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An Elementary Proof of a Matrix Tree
Theorem for Directed Graphs∗

Patrick De Leenheer†

Abstract. We present an elementary proof of a generalization of Kirchhoff’s matrix tree theorem to
directed, weighted graphs. The proof is based on a specific factorization of the Laplacian
matrices associated to the graphs, which involves only the two incidence matrices that
capture the graph’s topology. We also point out how this result can be used to calculate
principal eigenvectors of the Laplacian matrices.
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1. Introduction. Kirchhoff’s matrix tree theorem [3] is a result that allows one
to count the number of spanning trees rooted at any vertex of an undirected graph by
simply computing the determinant of an appropriate matrix—the so-called reduced
Laplacian matrix—associated to the graph. A recent elementary proof of Kirchhoff’s
matrix tree theorem can be found in [5]. Kirchhoff’s matrix theorem can be extended
to directed graphs; see [4, 2, 7] for proofs. According to [2], an early proof of this
extension is due to [1], although the result is often attributed to Tutte in [6] and is
hence referred to as Tutte’s Theorem. The goal of this paper is to provide an elemen-
tary proof of Tutte’s Theorem. Most proofs of Tutte’s Theorem appear to be based
on applying the Leibniz formula for the determinant of a matrix expressed as a sum
over permutations of the matrix elements to the reduced Laplacian matrix associated
to the directed graph. Some proofs [4, 2] are based on counting schemes that apply
the inclusion-exclusion principle to collections of particular subgraphs of the original
directed graph. The strategy proposed here is to instead factor the Laplacian ma-
trix as a product of two rectangular matrices and use the Binet–Cauchy determinant
formula to break it up into simpler pieces that are easier to calculate. Factorization
of the Laplacian matrix is not a novel idea and has been used before in the proof of
Kirchhoff’s matrix tree theorem for undirected graphs presented in [5]. However, the
Laplacian matrix in the case of a directed graph is symmetric and negative semidefi-
nite, and can therefore be factored as minus the product of a square matrix times its
transpose. In the case of undirected graphs, the Laplacian matrix is no longer sym-
metric, hence a useful factorization is not immediately obvious. One of the key ideas
presented here is that an interesting factorization still exists, although the two factors
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Fig. 1 An example of a directed graph G with vertex set V = {v1, v2, v3} and directed edge set
E = {e1, e2, e3, e4, e5}.

in the product are no longer square and instead are rectangular matrices. Neverthe-
less, both factors are closely related to the so-called incidence matrices associated to
the directed graph, which are two algebraic objects that unambiguously capture the
graph’s topology and orientation.

Let G = (V,E) be a directed graph with finite vertex set V = {v1, . . . , vp} and
finite directed edge set E = {e1, . . . , eq}. We assume that each directed edge points
from some vertex vi to another vertex vj 6= vi, and that there exists at most one
directed edge from any vertex to any distinct vertex. For each vertex vi of G, we
define the in-degree of vi as the number of distinct directed edges which point to vi.
Similarly, the out-degree of vi is the number of distinct directed edges of G which point
from vi to some other vertex. A directed cycle of G is a collection of distinct vertices
{vi1 , vi2 , . . . , vin} and a collection of distinct directed edges {ek1

, . . . , ekn
} such that

each ekj points from vij to vij+1 , and where vin+1 = vi1 .

Example. Consider the directed graph in Figure 1, which we shall use as a running
example throughout this paper to illustrate the various concepts and notions. This
directed graph has p = 3 vertices and q = 5 directed edges. The in-degrees of v1, v2,
and v3 are equal to 1, 2, and 2, respectively. The out-degrees of v1, v2, and v3 are
equal to 2, 1, and 2, respectively. There are several directed cycles, such as {v2, v3}
and {e2, e3}; {v3, v1} and {e4, e5}; and {v1, v2, v3} and {e1, e2, e4}.

