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Abstract

Persistence is the property, for differential equations in Rn, that solutions starting in the positive orthant
do not approach the boundary of the orthant. For chemical reactions and population models, this trans-
lates into the non-extinction property: provided that every species is present at the start of the reaction, no
species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for
persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and
verifies these conditions on various systems which arise in the modeling of cell signaling pathways.
! 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the main goals of molecular systems biology is the understanding of cell behavior and
function at the level of chemical interactions, and, in particular, the characterization of qualitative
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features of dynamical behavior (convergence to steady states, periodic orbits, chaos, etc.). A cen-
tral question, thus, is that of understanding the long-time behavior of solutions. In mathematical
terms, and using standard chemical kinetics modeling, this problem may be translated into the
study of the set of possible limit points (the x-limit set) of the solutions of a system of ordinary
differential equations.

1.1. Robustness

A distinguishing feature of this study in the context of cell biology, in contrast to more estab-
lished areas of applied mathematics and engineering, is the very large degree of uncertainty inher-
ent in models of cellular biochemical networks. This uncertainty is due to environmental
fluctuations, and variability among different cells of the same type, as well as, from a mathemat-
ical analysis perspective, the difficulty of measuring the relevant model parameters (kinetic con-
stants, cooperativity indices, and many others) and thus the challenge to obtain a precise
model. Thus, it is imperative to develop tools that are ‘robust’ in the sense of being able to provide
useful conclusions based only upon information regarding the qualitative features of the network,
and not the precise values of parameters or even the forms of reactions. Of course, this goal is
often unachievable, since dynamical behavior may be subject to phase transitions (bifurcation
phenomena) which are critically dependent on parameter values.

Nevertheless, and surprisingly, research by many, notably by Clarke [10], Horn and Jackson
[29,30], Feinberg [18–20], and many others in the context of complex balancing and deficiency the-
ory, and by Hirsch and Smith [41,26] and many others including the present authors [2,17,3,9] in
the context of monotone systems, has resulted in the identification of rich classes of chemical net-
work structures for which such robust analysis is indeed possible. In this paper, we present yet
another approach to the robust analysis of dynamical properties of biochemical networks, and
apply our approach in particular to the analysis of persistence in chemical networks modeled
by ordinary differential equations. Our approach to study persistence is based on the formalism
and basic concepts of the theory of Petri nets. Using these techniques, our main results provide
conditions (some necessary, and some sufficient) to test persistence. We then apply these condi-
tions to obtain fairly tight characterizations in non-trivial examples arising from the current
molecular biology literature.

1.2. Persistence

Persistence is the property that, if every species is present at the start of the reaction, no species will
tend to be eliminated in the course of the reaction. Mathematically, this property can be equivalently
expressed as the requirement that the x-limit set of any trajectory which starts in the interior of the
positive orthant (all concentrations positive) does not intersect the boundary of the positive orthant
(more precise definitions are given below). Persistence can be interpreted as non-extinction: if the
concentration of a species would approach zero in the continuous differential equation model,
this means, in practical terms, that it would completely disappear in finite time, since the true system
is discrete and stochastic. Thus, one of the most basic questions that one may ask about a
chemical reaction network is if persistence holds for that network. Also from a purely mathematical
perspective persistence is very important, because it may be used in conjunction with other
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techniques in order to guarantee convergence of solutions to equilibria. For example, if a strictly
decreasing Lyapunov function exists on the interior of the positive orthant (see e.g. [29,30,18–
20,42] for classes of networks where this can be guaranteed), persistence allows such a conclusion.

An obvious example of a non-persistent chemical reaction is a simple irreversible conversion
A! B of a species A into a species B; in this example, the chemical A empties out, that is, its
time-dependent concentration approaches zero as t !1. This is obvious, but for complex net-
works determining persistence, or lack thereof, is, in general, an extremely difficult mathematical
problem. In fact, the study of persistence is a classical one in the (mathematically) related field of
population biology, where species correspond to individuals of different types instead of chemical
units; see for example [22,7] and much other foundational work by Waltman. (To be precise, what
we call ‘persistence’ coincides with the usage in the above references, and is also sometimes called
‘strong persistence,’ at least when all solutions are bounded, a condition that we will assume in
most of our main results, and which is automatically satisfied in most examples. Also, we note
that a stronger notion, ‘uniform’ persistence, is used to describe the situation where all solutions
are eventually bounded away from the boundary, uniformly on initial conditions, see [8,44].) Most
dynamical systems work on persistence imposes conditions ruling out phenomena such as hetero-
clinic cycles on the boundary of the positive orthant, and requiring that the unstable manifolds of
boundary equilibria should intersect the interior, and more generally studying the chain-recur-
rence structure of attractors, see e.g. [27].

1.3. Petri nets

Basic ideas introduced by Carl Adam Petri in 1962 [38] led to the notion of a Petri net, also
called a place/transition nets, and they constitute a popular mathematical and graphical modeling
tool used for concurrent systems modeling [37,47]. Our modeling of chemical reaction networks
using Petri net formalism is not in itself a new idea: there have been many works, at least since
[39],which have dealt with biochemical applications of Petri nets, in particular in the context of
metabolic pathways, see e.g. [23,28,32,35,36,46]. In this paper, we associate both a Petri net
and a system of differential equations to a chemical reaction network. The latter describes the
behavior of the concentrations of the chemicals in the network. We intend to draw conclusions
about the asymptotic behavior of the solutions of the system of differential equations, based on
the graphical and algebraic properties of the associated Petri net. This is very related to open ques-
tions which have been raised in recent works by Gilbert and Heiner as well as Silva and Recalde,
[24,40], where a similar point of view is taken, of either complementing discrete analysis by means
of continuous techniques or integrating the two approaches for a deeper understanding (see [16]
for an introduction to continuous Petri nets).

