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Abstract Marine protected areas (MPAs) are promoted as a tool to protect over-
fished stocks and increase fishery yields. Previous models suggested that adult mobility
modified effects of MPAs by reducing densities of fish inside reserves, but increasing
yields (i.e., increasing densities outside of MPAs). Empirical studies contradicted this
prediction: as mobility increased, the relative density of fishes inside MPAs (relative
to outside) increased or stayed constant. We hypothesized that this disparity between
theoretical and empirical results was the result of differential movement of fish inside
versus outside the MPA. We, therefore, developed a model with unequal and dis-
continuous diffusion, and analyzed its steady state and stability. We determined the
abundance in the fishing grounds, the yield, the total abundance and the log ratio at
steady-state and examined their response to adult mobility (while keeping the rela-
tive inequity in the diffusion constant). Abundance in the fishing grounds and yield
increased, while total abundance and log-ratio decreased, as mobility increased. These
results were all qualitatively consistent with the previous models assuming uniform
diffusivity. Thus, the mismatch between empirical and theoretical results must result
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668 J. Langebrake et al.

from other processes or other forms of differential movement. Therefore, we modified
our original model by assuming that species located on the boundary of the MPA
will preferentially move towards the MPA. This localized movement bias model gives
rise to steady state profiles that can differ radically from the profiles in the unbiased
model, especially when the bias is large. Moreover, for sufficiently large bias values,
the monotonicity of the four measures with increased mobility is reversed, when com-
pared with our original model. Thus, the movement bias model reconciles empirical
data and theoretical results.

Mathematics Subject Classification (2000) 34A36 - 34B18 - 34B60 - 35B30 -
35K57 - 35Q92

1 Introduction

Overfishing has reduced marine fish stocks and degraded habitats (Sale et al. 2005;
Selig and Bruno 2010). As a consequence, fisheries management has become a major
economic and environmental challenge. Marine reserves [or marine protected areas
(MPAs)] are frequently advocated as an efficient management tool to restore habitats
and protect over-harvested stocks (Hilborn 2003; Hilborn et al. 2004; Sale et al. 2005;
Claudet et al. 2008; Selig and Bruno 2010). MPAs offer two potential benefits. First,
they can locally increase the densities of harvested species (Hilborn 2003; Claudet
et al. 2010), but see (Osenberg et al. 2006). Secondly, they can increase fishing yields
outside of the marine reserve via spillover and/or larval export (Roberts et al. 2001;
Sale et al. 2005; Goiii et al. 2008) (spillover is defined as the net movement of adult
fish from the reserve to the fishing grounds, which results in a biomass export).

Despite the evidence supporting local benefits of MPAs, uncertainties remain
(Hilborn et al. 2004; Sale et al. 2005; Osenberg et al. 2006). For example, theoretical
studies have suggested that the local effectiveness of an MPA decreases as adult mobil-
ity increases (Gerber et al. 2003; Malvadkar and Hastings 2008; Pérez-Ruzafa et al.
2008; Moffitt et al. 2009; West et al. 2009). Empirical data do not support this the-
oretical expectation. For example, in a recent meta-analysis of Mediterranean MPAs
(Claudet et al. 2010) calculated the relative densities of fish inside versus outside
MPAs, and compared the results for species with low, medium or high adult mobility.
In contrast to the theoretical expectation, they found that the density of fish inside of
MPAs (relative to outside) did not decrease as mobility increased. To explain their
surprising results, Claudet et al. (2010) suggested that mobile species could benefit
more from MPAs than expected if they biased their movement in favor of the reserve
and such a bias could result if the MPA altered habitat availability or quality (Selig
and Bruno 2010) and the target species preferred this modification.

In contrast to the expected negative relationship between increased local effects (one
goal of MPAs) and mobility, models generally indicate that fishing yields (the sec-
ond goal) should increase with fish mobility as a result of increased spillover (Gerber
et al. 2003; Le Quesne and Codling 2009; Moffitt et al. 2009). There are no available
empirical data to evaluate whether this expectation also is contradicted.
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Differential movement and movement bias models 669

The conflict between empirical and theoretical predictions about the relationship
between mobility and local effects of MPAs, as well as the importance of spillover for
producing increased fisheries yields, suggests that we need to examine the effects of
mobility in new ways. The main purpose of this paper is to propose several models
that could reconcile model predictions and empirical results.

