf
|ξ|≤K

v(t, ξ; v0) > 0.

(2) (Extinction) If λ(c, L) ≤ 0, then for any v0 ∈ X+,

lim
t→∞

sup
ξ∈R

v(t, ξ; v0) = 0.

Proof. (1) First, assume λ(c, L) > 0. Let ϕ(ξ) be a corresponding positive eigenfunction with ∥ϕ∥∞ = 1.
Let v(ξ) = αϕ(ξ) for α > 0. Then we have that

− (cv′(ξ) +
∫
R
κ(η − ξ)v(η)dη − v(ξ) + f(ξ, v)v(ξ))

= −α(cϕ′(ξ) +
∫
R
κ(η − ξ)ϕ(η)dη − ϕ(ξ) + f(ξ, αϕ)ϕ(ξ))

= −α(cϕ′(ξ) +
∫
R
κ(η − ξ)ϕ(η)dη − ϕ(ξ) + f(ξ, 0)ϕ(ξ)) + α(f(ξ, 0) − f(ξ, αϕ))ϕ(ξ)

= −αϕ(ξ)(λ(c, L) − (f(ξ, 0) − f(ξ, αϕ))).

Note that there is α0 > 0 such that f(ξ, 0) − f(ξ, αϕ) < λ(c, L) for 0 < α < α0, and thus

−(cv′(ξ) +
∫
R
κ(η − ξ)v(η)dη − v(ξ) + f(ξ, v)v(ξ)) ≤ 0.

This implies that v is a sub-solution of (1.5) for 0 < α ≤ α0.
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Next, choose M > max{1, α0}. Let v̄(ξ) ≡ M . Note that f(x,M) < 0 if M > 1. Thus −(cv̄′(ξ) +
∫
R κ(η−

ξ)v̄(η)dη−v̄(ξ)+f(ξ, v̄)v̄(ξ)) = −f(ξ,M)M ≥ 0. Hence v̄(ξ) is a super-solution of (1.5). Note that v̄ > v. Let
v(t, ξ; v) be the solution of (1.5) with v(0, ξ; v) = v(ξ). Then by the comparison principle (Proposition 2.1)

v̄ ≥ v(t2, ξ; v) = v(t1, ξ; v(t2 − t1, ·; v)) ≥ v(t1, ξ; v), ∀ 0 < t1 < t2, ξ ∈ R

and
v̄ ≥ v(t, ξ; v) = v(t, ξ;αϕ(ξ)) ≥ v = αϕ(ξ) ∀ t > 0, ξ ∈ R, 0 < α ≤ α0.

It then follows that Φ(ξ) is a positive stationary solution of (1.5), where

Φ(ξ) = lim
t→∞

v(t, ξ; v).

Suppose that v0 ∈ Int(X+) with lim inf
ξ→∞

v0(ξ)
eµ−(λ(c,L))ξ > 0 and lim inf

ξ→−∞

v0(ξ)
eµ+(λ(c,L))ξ > 0. Recall that there

are M̃± such that
lim sup
ξ→∞

ϕ(ξ)
eµ−(λ(c,L))ξ ≤ M̃+ and lim sup

ξ→−∞

ϕ(ξ)
eµ+(λ(c,L))ξ ≤ M̃−.

Then there are C > 0 and 0 < α1 ≤ α0 such that for all 0 < α ≤ α1 and |ξ| > C, v0(ξ) ≥ v = αϕ(ξ).

Let α2 =
min

ξ∈[−C,C]
{v0(ξ)}

max
ξ∈[−C,C]

{ϕ(ξ)} . Then for 0 < α < α2, we also have that v0(ξ) ≥ αϕ(ξ), for |ξ| ≤ C. Thus, for

0 < α < min{α1, α2}, we have that

v0(ξ) ≥ v = αϕ(ξ), ∀ ξ ∈ R.

It then follows by comparison principle (Proposition 2.1) that

v(t, ξ; v0) ≥ v(t, ξ; v) ≥ αϕ(ξ), ∀ t > 0, ξ ∈ R.

Thus (1) follows.
(2) We start the proof by making a stronger assumption that λ(c, L) < 0. By Proposition 6.1,

∥V (t; c, a)∥ ≤ eλ(c,L)t → 0, as t → ∞. Then for any v0 ∈ X+,

lim
t→∞

∥V (t; c, a)v0∥ = 0.

