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IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A

MATHEMATICAL MODEL

Patrick De Leenheer1 and Sergei S. Pilyugin2 ,
Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA.

To our mentor and good friend Hal Smith, on the occasion of his 60th birthday.

Abstract. We establish some properties of a within host mathematical model of malaria
proposed by Recker et al [7, 8] which includes the role of the immune system during the
infection. The model accounts for the antigenic variation exhibited by the malaria parasite
(P. falciparum). We show that the model can exhibit a wide variety of dynamical behav-
iors. We provide criteria for global stability, competitive exclusion, and persistence. We also
demonstrate that the disease equilibrium can be destabilized by non-symmetric cross-reactive
responses.

1. Introduction

This paper addresses the within host dynamics of the malaria parasite Plasmodium falciparum
whose infection mechanism we briefly review here. Infection starts when a human is bitten by
an infected mosquito that releases sporozoites in the bloodstream. The sporozoites quickly enter
the liver where they mature, replicate, and differentiate into merozoites. The merozoites are
then released into the bloodstream, where they go on to infect erythrocytes (red blood cells).
Merozoites reproduce within infected erythrocytes for a period of about two days. Finally the
infected erythrocyte ruptures and releases new merozoites that repeat the infection cycle.

A discussion leading to a mathematical model that considers a single parasite variant can
be found in [9, 4] and references therein. In practice however, there is a considerable diversity
of the surface proteins (antigens) that are presented by the infected cells (erythrocytes). A
mathematical model that includes an arbitrary number of parasite variants was studied in a very
elegant paper by Iggidr et al [6] where a competitive exclusion principle was established. In the
model of Iggidr et al, different variants compete for the same subset of host cells to infect, and
as a result, only one variant survives while the others are driven to extinction. A more general
mathematical model accounting for mutations between different parasite variants was analyzed
in our recent work [3].

The mathematical models mentioned above do not include the effects of immune response
mounted by the human host. Although many details of immune responses to P. falciparum
are presently not well understood, there is evidence that the antigenic variation of the parasite
during the course of infection prompts the immune system to mount both variant specific as well
as cross reactive responses [1, 7, 8]. The primary distinction between specific and cross-reactive
responses is that they target major (unique to each variant) or minor (shared among variants)
epitopes, respectively, on the infected cell’s surface.

The goal of this paper is to extend the analysis of the model proposed in [7, 8] which includes
both variant-specific and cross-reactive immunity. We provide some results concerning the global
behavior of this model by

(1) Showing global asymptotic stability of the system in two extreme cases (no cross immu-
nity and perfect cross immunity).

(2) Showing the possibility of oscillatory destabilization in the case of partial cross immunity.
(3) Establishing conditions for both competitive exclusion as well as for persistence.
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2 IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL

Our results indicate that depending on parameter values, this model can exhibit a wider variety
of dynamical behaviors than reported previously [7, 8]. The full range of possible behaviors
and biological implications is currently not fully understood and remains the objective of future
research.

This paper is organized as follows. In Section 2 we formulate and slightly generalize the
model from [7, 8] and in Section 3 we comment on the existence or non-existence of positive
equilibria. In Section 4 we establish global asymptotic stability in several special cases: the
case of a single variant, the case of no cross immunity, and the case of perfect cross immunity.
In case of partial cross immunity, the dynamic picture is not as simple and this is illustrated
in Section 5 by analyzing a particular example. In Section 6, we return to the general model
and establish sufficient conditions for competitive exclusion as well as for persistence. These
conditions are compared to similar ones for certain associated Lotka-Volterra systems of lower
dimension. Section 7 summarizes our findings.

2. General modeling assumptions

The model that we study here was originally proposed by Recker et al [7] and later analyzed
by Recker and Gupta [8]. The model has the following form

ẏi = yi(φ− α1zi − α2wi),(2.1)

żi = β1yi − µ1zi,(2.2)

ẇi = β2

n
∑

j=1

cijyj − µ2wi,(2.3)

where i = 1, ..., n. The variables yi, zi, and wi represent the abundance of the erythrocytes which
are infected by the i-th variant, and the magnitudes of the specific and cross-reactive immune
response respectively. We assume that the immune responses are induced proportionally to
the parasitic load at the rates β1 and β2. The coefficients µ1 and µ2 model the life-span of
the corresponding immune responses. The efficiency of both responses are given by α1 and
α2. The coefficient φ represents the maximal growth rate of the parasite. We assume that all
kinetic parameters are equal for all strains. Finally, we assume that each strain has a distinct
major epitope, but two different strains may share common minor epitopes. In the model, we
incorporate this assumption by introducing the non-negative cross-reactivity matrix C such that
cij > 0 if the strains i and j share the same epitope and cij = 0 otherwise. In the sequel we will
refer to some special cases for which we introduce the following terminology:

(1) We say that there is no cross immunity when C = In, where In is the n × n identity
matrix.

(2) We say that there is perfect cross immunity when C = 11′. Here, 1 = (1, . . . , 1)′ ∈ R
n. 3

(3) In all other cases, we say that there is partial cross immunity.

For mathematical convenience, we perform a simple rescaling of the original variables and rewrite
system (2.1) − (2.3) as

ẏi = yi(1 − zi − wi),(2.4)

żi = yi − µ1zi,(2.5)

ẇi = b

n
∑

j=1

cijyj − µ2wi,(2.6)

and define

(2.7) γ1 :=
1

µ1
, γ2 :=

b

µ2
.