Definitions. A directed subgraph of G is a directed graph G′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E. Fix a vertex vr in V . We say that a directed subgraph G′ of
G is an outgoing (incoming) directed spanning tree rooted at vr if V ′ = V and if the
following three conditions hold:

1. Every vertex vi 6= vr in V ′ has in-degree (out-degree) 1.
2. The root vertex vr has in-degree (out-degree) 0.
3. G′ has no directed cycles.

Note that any outgoing (incoming) directed spanning tree of G necessarily has p−1
distinct directed edges selected among the q directed edges of G. Indeed, an outgoing
(incoming) directed spanning tree must have exactly p vertices. All its vertices except
for the root vr must have in-degree (out-degree) equal to 1, and the in-degree (out-
degree) of the root vr must be 0. Therefore, to identify outgoing (incoming) directed
spanning trees, we should only consider directed subgraphs G′ of G with the same
number of vertices as G (namely, p) and with exactly p − 1 distinct directed edges
chosen among the directed edges of G. There are a total of

(
q

p−1
)

directed subgraphs

G′ of G with p vertices and p−1 directed edges, a possibly large number. Only some—
and in some cases, none—of these directed subgraphs are outgoing (incoming) directed
spanning trees, namely, those which do not contain directed cycles. In order to count
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Fig. 2 Outgoing directed spanning trees rooted at vr = v3 for the directed graph from Figure 1.
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Fig. 3 Incoming directed spanning trees rooted at vr = v3 for the directed graph from Figure 1.

the number of outgoing (incoming) directed spanning trees at a given root, we need
a counting scheme that recognizes the outgoing (incoming) directed spanning trees
and ignores directed subgraphs which contain directed cycles. The proof of Tutte’s
Theorem presented below provides such a counting scheme.

Example. Consider the directed graph in Figure 1 and choose as root vr = v3.
There are two outgoing (incoming) directed spanning trees rooted at v3, which are
depicted in Figure 2 (Figure 3).

To a directed graph G we associate two real p× p matrices, called the Laplacians
of G, which are defined as follows:

(1.1) L1 = Din −Av and L2 = Dout −AT
v ,

where
• Din is a diagonal matrix defined as [Din]ii = in-degree of vertex vi for all
i = 1, . . . , p;

• Av is the vertex-adjacency matrix of G, a real p× p matrix defined entrywise
as follows:

[Av]ij =

{
1 if there exists a directed edge from vi to vj ,

0 otherwise;

• Dout is a diagonal matrix defined as [Dout]ii = out-degree of vertex vi, for all
i = 1, . . . , p.

Fix a vertex vr in G and define the reduced Laplacians Lr
1 and Lr

2 by removing
the rth row and rth columns from L1 and L2, respectively. Then Tutte’s Theorem is
given as follows.

Theorem 1 (Tutte’s Theorem). Let G = (V,E) be a directed graph. The num-
bers of outgoing and incoming directed spanning trees rooted at vr are equal to det(Lr

1)
and det(Lr

2), respectively.
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MATRIX TREE THEOREM 719

Example. For the directed graph from Figure 1, and picking the root vr = v3, we
have that

Din =

1 0 0
0 2 0
0 0 2

 and Av =

0 1 1
0 0 1
1 1 0

 ,

and thus

L1 =

 1 −1 −1
0 2 −1
−1 −1 2

 and Lr
1 =

(
1 −1
0 2

)
.

Then det(Lr
1) = 2 is indeed equal to the number of outgoing directed spanning trees

rooted at vr = v3, confirming Tutte’s Theorem for this example. Similarly,

Dout =

2 0 0
0 1 0
0 0 2

 ,

and thus

L2 =

 2 0 −1
−1 1 −1
−1 −1 2

 and Lr
2 =

(
2 0
−1 1

)
.

Then det(Lr
2) = 2 is also indeed equal to the number of incoming directed spanning

trees rooted at vr = v3, once again confirming Tutte’s Theorem for this example.