Although we do not use any results from Petri net theory, we employ several concepts (siphons,
P-semiflows, etc.), borrowed from that formalism and introduced as needed, in order to formulate
new, powerful, and verifiable conditions for persistence and related dynamical properties.

1.4. Application to a common motif in systems biology

In molecular systems biology research, certain ‘motifs’ or subsystems appear repeatedly, and
have been the subject of much recent research. One of the most common ones is that in which
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a substrate S0 is ultimately converted into a product P, in an ‘activation’ reaction triggered or
facilitated by an enzyme E, and, conversely, P is transformed back (or ‘deactivated’) into the ori-
ginal S0, helped on by the action of a second enzyme F. This type of reaction is sometimes called a
‘futile cycle’ and it takes place in signaling transduction cascades, bacterial two-component sys-
tems, and a plethora of other processes. The transformations of S0 into P and vice versa can take
many forms, depending on how many elementary steps (typically phosphorylations, methylations,
or additions of other elementary chemical groups) are involved, and in what order they take place.
Fig. 1 shows two examples, (a) one in which a single step takes place changing S0 into S1, and (b)
one in which two sequential steps are needed to transform S0 into S2, with an intermediate trans-
formation into a substance S1. A chemical reaction model for such a set of transformations incor-
porates intermediate species, compounds corresponding to the binding of the enzyme and
substrate. (In ‘quasi-steady state’ approximations, a singular perturbation approach is used in or-
der to eliminate the intermediates. These approximations are much easier to study, see e.g. [2].)
Thus, one model for (a) would be through the following reaction network:

Eþ S0 $ ES0 ! Eþ S1;

Fþ S1 $ FS1 ! Fþ S0

ð1Þ

(double arrows indicate reversible reactions) and a model for (b) would be:

Eþ S0 $ ES0 ! Eþ S1 $ ES1 ! Eþ S2;

Fþ S2 $ FS2 ! Fþ S1 $ FS1 ! Fþ S0;
ð2Þ

where ‘ES0’ represents the complex consisting of E bound to S0 and so forth.
As a concrete example, case (b) may represent a reaction in which the enzyme E reversibly adds

a phosphate group to a certain specific amino acid in the protein S0, resulting in a single-phos-
phorylated form S1; in turn, E can then bind to S1 so as to produce a double-phosphorylated form
S2, when a second amino acid site is phosphorylated. A different enzyme reverses the process.
(Variants in which the individual phosphorylations can occur in different orders are also possible;
we discuss several models below.) This is, in fact, one of the mechanisms believed to underlie sig-
naling by MAPK cascades. Mitogen-activated protein kinase (MAPK) cascades constitute a motif
that is ubiquitous in signal transduction processes [31,33,45] in eukaryotes from yeast to humans,
and represents a critical component of pathways involved in cell apoptosis, differentiation, prolif-
eration, and other processes. These pathways involve chains of reactions, activated by extracellu-
lar stimuli such as growth factors or hormones, and resulting in gene expression or other cellular
responses. In MAPK cascades, several steps as in (b) are arranged in a cascade, with the ‘active’
form S2 serving as an enzyme for the next stage.

F

E

S0 S1

F

E

F

E

S0 S1 S2

a b

Fig. 1. (a) One-step and (b) two-step transformations.
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Single-step reactions as in (a) can be shown to have the property that all solutions starting in
the interior of the positive orthant globally converge to a unique (subject to stoichiometry con-
straints) steady state, see [4], and, in fact, can be modeled by monotone systems after elimination
of the variables E and F, cf. [1]. The study of (b) is much harder, as multiple equilibria can appear,
see e.g. [34,12]. We will show how our results can be applied to test consistency of this model, as
well as several variants.

1.5. Organization of paper

The remainder of paper is organized as follows. Section 2 sets up the basic terminology and
definitions regarding chemical networks, as well as the notion of persistence, Section 3 shows
how to associate a Petri net to a chemical network, Sections 4 and 5 provide, respectively, neces-
sary and sufficient conditions for general chemical networks. In Section 6, we show how our
results apply to the enzymatic mechanisms described above. We present some conclusions and
directions for future research in Section 8.

2. Chemical networks

A chemical reaction network (‘CRN’, for short) is a set of chemical reactionsRi, where the index
i takes values inR :¼ f1; 2; . . . ; nrg. We next define precisely what one means by reactions, and the
differential equations associated to a CRN, using the formalism from chemical networks theory.

Let us consider a set of chemical species S :¼ fSjjj 2 f1; 2; . . . ; nsgg which are the compounds
taking part in the reactions. Chemical reactions are denoted as follows:

Ri :
X

j2S
aijSj !

X

j2S
bijSj; ð3Þ

where the aij and bij are non-negative integers called the stoichiometry coefficients. The compounds
on the left-hand side are usually referred to as the reactants, and the ones on the right-hand side
are called the products, of the reaction. Informally speaking, the forward arrow means that the
transformation of reactants into products only happens in the direction of the arrow. If also
the converse transformation occurs, then, the reaction is reversible and we need to also list its
inverse in the chemical reaction network as a separate reaction.

It is convenient to arrange the stoichiometry coefficients into an ns · nr matrix, called the stoi-
chiometry matrix C, defined as follows:

½C&ji ¼ bij ' aij; ð4Þ

for all i 2 R and all j 2 S (notice the reversal of indices). This will be later used in order to write
down the differential equation associated to the chemical reaction network. Notice that we allow
C to have columns which differ only by their sign; this happens when there are reversible reactions
in the network.