3Throughout the paper, we use the prime to denote the vector/matrix transpose. All vectors are denoted by
bold face characters. We use the notation xi for the i th coordinate of a vector x.
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IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL 3

The within-host replication of P. falciparum may be limited by the number of available ery-
throcytes which can be infected by the parasite. Hence, we modify equations (2.4) − (2.6) to
include a (theoretically feasible) term for the carrying capacity,

ẏi = yi(1 − y

K
− zi − wi),(2.8)

żi = yi − µ1zi,(2.9)

ẇi = b

n
∑

j=1

cijyj − µ2wi.(2.10)

3. The positive equilibrium

Using the vector notation, we can express the equilibrium conditions of (2.4)−(2.6) as follows:
z∗ = γ1y

∗, and w∗ = γ1Cy∗. The positive equilibrium must then satisfy the condition

(3.1) γ1y
∗ + γ2Cy∗ = 1.

In case of perfect cross-reactivity, where cij = 1 for all i, j, there exists a positive solution of the
form

y∗i = ȳ =
1

γ1 + nγ2
, i = 1, ..., n,

which corresponds to a positive equilibrium. The positive equilibrium does not always exist. For
instance, letting n = 4, γ1 = 1, γ2 = ε > 0, and

(3.2) C =









1 1 1 0
1 1 1 0
1 1 1 1
0 1 1 1









,

the solution of (3.1) is given by

(y∗1 , y
∗
2 , y

∗
3 , y

∗
4) =

1

1 + 3ε− ε2
(1, 1, 1 − ε, 1) ,

which is positive if and only if ε < −3+
√

13
2 ≈ 0.3.

4. Some results on global stability

4.1. The case n = 1. In the simplest case n = 1, the model

ẏ = y(1 − z − w),(4.1)

ż = y − µ1z,(4.2)

ẇ = by − µ2w,(4.3)

admits a unique positive equilibrium

(y∗, z∗, w∗) =

(

1

γ1 + γ2
,

γ1

γ1 + γ2
,

γ2

γ1 + γ2

)

which is globally stable. To see this, we rewrite (4.1–4.3) as

ẏ = y((z∗ − z) + (w∗ − w)),

ż = (y − y∗) − µ1(z − z∗),

ẇ = b(y − y∗) − µ2(w − w∗),

and define

V =

∫ y

y∗

s− y∗

s
ds+

∫ z

z∗
(s− z∗) ds+

1

b

∫ w

w∗

(s− w∗) ds.

The function V clearly has a unique global minimum at (y∗, z∗, w∗). In addition,

V̇ = (y−y∗)
(

(z∗−z)+(w∗−w)
)

+(z−z∗)
(

(y−y∗)−µ1(z−z∗)
)

+
1

b
(w−w∗)

(

b(y−y∗)−µ2(w−w∗)
)
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4 IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL

which simplifies to

V̇ = −µ1(z − z∗)2 − µ2

b
(w − w∗)2.

Clearly, the equilibrium (y∗, z∗, w∗) is the only invariant set in {V̇ = 0}. LaSalle’s invariance
principle then implies global stability of (y∗, z∗, w∗).

The same argument shows the global stability of the model (2.4) − (2.6) with n > 1 and no
cross-reactivity because the system is uncoupled.

Assuming a carrying capacity for the infected cells we have a different model

ẏ = y(1 − y

K
− z − w),(4.4)

ż = y − µ1z,(4.5)

ẇ = by − µ2w.(4.6)

It is easy to see that the modified model (4.4–4.6) also admits a unique positive equilibrium
(y∗, z∗, w∗). Using the same function V as before, we observe that

V̇ = − 1

K
(y − y∗)2 − µ1(z − z∗)2 − µ2

b
(w − w∗)2.

We conclude again that the positive equilibrium is globally asymptotically stable.

4.2. The case n > 1. When there are two or more variants present, they can be antigenically
distinct (no cross-reactivity), antigenically similar (perfect cross-reactivity, see above), or there
may be partial cross-reactivity. In this section, we prove global convergence for the first two
cases. We also show that adding a carrying capacity does not alter the conclusions.

4.3. No cross-reactivity with carrying capacity. The equations are

ẏi = yi

(

1 − 1

K

n
∑

j=1

yj − zi − wi

)

,(4.7)

żi = yi − µ1zi,(4.8)

ẇi = byi − µ2wi,(4.9)

for i = 1, ..., n, and they admit a unique positive equilibrium. The Lyapunov function is

V =
n

∑

i=1

(∫ yi

y∗
i

s− y∗i
s

ds+

∫ zi

z∗
i

(s− z∗i ) ds+
1

b

∫ wi

w∗

i

(s− w∗
i ) ds

)

.

Indeed, equation (4.7) can be equivalently written as

yi = yi

( 1

K

n
∑

j=1

(y∗j − yj) + (z∗i − zi) + (w∗
i − wi)

)

,

and after simplifications we find that

V̇ = − 1

K

( n
∑

j=1

(y∗j − yj)

)2

− µ1

n
∑

i=1

(zi − z∗i )2 − µ2

b

n
∑

i=1

(wi − w∗
i )2.

Thus the positive equilibrium is globally asymptotically stable.