Note that for t > 0,

v(t, ξ; v0) = V (t; c, a)v0 +
∫ t

0
V (t− s; c, a)[f(ξ, v(s, ξ; v0)) − f(ξ, 0)]v(s, ξ; v0)ds.

Since fu(x, u) ≤ 0 in (H2) and v(t, ξ; v0) ≥ 0, this implies that∫ t

0
V (t− s; c, a)[f(ξ, v(s, ξ; v0)) − f(ξ, 0)]v(s, ξ; v0)ds ≤ 0.

Therefore we have that
0 ≤ v(t, ξ; v0) ≤ V (t; c, a)v0, ∀ t ≥ 0, ξ ∈ R.

By the squeeze theorem, lim
t→∞

v(t, ξ; v0) = 0.
Now we assume that λ(c, L) = 0. Let ϕ be a positive principal eigenfunction associated with 0, that is,

cϕ′(ξ) +
∫
R
κ(η − ξ)ϕ(η)dη − ϕ(ξ) + f(ξ, 0)ϕ(ξ) = 0.
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Let ψ(ξ) = ϕ(−ξ) and then ψ(ξ) satisfies that

− cψ′(ξ) +
∫
R
κ(η − ξ)ψ(η)dη − ψ(ξ) + f(ξ, 0)ψ(ξ) = 0. (6.30)

Choose M large enough such that v̄ = M is a super-solution of Eq. (1.5) and 0 ≤ v0 ≤ v̄ = M . Then by
the comparison principle (Proposition 2.1), 0 ≤ v(t, ξ; v0) ≤ v(t, ξ; v̄) ≤ M . Then lim

t→∞
v(t, ξ; v̄) exists and

let w(ξ) = lim
t→∞

v(t, ξ; v̄) that satisfies

cw′(ξ) +
∫
R
κ(η − ξ)w(η)dη − w(ξ) + f(ξ, w)w(ξ) = 0. (6.31)

By the similar arguments in the proof of item (3) of Theorem 6.2, multiply (6.31) by ψ and (6.30) by w,
integrate both sides of the above equations and subtract, then we have that∫

R
(f(ξ, w) − f(ξ, 0))w(ξ)ψ(ξ)dξ = 0, (6.32)

Note that w(ξ) ≥ 0, ψ > 0 and by (H2), f(ξ, w) ≤ f(ξ, 0). From (6.32), if w(ξ) > 0, then we must
have f(ξ, w) = f(ξ, 0), which causes a contradiction. Therefore, we must have that w(ξ) = 0 and so
lim sup
t→∞

v(t, ξ; v0) ≤ lim
t→∞

v(t, ξ; v̄) = 0. □

Remark 6.2. In the case that λ(c, L) > 0, it remains an open question whether Theorem 6.3(1) holds for
any v0 ∈ X+ \ {0}.

Corollary 6.1. L∗ = L∗∗, and L∗ → ∞ as c → (c∗)−.

Proof. First, we prove that L∗ = L∗∗. For any L > L∗∗, λ(c, L) > 0. By Theorem 6.3, (1.5) has a positive
stationary solution. Then by Theorem 5.1, we must have L∗∗ ≥ L∗.

Conversely, for any L > L∗, by Theorem 5.1, (1.5) has a positive stationary solution. Then by
Theorem 6.3, we must have L∗ ≥ L∗∗. It then follows that L∗ = L∗∗.

Next, we prove that L∗ → ∞ as c → (c∗)−. To indicate the dependence of L∗ on c, we denote it by L∗(c).
Assume that there is cn → (c∗)− such that L∗(cn) → L̃∗ < ∞ as n → ∞. Fix L > L̃∗. Then, without loss
of generality, we may assume that λ(cn, L) > 0 for n ≥ 1. By Theorem 6.2(2), we have that λ(c∗, L) ≥ 0 for
L > L̃∗. By Theorem 6.2(3), we must have that λ(c∗, L) > 0 for L > L̃∗. By Theorem 6.2(5), λ(c, L) < 0 for
any c > c∗ and L > 0. Then by Theorem 6.2(2) again, λ(c∗, L) ≤ 0 for L ≥ L̃∗, which is a contradiction. □
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