We discuss now how the speed of reactions is affected by the concentrations of the different spe-
cies. Each chemical reaction takes place continuously in time with its own rate which is assumed
to be only a function of the concentration of the species taking part in it. In order to make this
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more precise, we define the vector S ¼ ½S1; S2; . . . ; Sns &
0 of species concentrations and, as a function

of it, the vector of reaction rates

RðSÞ :¼ R1ðSÞ;R2ðSÞ; . . . ;RnrðSÞ½ &0:

Each reaction rate Ri is a real-analytic function defined on an open set which contains the non-
negative orthant Ons

þ ¼ Rns
P0 of Rns , and we assume that each Ri depends only on its respective

reactants. (Imposing real-analyticity, that is to say, that the function Ri can be locally expanded
into a convergent power series around each point in its domain, is a very mild assumption, verified
in basically all applications in chemistry, and it allows stronger statements to be made.) Further-
more, we assume that each Ri satisfies the following monotonicity conditions:

oRiðSÞ
oSj

¼
P 0 if aij > 0;

¼ 0 if aij ¼ 0:

!
ð5Þ

We also assume that, whenever the concentration of any of the reactants of a given reaction is 0,
then, the corresponding reaction does not take place, meaning that the reaction rate is 0. In other
words, if Si1 ; . . . ; SiN are the reactants of reaction j, then we ask that

RjðSÞ ¼ 0 for all S such that ½Si1 ; . . . ; SiN & 2 oON
þ;

where oON
þ ¼ oRN

P0 is the boundary of ON
þ in RN . Conversely, we assume that reactions take place

if reactants are available, that is:

RjðSÞ > 0 whenever S is such that ½Si1 ; . . . ; SiN & 2 int½RN
P0&;

where int½RN
P0& denotes the interior of the orthant RN

P0.
A special case of reactions is as follows. One says that a chemical reaction network is equipped

with mass-action kinetics if

RiðSÞ ¼ ki
Yns

j¼1
Saij
j for all i ¼ 1; . . . ; nr:

Note that the exponents of each chemical participating in the reaction is the same as the stoichi-
ometric coefficient this chemical has in that reaction. This is a commonly used form for the func-
tions Ri(s) and amounts to asking that the reaction rate of each reaction is proportional to the
concentration of each of its participating reactants. The results in this paper do not require this
assumption; in a paper in preparation we will specialize and tighten our results when applied
to systems with mass-action kinetics.

With the above notations, the chemical reaction network is described by the following system of
differential equations:

_S ¼ CRðSÞ: ð6Þ

with S evolving in Ons
þ and where C is the stoichiometry matrix.

There are several additional notions useful when analyzing CRN’s. One of them is the notion of
a complex. We associate to the network (3) a set of complexes, Ci’s, with i 2 {1, 2, . . . ,nc}. Each
complex is an integer combination of species, specifically of the species appearing either as prod-
ucts or reactants of the reactions in (3). We introduce the following matrix ~C as follows:
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~C ¼

a11 a21 . . . anr1 b11 b21 . . . bnr1

a12 a22 . . . anr2 b12 b22 . . . bnr2

..

. ..
. ..

. ..
. ..

. ..
.

a1ns a2ns . . . anrns b1ns b2ns . . . bnrns

2

666664

3

777775
:

Then, a matrix representing the complexes as columns can be obtained by deleting from ~C
repeated columns, leaving just one instance of each; we denote by Cc 2 Rns(nc the matrix which
is thus constructed. Each of the columns of Cc is then associated with a complex of the net-
work. We may now associate to each chemical reaction network, a directed graph (which we
call the C-graph), whose nodes are the complexes and whose edges are associated to the reac-
tions (3). An edge (Ci,Cj) is in the C-graph if and only if Ci ! Cj is a reaction of the network.
Note that the C-graph need not be connected (the C-graph is connected if for any pair of dis-
tinct nodes in the graph there is an undirected path linking the nodes), and lack of connec-
tivity cannot be avoided in the analysis. (This is in contrast with many other graphs in
chemical reaction theory, which can be assumed to be connected without loss of generality.)
In general, the C-graph will have several connected components (equivalence classes under
the equivalence relation ‘is linked by an undirected path to’, defined on the set of nodes of
the graph).

Let I be the incidence matrix of the C-graph, namely the matrix whose columns are in one-to-
one correspondence with the edges (reactions) of the graph and whose rows are in one-to-one cor-
respondence with the nodes (complexes). Each column contains a '1 in the ith entry and a +1 in
the jth entry (and zeroes in all remaining entries) whenever (Ci,Cj) is an edge of the C-graph
(equivalently, when Ci ! Cj is a reaction of the network). With this notations, we have the follow-
ing formula, to be used later:

C ¼ CcI : ð7Þ

We denote solutions of (6) as follows: S(t) = u(t,S0), where S0 2 Ons
þ is the initial concentration of

chemical species. As usual in the study of the qualitative behavior of dynamical systems, we will
make use of x-limit sets, which capture the long-term behavior of a system and are defined as
follows:

xðS0Þ :¼ S 2 Ons
þ : uðtn; S0Þ ! S for some tn ! þ1

" #
ð8Þ

(implicitly, when talking about x(S0), we assume that u(t,S0) is defined for all t P 0 for the initial
condition S0). We will be interested in asking whether or not a chemical reaction network admits
solutions in which one or more of the chemical compounds become arbitrarily small. The follow-
ing definition, borrowed from the ecology literature, captures this intuitive idea.

Definition 2.1. A chemical reaction network (6) is persistent if xðS0Þ \ oOns
þ ¼ ; for each

S0 2 intðOns
þÞ.