4.4. Perfect cross-reactivity without carrying capacity. The equations are

ẏi = yi(1 − zi − wi),(4.10)

żi = yi − µ1zi,(4.11)

ẇi = b
n

∑

j=1

yj − µ2wi,(4.12)

for i = 1, ..., n and they admit a unique positive equilibrium. We observe that for all i, j

ẇi − ẇj = −µ2(wi − wj),
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IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL 5

hence all pairwise differences wi−wj decay exponentially to zero. To make this argument formal,
using w = w1 and wj = w + uj for j 6= 1 we rewrite equations (4.10–4.12) as

ẏ1 = y1(1 − z1 − w), ẏj = yj(1 − zj − (w + uj)), j 6= 1,(4.13)

żi = yi − µ1zi,(4.14)

ẇ = b

n
∑

j=1

yj − µ2w,(4.15)

u̇j = −µ2uj , j 6= 1.(4.16)

Clearly, the system (4.13–4.16) is asymptotic to the limiting system

ẏi = yi(1 − zi − w),(4.17)

żi = yi − µ1zi,(4.18)

ẇ = b

n
∑

j=1

yj − µ2w.(4.19)

The Lyapunov function for (4.17–4.19) has the form

V =
n

∑

i=1

(∫ yi

y∗
i

s− y∗i
s

ds+

∫ zi

z∗
i

(s− z∗i ) ds

)

+
1

b

∫ w

w∗

(s− w∗) ds.

Indeed, after simplifications, we find that

V̇ = −µ1

n
∑

i=1

(zi − z∗i )2 − µ2

b
(w − w∗)2,

and then global asymptotic stability of the limiting system (4.17–4.19) follows from Lasalle’s
invariance principle. Finally, Theorem F.1 in [10] implies convergence to the positive equilibrium
for system (4.10–4.12).

4.5. Perfect cross-reactivity with carrying capacity. The equations are

ẏi = yi

(

1 − 1

K

n
∑

j=1

yj − zi − wi

)

,(4.20)

żi = yi − µ1zi,(4.21)

ẇi = b

n
∑

j=1

yj − µ2wi,(4.22)

for i = 1, ..., n and they admit a unique positive equilibrium. Arguing as before, we consider the
limiting system

ẏi = yi

(

1 − 1

K

n
∑

j=1

yj − zi − w
)

,(4.23)

żi = yi − µ1zi,(4.24)

ẇ = b

n
∑

j=1

yj − µ2w,(4.25)

for which the Lyapunov function is

V =

n
∑

i=1

(∫ yi

y∗
i

s− y∗i
s

ds+

∫ zi

z∗
i

(s− z∗i ) ds

)

+
1

b

∫ w

w∗

(s− w∗) ds.

Indeed, after simplifications,

V̇ = − 1

K

( n
∑

j=1

(y∗j − yj)

)2

− µ1

n
∑

i=1

(zi − z∗i )2 − µ2

b
(w − w∗)2,

implying global asymptotic stability of the positive equilibrium.
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6 IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL

5. Analysis of a specific case with partial cross immunity

In this section, we illustrate some dynamic possibilities exhibited by the model (2.4) − (2.6).
In particular, we argue that a positive equilibrium can be unstable for some parameter values.
We consider a specific case of (2.4) − (2.6) with n = 3,

ẏ1 = y1(1 − z1 − w1), ż1 = y1 − µ1z1, ẇ1 = b(y1 + y2) − µ2w1,
ẏ2 = y2(1 − z2 − w2), ż2 = y2 − µ1z2, ẇ2 = b(y1 + y2 + y3) − µ2w2,
ẏ3 = y3(1 − z3 − w3), ż3 = y3 − µ1z3, ẇ3 = b(y2 + y3) − µ2w3.

This system has a 6 dimensional invariant set {y1 = y3, z1 = z3, w1 = w3}. The dynamics on
this invariant set is described by the equations

(5.1)
ẏ1 = y1(1 − z1 − w1), ż1 = y1 − µ1z1, ẇ1 = b(y1 + y2) − µ2w1,
ẏ2 = y2(1 − z2 − w2), ż2 = y2 − µ1z2, ẇ2 = b(2y1 + y2) − µ2w2.

For convenience, we arrange the state variables as (y1, z1, w1, y2, z2, w2). The Jacobian of (5.1)
is given by

J =

















1 − z1 − w1 −y1 −y1 0 0 0
1 −µ1 0 0 0 0
b 0 −µ2 b 0 0
0 0 0 1 − z2 − w2 −y2 −y2
0 0 0 1 −µ1 0
2b 0 0 b 0 −µ2

















.

Equations (5.1) admit at most four equilibria:

(1) The zero equilibrium E00 exists for all parameter values and is always unstable since the
Jacobian J(E00) (not shown) has eigenvalues λ1,2 = 1, λ3,4 = −µ1, λ5,6 = −µ2.

(2) The nonnegative (semitrivial) equilibrium

E10 =

(

1

γ1 + γ2
,

γ1

γ1 + γ2
,

γ2

γ1 + γ2
, 0, 0,

2γ2

γ1 + γ2

)

exists for all parameter values. The Jacobian J(E10) (not shown) has eigenvalues λ4 =
γ1−γ2

γ1+γ2

, λ5 = −µ1, λ6 = −µ2, and λ1,2,3 are eigenvalues of the matrix




0 −y1 −y1
1 −µ1 0
b 0 −µ2



 .

From the preceding stability analysis in Section 3, we already know that Re(λ1,2,3) ≤ 0.
Using the Routh-Hurwitz criterion, it is not difficult to show that in fact Re(λ1,2,3) < 0.
Hence, the stability of E10 is determined by the sign of λ4. Specifically, E10 is (locally)
stable if γ1 < γ2, and unstable if γ1 > γ2.