2. Proof of Tutte’s Theorem. Although Tutte’s Theorem is a remarkable result,
it is expressed in terms of rather complicated matrices associated to a directed graph,
namely, the reduced Laplacians. To a directed graph, one can associate two much
more elementary matrices, known as incidence matrices, which arise quite naturally.
For a given vertex, one can record the directed edges pointing to this vertex. This
information will be captured by one of the incidence matrices, namely, by Nin. Sim-
ilarly, one can record, for each vertex, the directed edges pointing from this vertex,
and this will be captured by the second incidence matrix Mout.

Definitions. Let G = (V,E) be a directed graph. The incidence matrix Nin is a
real q × p matrix defined entrywise as follows:

[Nin]ki =

1 if directed edge ek points to vertex vi,
viek

0 otherwise.

One can identify the kth row of Nin with edge ek. This row has exactly one nonzero
entry, which equals 1 and is located in the ith column, where vi is the vertex to which
edge ek points.

Similarly, the incidence matrix Mout is a real p× q matrix defined entrywise as

[Mout]ik =

1 if directed edge ek points from vertex vi,
vi ek

0 otherwise.

One can identify the kth column of Mout with edge ek. This column has exactly one
nonzero entry, which equals 1 and is located in the ith row, where vi is the vertex
from which ek points.
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720 PATRICK DE LEENHEER

Example. For the directed graph from Figure 1,

Nin =


0 1 0
0 0 1
0 1 0
1 0 0
0 0 1

 and Mout =

1 0 0 0 1
0 1 0 0 0
0 0 1 1 0

 .

The two incidence matrices contain purely local information concerning a directed
graph, namely, they record which directed edges point to, respectively, from each
vertex. But on the other hand, both matrices also provide us with global information
about the graph. Indeed, given these two matrices, we can unambiguously construct
the graph. This suggests that perhaps the two Laplacians of a directed graph can
be expressed in terms of just the two incidence matrices. The following factorization
result shows that this is indeed the case.

Lemma 1. Let G = (V,E) be a directed graph. Then

(2.1) Din = NT
inNin, Av = MoutNin, and Dout = MoutM

T
out,

and thus

(2.2) L1 = (NT
in −Mout)Nin and L2 = (Mout −NT

in)MT
out.

Fix a vertex vr in V . Let Nr
in be the matrix obtained from Nin by removing the rth

column in Nin, and let Mr
out be the matrix obtained from Mout be removing the rth

row from Mout. Then

(2.3) Lr
1 = ((Nr

in)T −Mr
out)N

r
in and Lr

2 = (Mr
out − (Nr

in)T )(Mr
out)

T .

Proof. For all i, j = 1, 2, . . . , p, consider

[NT
inNin]ij =

q∑
k=1

[NT
in]ik[Nin]kj =

q∑
k=1

[Nin]ki[Nin]kj

=

{
0 if i 6= j,

in-degree of vertex vi if i = j.

Indeed, for each k, [Nin]ki[Nin]kj = 0 when i 6= j, since each edge ek points to exactly
one vertex, so at most one of the two factors in this product can be nonzero. On the
other hand, when i = j, then [Nin]ki[Nin]kj = ([Nin]ki)

2
= 1 when ek points to vi,

but equals 0 if ek does not point to vi. The sum over all q of these terms therefore
yields the in-degree of vertex vi. This establishes that Din = NT

inNin. A similar proof
shows that Dout = MoutM

T
out.

For all i, j = 1, 2, . . . , p, consider

[MoutNin]ij =

q∑
k=1

[Mout]ik[Nin]kj

=

{
0 if there is no edge pointing from vi to vj ,

1 if there is an edge pointing from vi to vj .

Indeed, [Mout]ik[Nin]kj = 1 precisely when edge ek points from vertex vi to vertex
vj , and equals zero otherwise. The sum over all q of these terms cannot be larger
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MATRIX TREE THEOREM 721

than 1 because there is at most one distinct directed edge pointing from one vertex
to another vertex. This establishes that Av = MoutNin.