We will derive conditions for persistence of general chemical reaction networks. Our conditions
will be formulated in the language of Petri nets; these are discrete-event systems equipped with an
algebraic structure that reflects the list of chemical reactions present in the network being studied,
and are defined as follows.
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3. Petri nets

We associate to a CRN a bipartite directed graph (i.e., a directed graph with two types of
nodes) with weighted edges, called the species-reaction Petri net, or SR-net for short. Mathemat-
ically, this is a quadruple

ðV S; V R;E;W Þ;

where VS is a finite set of nodes each one associated to a species, VR is a finite set of nodes (disjoint
from VS), each one corresponding to a reaction, and E is a set of edges as described below. (We
often write S or VS interchangeably, or R instead of VR, by identifying species or reactions with
their respective indices; the context should make the meaning clear.) The set of all nodes is also
denoted by VG VR [ VS.

The edge setE ) V · V is defined as follows.Whenever a certain reactionRi belongs to the CRN:
X

j2S
aijSj !

X

j2S
bijSj; ð9Þ

we draw an edge from Sj 2 VS to Ri 2 VR for all Sj’s such that aij > 0. That is, (Sj,Ri) 2 E iff aij > 0,
and we say in this case that Ri is an output reaction for Sj. Similarly, we draw an edge from Ri 2 VR

to every Sj 2 VS such that bij > 0. That is, (Ri,Sj) 2 E whenever bij > 0, and we say in this case that
Ri is an input reaction for Sj.

Notice that edges only connect species to reactions and vice versa, but never connect two spe-
cies or two reactions.

The notion of an SR-net is very closely related to that of an SR-graph in [14,15]. The only dif-
ference is that an SR-net is a directed graph, while an SR-graph is not, and that reversible reac-
tions in an SR-net are represented by two distinct reaction nodes, while only one reaction node
appears in the SR-graph for a reversible reaction.

The last element to fully define the Petri net is the function W : E ! N, which associates to each
edge a positive integer according to the rule:

W ðSj;RiÞ ¼ aij and W ðRi; SjÞ ¼ bij:

Several other definitions which are commonly used in the Petri net literature will be of interest in the fol-
lowing.Wesaythataroworcolumnvectorv isnon-negative,andwedenoteitbyv* 0if it issoentry-wise.
We write v+ 0 if v * 0 and v5 0. A stronger notion is instead v, 0, which indicates vi > 0 for all i.

Definition 3.1. A P-semiflow is any row vector c + 0 such that cC = 0. Its support is the set of
indices {i 2 VS:ci > 0}. A Petri net is said to be conservative if there exists a P-semiflow c, 0.

Notice thatwithout lossofgeneralityaP-semiflowhas integer components since theentriesofCare
integers. Notice also that P-semiflows for the system (6) correspond to non-negative linear first inte-
grals, that is, linear functions S# cS such that (d/dt)cS(t) - 0 along all solutions of (6) (assuming
that the span of the image ofR(S) isRnr ). In particular, a Petri net is conservative if and only if there
is a positive linear conservedquantity for the system. (Petri net theory viewsPetri nets as ‘token-pass-
ing’ systems, and, in that context, P-semiflows, also called place-invariants, amount to conservation
relations for the ‘placemarkings’of thenetwork, that showhowmany tokens thereare in each ‘place,’
the nodes associated to species in SR-nets. We do not make use of this interpretation in this paper.)
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Definition 3.2. A T-semiflow is any column vector v + 0 such that Cv = 0. A Petri net is said to be
consistent if there exists a T-semiflow v, 0.

The notion of T-semiflow corresponds to the existence of a collection of positive reaction rates
which do not produce any variation in the concentrations of the species. In other words, v can be
viewed as a set of fluxes that is in equilibrium [46]. (In Petri net theory, the terminology is
‘T-invariant,’ and the fluxes are flows of tokens.)

A chemical reaction network is said to be reversible if each chemical reaction has an inverse
reaction which is also part of the network. (This is different from the meaning reversibility has
in the Petri net literature.) Biochemical models are most often non-reversible. For this reason,
a far milder notion was introduced [29,30,18–20]: A chemical reaction network is said to be weakly
reversible if each connected component of the C-graph is strongly connected (meaning that there is
a directed path between any pair of nodes in each connected component). In algebraic terms,
weak reversibility amounts to existence of v, 0 such that Iv ¼ 0 (see Corollary 4.2 of [21]), so
that in particular, using (7), also Cv ¼ CcIv ¼ 0. Hence a chemical reaction network that is
weakly reversible has a consistent associated Petri net (the converse is in general not true, see
for instance Example 1).

A few more definitions are needed in order to state our main results.

Definition 3.3. A non-empty set R ) VS is called a siphon if each input reaction associated to R is
also an output reaction associated to R. A siphon is minimal if it does not contain (strictly) any
other siphons.

For later use we associate a particular set to a siphon R as follows:

LR ¼ fx 2 Ons
þjxi ¼ 0 () i 2 Rg:

The set LR is therefore characterized as the set of concentration vectors whose entries are zero if
(and only if) the corresponding chemical species are in the siphon R.

It is also useful to introduce a binary relation ‘reacts to’, which we denote by Y, and we define
as follows: Si Y Sj whenever there exists a chemical reaction Rk, so that

X

l2S
aklSl !

X

l2S
bklSl

with aki > 0, bkj > 0. If the reaction number is important, we also write

Si !
k
Sj

(where k 2 R). With this notation, the notion of siphon can be rephrased as follows: Z ) S is a
siphon for a chemical reaction network if for every S 2 Z and k 2 R such that
~Sk :¼ fT 2 S : T !k Sg 6¼ ;, it holds ~Sk \ Z 6¼ ;.

4. Necessary conditions

Our first result will relate persistence of a chemical reaction network to consistency of the asso-
ciated Petri net.
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Theorem 1. Let (6) be the equation describing the time-evolution of a conservative and persistent
chemical reaction network. Then, the associated Petri net is consistent.