We will start by introducing a model that examines how differential movement
inside versus outside the MPA can affect the efficacy of MPAs. To date, there have
been only limited studies of this phenomenon. For example, Rodwell et al. (2003)
developed a two patch model where adult movement was described by an annual
transfer from the most populated patch to the other, i.e. from the reserve to the fishing
grounds. We model fish movement as a diffusion process and assume that the diffu-
sion parameter is smaller inside the reserve than outside. Mathematically, the model
is a boundary value problem with piecewise constant parameters in different spatial
regions. On each region, the steady state equation is linear so that it can be solved
explicitly. The solutions need to be matched at the interface of the regions, a tech-
nique that is well known, see for instance Shigesada et al. (1986), Cantrell and Cosner
(1999). Then, we investigate how differential diffusion affects the expected benefits
of MPAs. We focus on four measures: abundance of fish in the fishing grounds (i.e. the
amount of fish in the fished area), total abundance (i.e. the amount of fish contained in
the MPA and fished area combined), the local effect (i.e., log of the ratio of the density
inside versus outside of the MPA, which is a common measure of the effect of an
MPA), and fisheries yield (i.e., the amount of fish caught by fishers per unit of time).
We will show that if the two diffusion parameters are scaled as mobility increases, yet
their ratio remains constant, the measures vary in a way that is in accordance with the
theoretical predictions from traditional models.

Next, we introduce a model that incorporates a movement bias towards the MPA
which is localized to the MPA boundary. It arises as the limit of a random walk model
where the random walk is only truly random away from the boundary, but biased on
the boundary. We show that there is a critical value for the bias parameter that controls
the dependence of the four measures on increased mobility. For small bias, the results
are in line with what traditional models predict, but for large bias values, we are able to
reconcile theory and data. The results for this model only depend on the bias value, and
they remain valid whether or not we assume differential diffusion inside and outside
the MPA.

Finally, we propose a simplified model with homogeneous diffusion everywhere,
but with smooth—as opposed to piecewise constant— mortality rates. We show that
once more, it is possible to unite data and theory, at least on the level of one of our
measures; namely, the abundance of fish in the fishing grounds.

Our results suggest that explanations of data depend on the underlying model
assumptions in a very subtle way. They seem to indicate that various explanations
are possible and that further research is required to elucidate this problem.

The rest of this paper is organized as follows. In Sect. 2, we present our model and
show that it has a unique steady state. We examine the stability of the steady state in
Sect. 3. Section 4 introduces various measures that quantify the effect of the MPA, and
we investigate how increased mobility affects these measures. In Sect. 5, we investi-
gate a movement bias model, and in Sect. 6, we consider a model with homogeneous
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diffusion and smooth mortality. We conclude our paper in Sect. 7 with a discussion.
Proofs of some of our results are in the Appendices which also contain the MATLAB
code, we used for several simulations presented in the paper.

2 Model

We examine the case, where MPAs are distributed evenly and periodically along a
straight coastline. The coastline can therefore be split up into several (or, in fact, infi-
nitely many) identical sections, each containing an MPA surrounded by unprotected
waters, called fishing grounds. To examine this situation, we allow one section of
coastline to be represented by the interval [—1 + 2k, 1 + 2k] and the MPA to be
[ + 2k, + 2k], where 0 < [ < 1 and k € Z, as illustrated in Fig. 1.

Assuming a completely open system, we let R represent a positive, constant recruit-
ment rate. To describe the difference in conditions inside and outside the MPA, we
assign the positive diffusion coefficient inside the MPA to be D; and the positive diffu-
sion coefficient outside the MPA to be D,. We do not specify any relationship between
D; and D, as it is not required for the following analysis. It may, however, be reason-
able to choose D; < D,; this inequality reflects that fish diffuse more slowly in the
MPA than in the fishing grounds, possibly because the protection afforded by the MPA
increases the likelihood that fish will remain in the MPA for longer periods of time.

The protection afforded by the MPA also creates an important difference in mor-
tality rates inside and outside the MPA. Namely, the mortality rate inside the MPA is
lower than outside because the fish are only dying of natural causes inside the MPA
while additional fish are being removed by fishers outside the MPA. Thus, we let the
mortality rate inside the MPA be 11; and the mortality rate outside the MPA be 11, where

MHi < Ho-

Allowing the density of fish at time ¢ and position x to be denoted by n(x, t), we have
the following model on an infinite coastline:

ng = (D@)ny)y + R — pu(x)n )
where
D(x) = [D” x € (=14 2k, =1 +2k) U (I + 2k, 1 + 2k)
D; x € (=1 +2k,1+2k)
and

() = | Ho ¥ € (C14 2k —1 4200 UL+ 2k, 1 +24)
PRI = i x € (=1 + 2k, 1 + 2k)
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Differential movement and movement bias models 671

Using MATLAB, we can plot the solution to this system as time progresses. (Code
shown in Appendix C) In Fig. 2, we can see the progression of the system (graphed
on the interval [0, 1], for reasons that will become clear below) through time and see
the plots become more and more similar to the steady state solution calculated later
in this section.