The definitions of L1 and L2, together with (2.1), imply (2.2). Finally, it is
immediate from the definition of L1 (L2) that Lr

1 = Dr
in − Ar

v (Lr
2 = Dr

out − (AT
v )r),

where Dr
in (Dr

out) and Ar
v ((AT

v )r) are obtained from, respectively, Din (Dout) and Av

(AT
v ) by deleting the rth row and rth column from these matrices. Moreover, (2.1)

implies that

Dr
in = (Nr

in)TNr
in and Ar

v = Mr
outN

r
in, and

Dr
out = (Mr

out)(M
r
out)

T and (AT
v )r = (Nr

in)T (Mr
out)

T ,

which in turn yields (2.3).

We are now ready for the proof.

Proof of Theorem 1. We shall only provide a proof for the reduced Laplacian Lr
1

because the proof for the reduced Laplacian Lr
2 is analogous. Lemma 1 implies that

det(Lr
1) = det

(
((Nr

in)T −Mr
out)N

r
in

)
.

For notational convenience we set

B = (Nr
in)T −Mr

out and C = Nr
in.

Then the Binet–Cauchy determinant formula implies that

det(Lr
1) =

∑
S⊆{1,...,q},|S|=p−1

det(B[S]) det(C[S]),

where the sum is over all subsets S of {1, . . . , q} containing p − 1 elements. There
are

(
q

p−1
)

such subsets. Furthermore, B[S] denotes the (p − 1) × (p − 1) submatrix

obtained from the (p− 1)× q matrix B by selecting precisely those columns of B in
the set S. Similarly, C[S] is the submatrix obtained from the q× (p− 1) matrix C by
selecting precisely those rows of C in the set S.

To complete the proof of Tutte’s Theorem, we will show that:
1. When the p− 1 elements in S correspond to the indices of the directed edges

of an outgoing directed spanning tree rooted at vr, then

det(B[S]) det(C[S]) = 1.

2. When the p− 1 elements in S correspond to the indices of the directed edges
of a directed subgraph of G which is not an outgoing directed spanning tree
rooted at vr, then

det(B[S]) det(C[S]) = 0.

1. Suppose that S = {k1, k2, . . . , kp−1}, with k1 < k2 < · · · < kp−1, is in a
bijective correspondence to a set of p−1 indices of the directed edges ek1

, ek2
, . . . , ekp−1

of an outgoing directed spanning tree rooted at vr. Similarly, let S̃ = {l1, l2, . . . , lp−1},
with l1 < l2 < · · · < lp−1, be in a bijective correspondence to the set of indices of
the vertices in V \ {vr}. Set T = (V,E′) to denote the directed subgraph of G
corresponding to this tree, i.e., E′ = {ek1

, ek2
, . . . , ekp−1

}.
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722 PATRICK DE LEENHEER

Claim. The (p−1)×(p−1) matrix C[S] = Nr
in[S] has precisely one nonzero entry

in each row and in each column, and this nonzero entry equals 1. This follows from
the fact that for an outgoing directed spanning tree rooted at vr, each of the vertices
distinct from vr has in-degree equal to 1 (implying that each column of C[S] = Nr

in[S]
contains exactly one nonzero entry that equals 1), and each of the p−1 directed edges
points to one of the p− 1 nonroot vertices (implying that each row of C[S] = Nr

in[S]
contains exactly one nonzero entry that equals 1).

Consequently, the matrix C[S] = Nr
in[S] is a permutation matrix, i.e., it is a

matrix obtained from the identity matrix by finitely many column swaps, and thus
C[S](C[S])T = I = (C[S])TC[S], whence

det(B[S]) det(C[S]) = det(B[S]C[S])

= det (I −Mr
out[S]Nr

in[S])

= det(I −D),(2.4)

where
D = Mr

out[S]Nr
in[S].