(3) The nonnegative (semitrivial) equilibrium

E01 =

(

0, 0,
γ2

γ1 + γ2
,

1

γ1 + γ2
,

γ1

γ1 + γ2
,

γ2

γ1 + γ2

)

exists for all parameter values. The Jacobian J(E01) (not shown) has eigenvalues λ1 =
γ1

γ1+γ2

, λ2 = −µ1, λ3 = −µ2, and λ4,5,6 are eigenvalues of the submatrix




0 −y2 −y2
1 −µ1 0
b 0 −µ2



 .

As we argued previously, Re(λ4,5,6) < 0. Since λ1 > 0, E01 is always unstable.
(4) The positive (nontrivial) equilibrium E11 exists if and only if γ1 > γ2, i.e. precisely when

E10 is unstable. The (y1, y2) coordinates of E11 are given by

y1 =
γ1

(γ1 + γ2)2 − 2γ2
2

, y2 =
γ1 − γ2

(γ1 + γ2)2 − 2γ2
2

.
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IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL 7

The common denominator is positive if and only if γ1 > (
√

2 − 1)γ2, and the numerator
of y2 is positive if and only if γ1 > γ2. Hence both y1 and y2 are positive if and only if
γ1 > γ2. The remaining coordinates of E11 are expressed in terms of y1 and y2 as follows,

zi = γ1yi (i = 1, 2), w1 = γ2(y1 + y2), w2 = γ2(2y1 + y2).

Clearly, these four quantities are positive whenever y1 and y2 are positive. The Jacobian
of (5.1) at E11 is given by

(5.2) J(E11) =

















0 −y1 −y1 0 0 0
1 −µ1 0 0 0 0
b 0 −µ2 b 0 0
0 0 0 0 −y2 −y2
0 0 0 1 −µ1 0
2b 0 0 b 0 −µ2

















.

As we showed previously,

det J(E11) = y1y2µ
2
1µ

2
2((γ1 + γ2)

2 − 2γ2
2) > 0,

thus J(E11) cannot have zero eigenvalues.

Lemma 5.1. If µ1 = µ2 = µ, all six eigenvalues of J(E11) have negative real parts.

Proof. If µ1 = µ2 = µ, the characteristic polynomial of J(E11) has the following form:

p(λ) = (µ+ λ)2
(

ξ2 + ξ(1 + b)(y1 + y2) + y1y2(1 + 2b− b2)

)

,

where ξ = λ(µ+ λ). Clearly, two roots are given by λ1,2 = −µ. The remaining four roots can be
obtained by solving the quadratic equation in ξ. We have

y1 =
µ

1 + 2b− b2
, y1 =

µ(1 − b)

1 + 2b− b2
,

hence b ∈ [0, 1). Substituting the values of y1 and y2, we have

ξ2 + ξ
µ(1 + b)(2 − b)

1 + 2b− b2
+

µ2(1 − b)

1 + 2b− b2
= 0.

The discriminant of this equation is

D = µ2 (1 + b)2(2 − b)2 − 4(1 − b)(1 + 2b− b2)

(1 + 2b− b2)2
.

Simplifying the numerator, we find that

D = µ2 b2(3 − b)2

(1 + 2b− b2)2
≥ 0.

Hence the roots are

ξ1 = −µ, ξ2 = −µ 1 − b

1 + 2b− b2
.

The corresponding lambdas are solutions of

λ2
3,4 + µλ3,4 + µ = 0, λ2

5,6 + µλ5,6 + µ
1 − b

1 + 2b− b2
= 0.

The positivity of coefficients in the above quadratics implies that Re(λ3,4,5,6) < 0. ⋄
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8 IMMUNE RESPONSE TO A MALARIA INFECTION: PROPERTIES OF A MATHEMATICAL MODEL

5.1. Destabilizing the positive equilibrium. In this section, we show that there exist a
nonempty set of parameter combinations such that E11 is unstable. We prove the following
Theorem.

Theorem 5.2. Consider the system (5.1) with b = 1, µ1 = ε, and µ2 = cε. There exist ε∗ > 0
and c∗ > 1 such that for all 0 < ε < ε∗ and c > c∗, the Jacobian at the positive equilibrium
E11 has two real negative eigenvalues, and two pairs of complex eigenvalues with positive and
negative real parts respectively. In particular, the positive equilibrium E11 is locally unstable with
two-dimensional unstable manifold.

Proof. At the positive equilibrium E11, we have

y1 =
c2ε

c2 + 2c− 1
, y2 =

c(c− 1)ε

c2 + 2c− 1
.

Hence, E11 exists as long as c > 1. The Jacobian of interest J(ε) = J(E11) has the form (5.2)
with y1, y2, µ1, µ2 given above. The characteristic polynomial of J(ε) has the form

p(z, ε) = ε4a0(c) + ε3a1(c)(1 +O(ε))z + ε2a2(c)(1 +O(ε))z2

+ε2a3(c)(1 +O(ε))z3 + εa4(c)(1 +O(ε))z4 + εa5(c)z
5 + z6,

where

a0(c) = c3(c−1)
c2+2c−1 , a1(c) = 4c4(c−1)

(c2+2c−1)2 , a2(c) = 2c3(c−1)
(c2+2c−1)2 ,

a3(c) = 3c(2c−1)(c3+3c2+c−1)
(c2+2c−1)2 , a4(c) = 2c(2c−1)

c2+2c−1 , a5(c) = 2(c+ 1).