Proof. Let S0 2 intðOns
þÞ be any initial condition. By conservativity, solutions satisfy

cS(t) - cS0, and hence remain bounded, and therefore x(S0) is a non-empty compact set.
Moreover, by persistence, xðS0Þ \ oOns

þ ¼ ;, so that Rð~S0Þ , 0, for all ~S0 2 xðS0Þ. In partic-
ular, by compactness of x(S0) and continuity of R, there exists a positive vector v, 0, so
that

Rð~S0Þ * v for all ~S0 2 xðS0Þ:

Take any ~S0 2 xðS0Þ. By invariance of x(S0), we have Rðuðt; ~S0ÞÞ * v for all t 2 R. Consequently,
taking asymptotic time averages, we obtain:

0 ¼ lim
T!þ1

uðT ; ~S0Þ ' ~S0

T
¼ lim

T!þ1

1

T

Z T

0

CRðuðt; ~S0ÞÞdt ð10Þ

(the left-hand limit is zero because uðT ; ~S0Þ is bounded). However,

1

T

Z T

0

Rðuðt; ~S0ÞÞdt * v

for all T > 0. Therefore, taking any subsequence Tn ! +1 so that there is a finite limit:

lim
n!þ1

1

T n

Z T n

0

Rðuðt; ~S0ÞÞdt ¼ !v * v:

We obtain, by virtue of (10), that C!v ¼ 0. This completes the proof of consistency, since
!v, 0. h

5. Sufficient conditions

In this present Section, we derive sufficient conditions for insuring persistence of a chemical
reaction network on the basis of Petri net properties.

Theorem 2. Consider a chemical reaction network satisfying the following assumptions:

1. its associated Petri net is conservative;
2. each siphon contains the support of a P-semiflow.

Then, the network is persistent.

We first prove a number of technical results. The following general fact about differential equa-
tions will be useful.

For each real number p, let signp: = 1,0, ' 1 if p > 0, p = 0, or p < 0 respectively, and for each
vector x = (x1, . . . ,xn), let signx: = (signx1, . . . ,signxn) 0. When x belongs to the closed positive
orthant Rn

þ, signx 2 {0,1}n.
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Lemma 5.1. Let f be a real-analytic vector field defined on some open neighborhood of Rn
þ, and

suppose that Rn
þ is forward invariant for the flow of f. Consider any solution !xðtÞ of _x ¼ f ðxÞ, evolving

in Rn
þ and defined on some open interval J. Then, sign!xðtÞ is constant on J.

Proof. Pick such a solution, and define

Z :¼ fij!xiðtÞ ¼ 0 for all t 2 Jg:

Relabeling variables if necessary, we assume without loss of generality that Z = {r + 1, . . . ,n},
with 0 P r P n, and we write equations in the following block form:

_y ¼gðy; zÞ;
_z ¼hðy; zÞ;

where x 0 = (y 0,z 0) 0 and yðtÞ 2 Rr, zðtÞ 2 Rn'r. (The extreme cases r = 0 and r = n correspond to
x = z and x = y respectively.) In particular, we write !x0 ¼ ð!y0;!z0Þ0 for the trajectory of interest.
By construction, !z - 0, and the sets

Bi :¼ ftj!yiðtÞ ¼ 0g

are proper subsets of J, for each i 2 {1, . . . ,r}. Since the vector field is real-analytic, each coordi-
nate function !yi is real-analytic (see e.g. [43], Proposition C.3.12), so, by the principle of analytic
continuation, each Bi is a discrete set. It follows that

G :¼ Jn
[r

i¼1
Bi:

is an (open) dense set, and for each t 2 G, !yðtÞ 2 interRr
þ, the interior of the positive orthant.

We now consider the following system on Rr:

_y ¼ gðy; 0Þ:

This is again a real-analytic system, and Rr
þ is forward invariant. To prove this last assertion, note

that forward invariance of the closed positive orthant is equivalent to the following property:

for any y 2 Rr
þ and any i 2 f1; . . . ; rg such that yi ¼ 0; giðy; 0ÞP 0:

Since Rn
þ is forward invariant for the original system, we know, by the same property applied

to that system, that for any ðy; zÞ 2 Rn
þ and any i 2 {1, . . . ,r} such that yi = 0, gi(y,z) P 0.

Thus, the required property holds (case z = 0). In particular, interRr
þ is also forward invariant

(see e.g. [2], Lemma III.6). By construction, !y is a solution of _y ¼ gðy; 0Þ, !yðtÞ 2 interRr
þ for

each t 2 G, Since G is dense and interRr
þ is forward invariant, it follows that !yðtÞ 2 interRr

þ
for all t 2 J. Therefore,

sign!xðtÞ ¼ ð1r; 0n'rÞ0 for all t 2 J ;

where 1r is a vector of r 1’s and 0n'r is a vector of n ' r 0’s. h

We then have an immediate corollary:

Lemma 5.2. Suppose that X ) Ons
þ is a closed set, invariant for (6). Suppose that X \ LZ is non-

empty, for some Z ) S. Then, X \ LZ is also invariant with respect to (6).
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Proof. Pick any S0 2 X \ LZ. By invariance of X, the solution u(t,S0) belongs to X for all t in
its open domain of definition J, so, in particular (this is the key fact), uðt; S0Þ 2 Ons

þ for all t
(negative as well as positive). Therefore, it also belongs to LZ, since its sign is constant by
Lemma 5.1. h

In what follows, we will make use of the Bouligand tangent cone TCn(K) of a set K ) Ons
þ at a

point n 2 Ons
þ , defined as follows:

TCnðKÞ ¼ v 2 Rn : 9kn 2 K; kn ! n and kn & 0 :
1

kn
ðkn ' nÞ ! v

! $
:

Bouligand cones provide a simple criterion to check forward invariance of closed sets (see e.g. [5]):
a closed set K is forward invariant for (6) if and only if CR(n) 2 TCn(K) for all n 2 K. However,
below we consider a condition involving tangent cones to the sets LZ, which are not closed. Note
that, for all index sets Z and all points n in LZ,

TCnðLZÞ ¼ fv 2 Rn : vi ¼ 0 8i 2 Zg:

Lemma 5.3. Let Z ) S be non-empty and n 2 LZ be such that CR(n) 2 TCn(LZ). Then Z is a
siphon.