Recall from Lemma 1 that Av = MoutNin. By reducing Nin to Nr
in and Mout to Mr

out

as in Lemma 1, and then selecting the respective submatrices Nr
in[S] and Mr

out[S], we
obtain that

Dij =

{
1 if there is a directed edge in E′ pointing from vli to vlj , both in V \ {vr},
0 otherwise.

Claim. D is nilpotent, and hence there is an invertible (p − 1) × (p − 1) matrix
S such that S−1DS = J , where J , the Jordan canonical form of D, is strictly upper-
triangular (all diagonal entries of J are zero), and then (2.4) implies that

det(B[S]) det(C[S]) = det (I −D) = det
(
S(I − J)S−1

)
= det(I − J) = +1

To show that D is nilpotent, we will prove that Dp−1 = 0. Arguing by contradiction,
assume that [Dp−1]i1ip 6= 0 for some i1 and ip in {1, . . . , p − 1}. Then there exist
vli1 , vli2 , . . . , vlip in V \ {vr} such that for all s = 1, . . . , p − 1 there is some directed
edge in E′ from vlis to vlis+1

. Since V \{vr} contains p−1 distinct elements, it follows
from the Pigeonhole Principle that the sequence vli1 , vli2 , . . . , vlip must contain two
identical terms. But then T contains a directed cycle, which is a contradiction.

2. Suppose that S = {k1, . . . , kp−1} with k1 < · · · < kp−1 corresponds to the
index set of a subgraph G′ = (V,E′) of G with E′ = {ek1

, . . . , ekp−1
}, which is not an

outgoing directed spanning tree rooted at vr. Our goal is to show that

det(B[S]) det(C[S]) = 0.

There are three possible cases to consider.

Case 1: There is a vertex vi in G′ with vi 6= vr, whose in-degree is not 1. Then
either the in-degree of vi is 0, or it is at least 2. If the in-degree of vi is 0, then
the column of Nr

in[S] that records all in-coming edges to vi in G′ is a zero column
vector, and thus det(C[S]) = det(Nr

in[S]) = 0. If the in-degree of vi is at least 2, then
there are at least two identical rows in the matrix Nr

in[S], and likewise det(C[S]) =
det(Nr

in[S]) = 0.
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Case 2: The in-degree of the root vr is not 0. Then Nr
in[S] has at least one zero

row, and thus det(C[S]) = det(Nr
in[S]) = 0.

Case 3: G′ contains a directed cycle. Let {vi1 , vi2 , . . . , vin}, be a collection of
distinct vertices in V ′ = V , and let {el1 , . . . , eln} be a collection of distinct directed
edges in E′ such that each elj points from vij to vij+1

, and where vin+1
= vi1 . We

claim that the sum of the l1th, l2th, . . . , lnth columns of B[S] = (Nr
in)T [S]−Mr

out[S]
equals the zero vector, and thus det(B[S]) = det

(
Nr

in)T [S]−Mr
out[S]

)
= 0. To see

why, note that each of the aforementioned columns has exactly two nonzero entries,
one being +1 and the other being −1. Moreover, the ljth and the lj+1th columns
will have two nonzero entries of opposite sign in the same position. Therefore, by
adding the columns, each +1 in some column is canceled by a −1 in another column,
establishing the claim.

3. Spanning Trees and Eigenvectors. To a directed graph G = (V,E), we have
associated two Laplacians L1 and L2; see (1.1). The sum over all rows in both
Laplacians is the zero vector; equivalently, all column sums in both Laplacians are
equal to zero. This follows from (2.2) because

(1, 1, . . . , 1)
(
NT

in −Mout

)
= (1, 1, . . . , 1)

(
Mout −NT

in

)
= 0,

since each column of the matrix NT
in−Mout contains exactly two nonzero entries, one

being a +1 and the other a −1. Thus, zero is an eigenvalue of both L1 and L2. We
will find eigenvectors associated to the zero eigenvalues of L1 and L2 and relate them
to the number of outgoing, respectively, incoming directed spanning trees rooted at
each of the vertices of G.