Since p(z, 0) = z6, J(0) has a zero eigenvalue of multiplicity 6. Now we expand the roots of p in
powers of ε. First, we evaluate p(kεα, ε) and find that the leading terms are

p(kεα, ε) = ε4a0(c) + kε3+αa1(c)(1 +O(ε)) + k2ε2+2αa2(c)(1 +O(ε))

+k3ε2+3αa3(c)(1 +O(ε)) + k4ε1+4αa4(c)(1 +O(ε)) + k5ε1+5αa5(c) + k6ε6α,

Now we construct the Newton diagram [2], that is,

n(α) = min(4, 3 + α, 2 + 2α, 2 + 3α, 1 + 4α, 1 + 5α, 6α),

which has two positive vertices at (1/2, 3) and (1, 4). Hence, the leading power of z is either
α = 1/2 or α = 1.

• Case α = 1 corresponds to z = kε+ o(ε). To determine the value of k, we set the leading
terms of p(kε, ε) equal to zero and obtain the equation a0(c) + ka1(c) + k2a2(c) = 0.
Simplifying this equation, we find that it is equivalent to

c3(c− 1)

(c2 + 2c− 1)2
(2k2 + 4ck + (c2 + 2c− 1)) = 0.

Since c > 1, the roots are

k1,2 = −c± c− 1√
2

which are both strictly negative.
• Case α = 1/2 corresponds to z = rε1/2 + lε + o(ε). Expanding p(rε1/2 + lε, ε), we find

up to the two lowest orders of ǫ that

p(rε1/2 + lε, ε) = ε3r2
(

a2(c) + a4(c)r
2 + r4

)

+rε7/2
(

a1(c) + 2la2(c) + r2a3(c) + 4r2la4(c) + r4a5(c) + 6r4l
)

.

Setting the ε3 term equal to zero, we find that either r = 0 (in which case we are back
to the previous step) or that r satisfies the biquadratic equation

a2(c) + a4(c)r
2 + r4 = 0,

which is equivalent to

2c3(c− 1) + 2c(2c− 1)(c2 + 2c− 1)r2 + (c2 + 2c− 1)2r4 = 0.
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The discriminant of this equation

D = 4c2(c2 + 2c− 1)2
(

(2c− 1)2 − 2c(c− 1)
)

= 4c2(c2 + 2c− 1)2
(

c2 + (c− 1)2
)

is clearly positive, and both roots

r2 =
c

c2 + 2c− 1

(

−(2c− 1) ±
√

(2c− 1)2 − 2c(c− 1)
)

are strictly negative. Hence, we have two pairs of pure imaginary values for r:

r1,2 = ±i

√

c
(

(2c− 1) +
√

(2c− 1)2 − 2c(c− 1)
)

c2 + 2c− 1
,

r3,4 = ±i

√

c
(

(2c− 1) −
√

(2c− 1)2 − 2c(c− 1)
)

c2 + 2c− 1
.

Substituting each pair into the ε7/2 term and setting it equal to zero, we obtain the
corresponding values of l:

l1 = −
a1(c) + r21,2a3(c) + r41,2a5(c)

2a2(c) + 4r21,2a4(c) + 6r41,2

,

l2 = −
a1(c) + r23,4a3(c) + r43,4a5(c)

2a2(c) + 4r23,4a4(c) + 6r43,4

.

At this point, we have established the existence of six distinct branches of eigenvalues for small
ε > 0:

z1 = k1ε+ o(ε),

z2 = k2ε+ o(ε),

z3,4 = l1ε+ r1,2ε
1/2 + o(ε),

z5,6 = l2ε+ r3,4ε
1/2 + o(ε).

The first two eigenvalues are real and negative for small ε > 0, so it remains to show that either
l1 or l2 may be positive for some values of c.

The sign of the expression 2a2 + 4a4r
2 + 6r4 can be determined as follows. Consider a cubic

polynomial f(x) = 2x(a2 + a4x + x2) which has three simple zeros at r21,2 < r23,4 < 0. Since

f(x) > 0 for x > 0, we have that f ′(r21,2), f
′(0) > 0, and f ′(r23,4) < 0. Thus

f ′(r21,2) = 2a2(c) + 4r21,2a4(c) + 6r41,2 > 0,

f ′(r23,4) = 2a2(c) + 4r23,4a4(c) + 6r43,4 < 0.

Since the denominators of l1 and l2 have opposite signs, it suffices to show that the numerators
have the same sign. That would imply that one of li is positive. We claim that the numerators
of l1 and l2 are strictly positive for all sufficiently large c. Indeed, lets investigate the asymptotic
behavior of the roots of the quadratics Q1(x) = a1(c) + a3(c)x + a5(c)x

2 and Q2(x) = a2(c) +
a4(c)x+ x2.

• Equation Q1 = 0 is equivalent (after dividing through by 2c) to

2c3(c− 1)

(c2 + 2c− 1)2
+

3(c− 1/2)(c3 + 3c2 + c− 1)

(c2 + 2c− 1)2
x+ (1 + 1/c)x2 = 0.

As c → ∞, the roots of this equation converge to the roots of 2 + 3x + x2 = 0, that is,
x = −2 or x = −1. This follows from the continuity of roots.