Proof. By assumption CR(n) 2 TCn(LZ) for some n 2 LZ. This implies that [CR(n)]i = 0 for all
i 2 Z. Since ni = 0 for all i 2 Z, all reactions in which Si is involved as a reactant are shut off
at n; hence, the only possibility for [CR(n)]i = 0 is that all reactions in which Si is involved as a
product are also shut-off. Hence, for all k 2 R, and all l 2 S so that Sl !

k
Si, we necessarily have

that Rk(n) = 0.
Hence, for all k 2 R so that ~Sk ¼ fl 2 S : Sl !

k
Sig is non-empty, there must exist an l 2 ~Sk so

that nl = 0. But then necessarily, l 2 Z, showing that Z is indeed a siphon. h

The above Lemmas are instrumental to prove the following Proposition:

Proposition 5.4. Let n 2 Ons
þ be such that x(n) \ LZ 5 ; for some Z ) S. Then Z is a siphon.

Proof. Let X be the closed and invariant set x(n). Thus, by Lemma 5.2, the non-empty set LZ \ X
is also invariant. Notice that

cl½LZ & ¼
[

W.Z
LW :

Moreover, LW \ X is invariant for all W ) S such that LW \ X is non-empty. Hence,

cl½LZ & \ X ¼
[

W.Z
½LW \ X&

is also invariant. By the characterization of invariance for closed sets in terms of Bouligand tan-
gent cones, we know that, for any g 2 cl[LZ] \ X we have

CRðgÞ 2 TCgðX \ clðLZÞÞ ) TCgðclðLZÞÞ:
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In particular, for g 2 LZ \ X (which by assumption exists), CR(g) 2 TCg(LZ) so that, by virtue of
Lemma 5.3 we may conclude Z is a siphon. h

Although at this point Proposition 5.4 would be enough to prove Theorem 2, it is use-
ful to clarify the meaning of the concept of a ‘siphon’ here. It hints at the fact, made
precise in the Proposition below, that removing all the species of a siphon from the net-
work (or equivalently setting their initial concentrations equal to 0) will prevent those spe-
cies from being present at all future times. Hence, those species literally ‘lock’ a part of
the network and shut off all the reactions that are therein involved. In particular, once
emptied a siphon will never be full again. A precise statement of the foregoing remarks
is as follows.

Proposition 5.5. Let Z ) S be non-empty. Then Z is a siphon if and only if cl(LZ) is forward
invariant for (6).

Proof. Sufficiency: Pick n 2 LZ 5 ;. Then forward invariance of cl(LZ) implies that
CR(n) 2 TCn(cl(LZ)) = TCn(LZ), where the last equality holds since n 2 LZ. It follows from
Lemma 5.3 that Z is a siphon.

Necessity: Pick n 2 cl(LZ). This implies that ni = 0 for all i 2 Z [ Z 0, where Z 0 ) S could be
empty. By the characterization of forward invariance of closed sets in terms of tangent Bouligand
cones, it suffices to show that [CR(n)]i = 0 for all i 2 Z, and that [CR(n)]i P 0 for all i 2 Z 0

whenever Z 0 5 ;. Now by (6),

½CRðnÞ&i ¼
X

k

bkiRkðnÞ '
X

l

aliRlðnÞ ¼
X

k

bkiRkðnÞ ' 0 P 0; ð11Þ

which already proves the result for i 2 Z 0. Notice that the second sum is zero because if
ali > 0, then species i is a reactant of reaction l, which implies that Rl(n) = 0 since ni = 0.
So we assume henceforth that i 2 Z. We claim that the sum on the right side of (11) is zero.
This is obvious if the sum is void. If it is non-void, then each term which is such that bki > 0
must be zero. Indeed, for each such term we have that Rk(n) = 0 because Z is a siphon. This
concludes the proof of Proposition 5.4. h

Proof of Theorem 2

Let n 2 intðOns
þÞ be arbitrary and let X denote the corresponding x-limit set X = x(n). We claim

that the intersection of X and the boundary of Ons
þ is empty.

Indeed, suppose that the intersection is non-empty. Then, X would intersect LZ, for some
; 6¼ Z ) S. In particular, by Proposition 5.4, Z would be a siphon. Then, by our second assump-
tion, there exists a non-negative first integral cS, whose support is included in Z, so that necessar-
ily cS(tn,n)! 0 at least along a suitable sequence tn ! +1. However, cS(t,n) = cn > 0 for all
tP 0, thus giving a contradiction. h
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6. Applications

We now apply our results to obtain persistence results for variants of the reaction (b) shown in
Fig. 1 as well as for cascades of such reactions.