Theorem 2. Let G = (V,E) be a directed graph. Suppose that x and y are p-
vectors, defined entrywise as follows:

xi = number of outgoing directed spanning trees rooted at vertex vi, and(3.1)

yi = number of incoming directed spanning trees rooted at vertex vi(3.2)

for all i = 1, . . . , p. Then

(3.3) L1x = 0 = L2y.

Proof. We only give a proof for L2 as it is similar for L1. For notational conve-
nience, we drop the subscript of L2 and denote this matrix by L. Since zero is an
eigenvalue of L, we have that det(L) = 0. By expanding the determinant of L along
each of the rows of L, we see that

L11C11 + L12C12 + · · ·+ L1pC1p = 0,

L21C21 + L22C22 + · · ·+ L2pC2p = 0,

...

Lp1Cp1 + Lp2Cp2 + · · ·+ LppCpp = 0,

where Cij denotes the cofactor of Lij .
We claim that for all i, j, k in {1, . . . , p},

Cij = Ckj .
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That is, the cofactors of elements of L in the same column are all equal. This is a
standard exercise in linear algebra that relies on basic properties of determinants and
exploits the fact that all the column sums of L equal zero, as remarked earlier. From
Tutte’s Theorem (Theorem 1), follows that for all i = 1, . . . , p,

Cii = det(Li) = yi = number of incoming directed spanning trees rooted at vi.

This implies that Ly = 0.

Remark. The vectors x and y in Theorem 2 are only eigenvectors of L1 and L2

when they are nonzero vectors. This requires that G should have at least one vertex
such that there is an outgoing (or incoming) directed spanning tree rooted at that
vertex. A sufficient condition for this to happen is that G is a strongly connected di-
rected graph. This means that from every vertex of G there must exist a directed path
to any other vertex of G. When G is strongly connected, there is a positive number
of incoming and outgoing directed spanning trees rooted at every vertex of G. Hence
the vectors x and y are entrywise positive vectors. This result also follows directly
from the celebrated Perron–Frobenius Theorem applied to the irreducible Laplacian
matrices −L1 and −L2. Note that these matrices have nonnegative off-diagonal en-
tries, and we already know that both have an eigenvalue at zero. This eigenvalue is
a principal eigenvalue, meaning that every other eigenvalue has negative real part.
The Perron–Frobenius Theorem then implies that both matrices have unique (up to
multiplication by nonzero scalars), entrywise positive eigenvectors associated to their
zero eigenvalue. Theorem 2 above provides a way to compute these eigenvectors.
Indeed, in principle they can be found by simply counting the number of outgoing
and incoming directed spanning trees rooted at every vertex of G. In other words,
we have established a purely graphical procedure to compute eigenvectors of the zero
principal eigenvalues of the Laplacian matrices.

4. Extensions to Weighted Directed Graphs. In this section we generalize the
preceding results to weighted directed graphs.

Let Gw = (V,E,W ) be a weighted directed graph, where V = {v1, . . . , vp} is the
vertex set, E = {e1, . . . , eq} the directed edge set, and W = {w1, . . . , wq} is the set
of positive weights associated to each of the directed edges. The weight of a weighted
directed graph is defined as the product of the weights of its edges:

weight of Gw = Πq
i=1wi.

A weighted directed subgraph of Gw is a weighted directed graph G′w = (V ′, E′,W ′),
where V ′ ⊆ V , E′ ⊆ E, and W ′ is the subset of W that corresponds to the subset
E′ of E. Fix a vertex vr in V . We say that a weighted directed subgraph G′w is a
weighted outgoing (incoming) directed spanning tree rooted at vr if G′ = (V ′, E′) is an
outgoing (incoming) directed spanning tree rooted at vr.