• Similarly, as c → ∞, the roots of Q2 = 0 converge to the roots of 2 + 4x+ x2 = 0, that
is, x = −2 ±

√
2. An equivalent statement is that

lim
c→∞

r21,2 = −2 −
√

2, lim
c→∞

r23,4 = −2 +
√

2.
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Since −2−
√

2 < −2 < −1 < −2+
√

2 (i.e. the roots of Q1 are located between the roots of Q2),
we conclude that the numerators of l1 and l2 are strictly positive for all sufficiently large values
of c. Since the denominator of l1 (respectively, l2) is positive(respectively, negative), we conclude
that l1 > 0 and l2 < 0 for all sufficiently large c. This concludes the proof of Theorem 5.2. ⋄

6. Results on boundedness of solutions, competitive exclusion and persistence

Theorem 6.1. Suppose that b, µ1, µ2 > 0 and cii > 0 for all i = 1, ..., n. Then all nonnegative
solutions of (2.4) − (2.6) are ultimately uniformly bounded.

Proof. Without loss of generality, we may consider only positive solutions, that is yi(t), zi(t), wi(t) >
0. First, it is clear that since ẏi ≤ yi, we have yi(t) ≤ yi(0)et. Hence, all solutions are defined
for t ≥ 0. Next, we introduce the quantities αi = yi/(zi + wi) > 0. It follows that

α̇i =
yi(1 − zi − wi)(zi + wi) − yi(yi + b

∑n
j=1 cijyj − µ1zi − µ2wi)

(zi + wi)2
.

Clearly, this implies that

α̇i ≤ αi(1 − (1 + bcii)αi +
µ1zi + µ2wi

zi + wi
).

Using the fact that
µ1zi + µ2wi

zi + wi
≤ max(µ1, µ2), zi, wi > 0,

we obtain the inequality

α̇i ≤ αi(1 + max(µ1, µ2) − (1 + bcii)αi).

Hence, α̇i < 0 as long as αi > α∗
i := 1+max(µ1,µ2)

1+bcii

. Consequently, αi(t) ≤ α̂i := max(αi(0), α∗
i )

for all t ≥ 0. Equivalently, we have that yi(t) ≤ α̂i(zi(t) + wi(t)), which implies that

ẏi ≤ yi(1 − yi

α̂i
), t ≥ 0.

Therefore, yi(t) is bounded for all t ≥ 0. Finally, we have that

lim sup
t→∞

αi(t) ≤ α∗
i , lim sup

t→∞
yi(t) ≤ α∗

i , lim sup
t→∞

zi(t) ≤
α∗

i

µ1
, lim sup

t→∞
wi(t) ≤

b
∑

j cijα
∗
j

µ2
. ⋄

6.1. Extinction of some antigenic variants. In this section, we define the matrix

(6.1) A := γ1In + γ2C,

where γ1 and γ2 are given by (2.7). We will use

〈f(t)〉 =
1

t

∫ t

0

f(s) ds

to denote the average value of f(t) on the interval [0, t].

Theorem 6.2. Suppose that the following condition holds:

(6.2) ∃r ∈ {1, ..., n} : ∀x ≥ 0, Ax ≥ 1 ⇒ (Ax)r > 1,

then for any positive solution yi(t), zi(t), wi(t) > 0 of (2.4) − (2.6), we have limt→∞ yr(t) = 0.

In (6.2), the vector inequalities correspond to the order induced by the standard cone Rn
+.

Proof. For any positive solution of (2.4) − (2.6) , we have that

〈ẏi/yi〉 = 1 − 〈zi〉 − 〈wi〉,
〈żi〉 = 〈yi〉 − µ1〈zi〉,

〈ẇi〉 = b

n
∑

j=1

cij〈yj〉 − µ2〈wi〉,
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Theorem 6.1 implies that

〈żi(t)〉 =
zi(t) − zi(0)

t
→ 0, t→ ∞,

〈ẇi(t)〉 =
wi(t) − wi(0)

t
→ 0, t→ ∞,

lim sup
t→∞

〈ẏi/yi〉 = lim sup
t→∞

1 − 〈zi(t)〉 − 〈wi(t)〉 ≤ 0.

Let y(t) = (y1(t), ..., yn(t)). Without loss of generality, there exists a convex compact setK ⊂ Rn
+

such that y(t) ∈ K for all t ≥ 0. The convexity of K implies that 〈y(t)〉 ∈ K for all t ≥ 0. Let
K ′ be the compact set

K ′ = {x ∈ K : Ax ≥ 1}.
By (6.2), compactness of K ′ and continuity of solutions, there exists ε > 0 such that (Ax)r > 1+ε
for all x ∈ K ′. Also by continuity, there exists δ > 0 such that (Ax)r > 1 + ε/2 for all x in the
δ-neighborhood of K ′.

Now we analyze the averages more carefully. Since

|〈zi〉 − γ1〈yi〉| → 0, |〈wi〉 − γ2

n
∑

j=1

cij〈yj〉| → 0,

we have that

lim sup
t→∞

1 − 〈zi(t)〉 − 〈wi(t)〉 = lim sup
t→∞

1 − γ1〈yi(t)〉 − γ2

n
∑

j=1

cij〈yj(t)〉 ≤ 0,

that is,

lim inf
t→∞

(A〈y(t)〉)i ≥ 1

for all i = 1, ..., n. It follows that there exists T > 0 such that dist(〈y(t)〉,K ′) < δ for all t > T .
Therefore, (A〈y(t)〉)r > 1 + ε/2 for all t > T . This in turn implies that there exists T ′ > 0 such
that

〈ẏr(t)/yr(t)〉 = 1 − 〈zr(t)〉 − 〈wr(t)〉 < −ε/4, t > T ′,

or equivalently,

yr(t) < yr(0) exp(−εt/4), t > T ′.