6.1. Example 1

We first study reaction (2). Note that reversible reactions were denoted by a ‘M’ in order to avoid
having to rewrite them twice. ThePetri net associated to (2) is shown if Fig. 2. The network comprises
nine distinct species, labeledS0,S1,S2,E,F,ES0,ES1,FS2,FS1. It can be verified that the Petri net in
Fig. 2 is indeed consistent (so it satisfies the necessary condition). To see this, order the species and
reactions by the obvious order obtained when reading (2) from left to right and from top to bottom
(e.g.,S1 is the fourth species and the reactionE + S1 ! ES1 is the fourth reaction). The construction
of the matrix C is now clear, and it can be verified that Cv = 0 with v = [2 1 1 2 1 1 2 1 1 2 1 1] 0. The
network itself, however, is not weakly reversible, since neither of the two connected components of
(2) is strongly connected. Computations show that there are three minimal siphons:

fE;ES0;ES1g;
fF ; FS1; FS2g;

and

fS0; S1; S2;ES0;ES1; FS2; FS1g:

Each one of them contains the support of a P-semiflow; in fact there are three independent con-
servation laws:

Eþ ES0 þ ES1 ¼ const1;

Fþ FS2 þ FS1 ¼ const2; and

S0 þ S1 þ S2 þ ES0 þ ES1 þ FS2 þ FS1 ¼ const3;

S1

ES0

S0

E

ES1

S2

FS2FS1

F

Fig. 2. Petri net associated to reactions (2).
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whose supports coincide with the three mentioned siphons. Since the sum of these three conser-
vation laws is also a conservation law, the network is conservative. Therefore, application of The-
orem 2 guarantees that the network is indeed persistent.

6.2. Example 2

As remarked earlier, examples as the above one are often parts of cascades in which the product
(in MAPK cascades, a doubly-phosphorilated species) S2 in turn acts as an enzyme for the follow-
ing stage. One model with two stages is as follows (writing S2 as E

w in order to emphasize its role
as a kinase for the subsequent stage):

Eþ S0 $ ES0 ! Eþ S1 $ ES1 ! Eþ EH;

Fþ EH $ FS2 ! Fþ S1 $ FS1 ! Fþ S0;

EH þ SH
0 $ ESH

0 ! EH þ SH
1 $ ESH

1 ! EH þ SH
2 ;

F H þ SH
2 $ FSH

2 ! F H þ SH
1 $ FSH

1 ! F H þ SH
0 :

ð12Þ

The overall reaction is shown in Fig. 3. Note – using the labeling of species and reaction as in the
previous example – that Cv = 0 with v ¼ ½v01 v01 v01 v01&

0 and v1 = [2 1 1 2 1 1] 0, and hence the network
is consistent. There are five minimal siphons for this network, namely:

fE;ES0;ES1g;
fF ; FS2; FS1g;
fF H; FSH

2 ; FS
H
1 g;

fSH
0 ; S

H
1 ; S

H
2 ;ES

H
0 ;ES

H
1 ; FS

H
2 ; FS

H
1 g;

S1

ES0

S0

E

ES1

FS2FS1

F

E*

ES0*

ES1*

S0*

S1*

S2*

F*

FS1*

FS2*

Fig. 3. Petri net associated to reactions (12).
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and

fS0; S1;EH;ES0;ES1; FS2; FS1;ESH
0 ;ES

H
1 g:

Each one of them is the support of a P-semiflow, and there are five conservation laws:

Eþ ES0 þ ES1 ¼ const1;

Fþ FS2 þ FS1 ¼ const2;

F H þ FSH
2 þ FSH

1 ¼ const3;

SH
0 þ SH

1 þ SH
2 þ ESH

0 þ ESH
1 þ FSH

2 þ FSH
1 ¼ const4;

and

S0 þ S1 þ EH þ ES0 þ ES1 þ FS2 þ FS1 þ ESH
0 þ ESH

1 ¼ const5:

As in the previous example, the network is conservative since the sum of these conservation laws is
also a conservation law. Therefore the overall network is persistent, by virtue of Theorem 2. It is
worth pointing out that the number of minimal siphons of a network may grow even exponen-
tially with the size of the network. For large scale networks, it becomes therefore crucial to obtain
algorithms for the determination of all minimal siphons in order to automatically check the
assumptions of Theorem 2. The paper [13] presents one such algorithm, together with some
numerical and analytical results dealing with problem complexity.

6.3. Example 3

An alternative mechanism for dual phosphorilation in MAPK cascades, considered in [34], dif-
fers from the previous ones in that it becomes important at which sites the two phosphorylations
occur. (These take place at two different sites, a threonine and a tyrosine residue). The corre-
sponding network can be modeled as follows:

Mþ E $ ME ! My þ E $ MyE ! M2 þ E;

Mþ E $ MEH ! Mt þ E $ MtE ! M2 þ E;

M2 þ F $ M2F ! My þ F $ MyF ! Mþ F ;

M2 þ F $ M2F H ! Mt þ F $ MtF ! Mþ F :

ð13Þ

See Fig. 4 for the corresponding Petri net. This network is consistent. Indeed, Cv = 0 for the same
v as in the previous example. Moreover it admits three siphons of minimal support:

fE;ME;MEH;MyE;MtEg;
fF ;MyF ;MtF ;M2F ;M2F Hg;

and

fM ;ME;MEH;My ;Mt;MyE;MtE;M2;M2F ;M2F H;MtF ;MyF g:
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Each of them is also the support of a conservation law, respectively forM,E and F molecules. The
sum of these conservation laws, is also a conservation law and therefore the network is conserva-
tive. Thus the Theorem 2 again applies and the network is persistent.

6.4. Example 4

We give next an example of Reaction Network which cannot be analyzed by means of our
results; this is a chemical reaction network for which siphons and P-semiflow do not
coincide:

2Aþ B ! C ! Aþ 2B ! D ! 2Aþ B: ð14Þ

Notice that there is only one conservation law for the network, namely A + B + 3C + 3D;
there are, however, 2 non-trivial siphons {A,C,D} and {B,C,D}, none of which contains
the support of the unique P-semiflow. Hence, Theorem 2 cannot be applied to network
(14); on the other hand, the associated Petri net is consistent and numerical evidence shows
that the network is indeed persistent when simulated with reaction rates expressed according
to mass-action kinetics. Specific criteria which exploit this additional structure of the system
are currently under investigation. This trivial example shows that indeed even very simple
examples can violate the assumptions of our main result; it is therefore remarkable that fairly
complex examples taken from the biochemical literature can indeed be treated by means of
such analytical tools.