To a weighted directed graph Gw we can associate two real p × p matrices, also
called the Laplacians of Gw, which are defined as follows:

(4.1) L1,w = Din,w −Av,w and L2,w = Dout,w −AT
v,w,

where
• Din,w is a diagonal matrix such that for all i = 1, . . . , p, [Din,w]ii is equal to

the sum of the weights of all incoming edges to vertex vi;
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• Av,w is the weighted vertex-adjacency matrix of Gw, a real p×p matrix defined
entrywise as follows:

[Av,w]ij =

{
wk if ek is the weighted directed edge from vi to vj ,

0 if there is no weighted directed edge from vi to vj ;

• Dout,w is a diagonal matrix such that for all i = 1, . . . , p, [Dout,w]ii is equal
to the sum of the weights of all outgoing edges of vertex vi.

The weighted incidence matrices Nin,w and Mout,w can be associated to a weighted
directed graph Gw as well. The matrix Nin,w is a q × p matrix defined entrywise as
follows:

[Nin,w]ki =

w
1/2
k if directed edge ek points to vertex vi,

viek

0 otherwise,

similarly, the matrix Mout,w is a p× q matrix defined entrywise as follows:

[Mout,w]ik =

w
1/2
k if directed edge ek points from vertex vi,

vi ek

0 otherwise.

The key observation is that L1,w and L2,w can still be factored using the weighted
incidence matrices, as in Lemma 2.2:

(4.2) L1,w = (NT
in,w −Mout,w)Nin,w and L2,w = (Mout,w −NT

in,w)MT
out,w.

Fix a vertex vr in the weighted directed graph Gw. Denoting the reduced matrix
Nr

in,w (Mr
out,w) as the matrix obtained by deleting the rth column (rth row) from

Nin,w (Mr
out,w), and Lr

1,w (Lr
2,w) by deleting the rth row and the rth column from

L1,w (L2,w), we also have that

(4.3) Lr
1 = ((Nr

in)T −Mr
out)N

r
in and Lr

2 = (Mr
out − (Nr

in)T )(Mr
out)

T .

These factorizations enable a proof of a generalization of Tutte’s Theorem (Theorem
1) to weighted graphs, as well as a generalization of Theorem 2.

Theorem 3. Let Gw = (V,E,W ) be a weighted directed graph. Then the sum of
the weights of the weighted outgoing (incoming) directed spanning trees rooted at vr
is equal to det(Lr

1,w) (det(Lr
2,w)).

Suppose that x and y are p-vectors, defined entrywise as

xi = sum of weights of all weighted outgoing directed spanning trees rooted at vi, and

yi = sum of weights of all weighted incoming directed spanning trees rooted at vi

for all i = 1, . . . , p. Then

(4.4) L1,wx = 0 = L2,wy.

We shall skip the proof of Theorem 3 and highlight only two instances where the
proof of Theorem 1 needs to be modified slightly. The proof of Theorem 2 does not
require any modifications.
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• As in the first part of the proof of Theorem 1, we set

B[S] = (Nr
in,w)T −Mr

out and C[S] = Nr
in,w.

Here, C[S] = Nr
in,w[S] is not necessarily a permutation matrix anymore, and

(2.4) is modified to

det(B[S]) det(C[S]) = det(Q−D),

where
Q = (Nr

in,w[S])TNr
in,w[S] and D = Mr

out,w[S]Nr
in,w[S].

It can be shown that Q is a diagonal matrix whose determinant equals the
weight of the weighted spanning tree T . As before, D is still a nilpotent
matrix (because Dp−1 = 0), and thus

det(B[S]) det(C[S]) = det(Q−D) = det(Q) = weight of T.

• Another modification must be made to the last paragraph of the proof of
Theorem 1. We claim that the sum of the l1th, l2th, . . . , lnth columns of
B[S] is still zero. In this case, each of the aforementioned columns has exactly
two nonzero entries, one being the square root of the weight of some directed
edge, and the other being minus the square root of the weight of a directed
edge (instead of a +1 and a −1). But as before, the ljth and the lj+1th
columns have two nonzero entries of opposite sign in the same position, and
consequently these columns add up to the zero vector. Thus, we still conclude
that det(B[S]) = 0.
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