This clearly implies that limt→∞ yr(t) = 0. ⋄

6.2. Partial persistence. We begin with a general result on partial persistence which we will
apply to the malaria model (2.4) − (2.6).

Let

ẋ = f(x, y)(6.3)

ẏ = g(x, y)(6.4)

be a forward complete system on X × Y := R
n
+ × R

m
+ . We say that (6.3) − (6.4) is x-partially

(strongly uniformly) persistent if there is some δ > 0 so that for all (x, y) ∈ int(Rn
+) × int(Rm

+ )
there holds that

lim inf
t→∞

xi(t) ≥ δ, i = 1, . . . , n.

In what follows, we use ∂X to denote the boundary of the set X.
Inspired by the persistence result in [5] we have

Theorem 6.3. Assume that ∂X×Y is forward invariant for (6.3)−(6.4), and suppose K ⊂ X×Y
is a compact absorbing set (thus every forward solution of (6.3) − (6.4) eventually enters and
remains in K). Let P : X × Y → R be continuously differentiable and the restriction of P to
∂X ×Y be 0, and positive elsewhere. Assume that there is a continuous function ψ : X ×Y → R

so that

(6.5)
Ṗ

P
= ψ on X × Y \ (∂X × Y )
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If for all (x, y) ∈ ∂X × Y , there is some T > 0 such that:

(6.6) 〈ψ(x(T ), y(T ))〉 > 0,

then (6.3) − (6.4) is x-partially persistent.

The proof can be found in [3] and is omitted here.

Remark 6.4. A result similar to Theorem 12.2.2 in [5] holds for system (6.3) − (6.4). Namely,
Theorem 6.3 remains true if condition (6.6) holds only for (x, y) that are ω limit points of orbits
in ∂X × Y . The proof is exactly the same as in [5].

We will apply Theorem 6.3 to prove a persistence result for the malaria model (2.4) − (2.6),
which we re-write here in a more compact form:

Ẋ = diag(X)[1 − (In In)Y ],(6.7)

Ẏ = −diag(µ)Y +BX,(6.8)

where

(

X
Y

)

∈ R
n
+ × R

2n
+ , 1 = (1 . . . 1)′ ∈ R

n, µ = (µ1 . . . µ1 µ2 . . . µ2)
′ ∈ R

2n and

B =

(

In
bC

)

.

Note that ∂R
n
+ × R

2n
+ is forward invariant, and that there is a compact absorbing set K in

R
n
+ × R

2n
+ by Theorem 6.1. Let

A = (In In)diag−1(µ)B.

We will show the following:

Theorem 6.5. If there is some p ∈ int(Rn
+) so that

(6.9) p′[1 −AX̄] > 0,

for all X̄ for which

(

X̄

diag−1(µ)BX̄

)

is an equilibrium of (6.7)− (6.8) in ∂R
n
+×R

2n
+ , then system

(6.7) − (6.8) is persistent.

Proof. The proof proceeds in two steps. We will first show that system (6.7) − (6.8) is
X-partially persistent using Theorem 6.3 and Remark 6.4. Then we will show that the system
(6.7) − (6.8) is persistent.

Step 1. Let us first establish X-partial persistence for (6.7) − (6.8). Define the continuously
differentiable (perhaps by multiplying the vector p by a sufficiently large positive scalar) function
P : R

n
+ × R

2n
+ → [0,∞):

P (X,Y ) = Πn
i=1X

pi

i ,

which is 0 on ∂R
n
+×R

2n
+ and positive elsewhere. Note that (6.5) holds on R

n
+×R

2n
+ \(∂R

n
+×R

2n
+ )

with

ψ(X,Y ) = p′[1 − (In In)Y ]

We claim that for all Z = (X,Y ) ∈ ∂R
n
+ × R

2n, there is some T > 0 such that:

〈ψ(Z(T ))〉 > 0,

from which X-partial persistence will follow using Theorem 6.3. We will do this by induction
on r, the number of non-zero components of X. If r = 0, then X(t) = 0 for all t ≥ 0, hence
Y (t) → 0 as t → +∞, so that ω(Z) = {0}. But since 0 is an equilibrium point of (6.7) − (6.8),
(6.9) holds with X̄ = 0, and therefore our claim follows from Remark 6.4. Assume that the claim
has been established for r = 1, . . . ,m − 1 but that X has m non-zero components (of course,
m < n). Denote the indices of these components by I, a proper subset of {0, 1, . . . , n}. There
are two cases to consider:

Case 1. Suppose the solution Z(t) converges to the boundary of the set D = {(X Y ) ∈
R

n
+ × R

2n
+ | Xi 6= 0 for all i ∈ I}. Then ω(Z) is contained in part of the boundary of R

n
+ × R

2n
+
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where at most m − 1 components of X are non-zero. The conclusion of our claim then follows
from Remark 6.4 and the induction hypothesis.