E

ME MyE

MtE

M M 2

ME*

My

Mt

MyF

MtF

F

M2F*

M2F

Fig. 4. Petri net associated to the network (13).
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7. Discrete vs. continuous persistence results

As a matter of fact, and this was actually the main motivation for the introduction of Petri Nets
in [38], each Petri net (as defined in Section 3) comes with an associated discrete event system,
which governs the evolution of a vector M, usually called the marking of the net. The entries
of M are non-negative integers, in one–one correspondence with the places of the network,
i.e. M ¼ ½m1;m2; . . . ;mns &

0 ) Nns , and the mis, i = 1, . . . ,ns, stand for the number of ‘tokens’ asso-
ciated to the places S1; . . . ; Snp . In our context, each token may be thought of as a molecule of the
corresponding species. Once a certain initial conditionM0 ) Nns has been specified for a given net,
we have what is usually called a marked Petri net, In order to define dynamical behavior, one con-
siders the following firing rules for transitions R:

1. A transition R can fire whenever each input place of R is marked with a number of tokens
greater or equal than the weight associated to the edge joining such a place to R (in our con-
text a reaction can occur, at a given time instant, only provided that each reagent has a num-
ber of molecules greater or equal than the corresponding stoichiometry coefficient); we call
such transitions enabled.

2. When a transition R fires, the marking M of the network is updated by subtracting, for each
input place, a number of tokens equal to the weight associated to the corresponding edge, while
for each output place a number of tokes equal to theweight of the corresponding edge is added.

Together with a rule that specifies the timing of the firings, this specifies a dynamical system
describing the evolution of vectors M 2 Nns . There are several ways to specify timings. One
may use a deterministic rule in which a specification is made at each time instant of which tran-
sition fires (among those enabled). Another possibility is to consider a stochastic model, in which
firing events are generated by a random processes with exponentially decaying probability distri-
butions, with a specified rate k. The timing of the next firing of a particular reaction R might de-
pend on R as well as the state vector M. In this way, an execution of the Petri net is nothing but a
realization of a stochastic process (which is Markovian in an appropriate space).

The main results in Sections 4 and 5 are independent of the type of kinetics assumed for the
chemical reaction network (for instance mass-action kinetics or Michaelis–Menten kinetics are
both valid options at this level of abstraction). This also explains, to a great extent, the similarity
between our theorems and their discrete counterparts which arise in the context of liveness’s stud-
ies for Petri Nets and Stochastic Petri Nets (liveness can be seen indeed as the discrete analog of
persistence for ODEs, even though its definition is usually given in terms of firing of transitions
rather than asymptotic averages of markings, see [47] for a precise definition).

It is well known that the following necessary condition for liveness holds:

Liveness of a Conservative PN ) Consistence of the PN:

Notice the similarity of the above implication with the statement of Theorem 1. Also in its discrete
stochastic counterpart, the result can be thought of as a consequence of ergodicity of the associ-
ated Markov chain.

The discrete counterparts of Theorem 2 are more subtle. In particular, we focus our attention
on the so called Siphon-Trap Property which is a sufficient condition for liveness of conservative
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Petri Nets, and actually a complete characterization of liveness if the net is a ‘Free Choice Petri
Net’ (this is known as Commoner’s Theorem, [25] and [11]):

Theorem 3. Consider a conservative Petri net satisfying the following assumption:

each ðminimalÞ siphon contains a non-empty trap:

Then, the PN is alive.

Notice the similarity between the assumptions and conclusions in Theorem 2 and in Theorem 3.
There are some subtle differences, however. Traps for Petri nets enjoy the following invariance
property: if a trap is non-empty at time zero (meaning that at least one of its places has tokens),
then the trap is non-empty at all future times. In contrast, in a continuous set-up (when tokens are
not integer quantities but may take any real value), satisfaction of the siphon-trap property does
not prevent (in general) concentrations of species from decaying to zero asymptotically. This is
why we needed a strengthened assumption 2, and asked that each siphon contains the support
of a P-semiflow (which is always, trivially, also a trap). In other words, in a continuous set-up
the notion of a trap looses much of its appeal, since one may conceive situations in which mole-
cules are pumped into the trap at a rate which is lower than the rate at which they are extracted
from it, so that, in the limit, the trap can be emptied out even though it was initially full. A similar
situation never occurs in a discrete set-up since, whenever a reaction occurs, at least one molecule
will be left inside the trap.

8. Conclusions

In ecology, persistence is the property of an ecosystem to asymptotically preserve non-zero pop-
ulations of all the species which are present at the initial time. In the present paper we obtain both
necessary and sufficient conditions for persistence in chemical reaction networks under a general
monotonicity assumption for the reaction rates. The conditions are stated in terms of graphical
and algebraic properties of Petri nets which are associated to the chemical reaction network. In
a subsequent paper we will present tighter results for networks in which all reaction rates are
of mass action type. The result presented here may also serve as a preliminary step towards the
construction of a systematic input/output theory for chemical reaction networks, by allowing sys-
tems with inflows and outflows.
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[28] R. Hofestädt, A Petri net application to model metabolic processes, Syst. Anal. Mod. Simul. 16 (1994) 113.
[29] F.J.M. Horn, R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal. 49 (1972) 81.
[30] F.J.M. Horn, The dynamics of open reaction systems, in: Mathematical Aspects of Chemical and Biochemical

Problems and Quantum Chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974), pp. 125–137.
SIAM-AMS Proceedings, vol. VIII, Amer. Math. Soc., Providence, 1974.

[31] C.-Y.F. Huang, J.E. Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci.
USA 93 (1996) 10078.
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