Case 2. Suppose the solution Z(t) does not converge to the boundary of D. Then there is
some ǫ > 0 and an increasing sequence tk → ∞ so that Xi(tk) > ǫ for all k and all i ∈ I. For
i /∈ I we have that Xi(t) = 0 for all t ≥ 0 and thus in particular for all t = tk. Consider the
(bounded) sequences of averages 〈X(tk)〉 and 〈Y (tk)〉, which we may assume -by passing to a

subsequence if necessary- converge to limits X̃ and Ỹ with the property that X̃i > 0 if i ∈ I and
X̃i = 0 otherwise. Integrating (6.8) between 0 and tk, dividing by tk and letting tk → ∞ yields:

(6.10) 0 = −diagỸ +BX̃.

Consider now the dynamics of the components Xi with i ∈ I as described by (6.7). In particular,
dividing by Xi, integrating between 0 and tk, dividing by tk and letting tk → ∞, and using (6.10)
yields:

0 = 1 − (AX̃)i, i ∈ I.

Since X̃i = 0 for all i /∈ I we see that

(

X̃

diag−1(µ)BX̃

)

is an equilibrium of (6.7)− (6.8). Finally

notice that as tk → ∞, we have that:

〈ψ(Z(tk))〉 → p′[1 −AX̃],

which is positive by (6.9). This establishes our claim.
Step 2. In Step 1 we have shown that (6.7) − (6.8) is X-partially persistent, so that for all

solutions starting in int(Rn
+) × int(R2n

+ ) there is some δ > 0 such that

lim inf
t→∞

X(t) ≥ δ1,

where the above vector inequality should be interpreted componentwise. Then (6.8) implies that
for all large t, we have that

Ẏ ≥ −diag(µ)Y +
δ

2
B1.

This implies that:

lim inf
t→∞

Y (t) ≥ δ

2
diag−1(µ)B1,

where the vector on the right-hand side has positive components, which establishes persistence
of (6.7) − (6.8). ⋄

6.3. Comparison with a Lotka-Volterra model. It is interesting to compare our competitive
exclusion result (Theorem 6.2) and our persistence result (Theorem 6.5) obtained in the previous
subsections to corresponding results for the following lower dimensional Lotka-Volterra system:

(6.11) Ẋ = diag(X)[1 −AX]

For this system we can easily prove the following competitive exclusion result, using similar
arguments as those in the proof of Theorem 6.2.

Lemma 6.6. Suppose that (6.2) holds for system (6.11). Then for any solution x(t) of (6.11) in
int(Rn

+), there holds that xr(t) → 0 as t→ ∞.

For system (6.11), there is the following persistence result [5].

Lemma 6.7. If there is some p ∈ int(Rn
+) such that (6.9) holds for all X̄ which are equilibria of

(6.11) in ∂R
n
+, then system (6.11) is persistent.

In other words, our conditions under which system (6.7)− (6.8) exhibits competitive exclusion
(see Theorem 6.2), respectively persistence (see Theorem 6.5) holds, are the same as for the
reduced order system (6.11).

Finally, we can interpret conditions (6.2) and (6.9) geometrically, and will see that they are
not mutually exclusive. This implies that there are examples of system (6.7)− (6.8) which don’t
fit our conditions for either competitive exclusion or persistence.
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In R
n, define the closed convex set

D = {x ∈ R
n |1 −Ax ≤ 0}.

The boundary of D is given by those points x in D for which 1 − (Ax)i = 0 for some i. In this
case we say that constraint i is active for x. Condition (6.2) says that there must be a constraint
r which is never active in R

n
+.

Although a geometric interpretation of condition (6.9) is not immediately clear, it has been
shown in [5] that (6.9) is equivalent to the following condition which does have a clear geometric
meaning.

(6.12) C ∩D+ = ∅,
where C is the convex hull of the set of equilibria of (6.11) in ∂R

n
+ and D+ = D ∩ R

n
+.

To see that the exclusion condition (6.2) and (6.9) (or the equivalent (6.12)) are not mutually
exclusive, consider a system (6.11) with n = 2 with nullclines given in Fig. 1 Clearly neither
condition (6.2) nor condition (6.12) hold. It is well-known that this is an example of a bistable
Lotka-Volterra system. The equilibrium in int(R2

+) is a saddle and every solution in int(R2
+) not

on the stable manifold of the interior equilibrium converges to either E1 or E2.

1
x

E
10

E

E
2

x
2

Figure 1. An example of system (6.11) with n = 2. Nullclines are the dashed
lines. The region D+ is indicated by all parallel vertical lines. The crosses
represent the equilibria, the triangle with vertices E0, E1, E2 represents C,
hence C ∩D+ 6= ∅.

7. Conslusions

In this paper, we presented several mathematical results concerning a model of the within-host
malaria infection originally formulated by Recker et al. [7]. We have proved global stability of the
model in several special cases: the case of a single antigenic variant, the case of no cross-reactive
immunity, and the case of perfect cross-reactive immunity. We have presented a specific example
to demonstrate that partial cross-immunity may lead to destabilization of the disease equilibrium
provided that the average durations of the specific immunity and the cross-reactive immunity
are sufficiently different. This result shows that the dynamics of the malaria model can be much
richer than thought previously [8].

We showed that in some cases, one or more antigenic variants become extinct and presented
sufficient conditions for such extinction. A given variant will become extinct provided that it
is effectively eliminated by any static combination of immune responses that controls all anti-
genic variants (condition (6.2) of Theorem 6.2). We also presented sufficient conditions for the
long-term persistence of all antigenic variants (Theorem 6.5). We could not easily interpret the bi-
ological meaning of of the persistence condition. Finally, we compared the extinction/persistence
dynamics of the malaria model to the dynamics of the corresponding lower dimensional Lotka-
Volterra competition model.
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