We are interested in finding steady state solutions to (1). Steady state solutions are
functions n(x) that are independent of ¢, nonnegative, continuous and which satisfy

0= (D)) + R — pu(x)n,

where the prime ’ stands for d /dx. We additionally require that n(x) have continuous
flux and be periodic. That is, the flux —D(x)n’(x) must be continuous and

n(x +2)=n(x) forallx € R. 2)

Note that since D(x) is discontinuous at the MPA boundaries, requiring continuous
flux implies that n’(x) must also be discontinuous there.

We restrict our search for steady state solutions to only those which are symmetric
with respect to x = 0, that is, functions n(x) such that

n(x) =n(—x) for all x not on the MPA boundaries. 3)

These requirements create additional conditions which n(x) must satisfy. To have
continuous density n(x) and continuous flux —D(x)n’(x), we must force the left and
right hand limits of these functions to match at the boundaries between the MPA and
unprotected waters. Thus, we have the following matching conditions:

n_(l +2k) =ny(l+2k), n_(—I+2k) =ny(—1+2k)
Din’_(I +2k) = Don' (I +2k), Don’_(—1+ 2k) = Din (=1 + 2k)
for every k € Z. Here, the subscripts — and + indicate the left and right limit respec-
tively.
We will show that the problem can be substantially simplified. Instead of solving the
steady state equation on R, it will suffice to solve the problem on [0, 1] with Neumann

boundary conditions.
To see this, note first that taking the derivative with respect to x in (3) yields that :

n’(x) = —n’(—x) for all x not on the MPA boundaries. 5)
In particular, setting x = O implies that:
n'(0) =0 (6)
Similarly, taking derivatives in (2) and setting x = —1 shows that

n(1) =n'(=1)
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(f) Steady State Solution

Fig. 2 Simulation of model (1). The above graphs were produced in MATLAB using the parameters

km? km? thousands of fish 1
I=3/16km, Do =2yF. Di = 00458y, R=0.5NEMEGBOIISh 1 — 025 e, p1o =
0.54zr and initial condition n(x, 0) = 1 thousands of fish g5, 411  The code used can be found in
Appendix C
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But together with (5), evaluated at x = 1, this implies that
n(1)=0 (7N

Thus, for every solution to our steady state problem, there is no flux in the points x = 0
and x = 1.

Let’s assume for now (we will actually prove this below) that we can find a non-
negative function n(x) satisfying:

0= (Dx)n) +R—pxn, xel0,1] (8)

which is continuous in [0, 1], differentiable in [0, 1], except perhaps in x = [, where
the following matching conditions hold:

n_(l) =ny() and Din’_(I) = Don’, (I) ©)
and with Neumann boundary conditions
n'(0)=n'(1)=0 (10)

Then it is not hard to see that the function n(x) can be extended to R and that the
resulting extension is a solution to our original steady state problem that satisfies all
the constraints we imposed. Indeed, first we extend the function n(x) defined on [0, 1]
to [—1, +1] by defining

n(—x) = n(x).

It is easily verified that this extension satisfies the steady state equation on [—1, 0].
Also, by the very definition of this extension, it automatically satisfies the symmetry
constraint (3) on the interval [—1, 1], and the matching conditions (4) at x = —I.
Secondly, we extend this extended function n(x), which is now defined on [—1, 1],
periodically to R, by defining:

n(x + 2k) = n(x),

forall k € Z.1Itis easily verified that the resulting extension is a solution to our original
problem.

What remains to be proved is the following:
Theorem 1 The boundary-value problem (8) with (9) and (10) has a unique nonneg-
ative solution n(x) which is continuous in [0, 1] and continuously differentiable in

[0, IN{Z}.

Proof Solving the equation on [0,/) and (/, 1] and using the Neumann boundary
conditions (10), we find that:

e R
nr) [ccosh(a,x) +& xel0,0 an

d cosh(a,(x — 1)) + %, xed, 11"
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where ¢ and d are constants determined below, and where we have introduced the
following positive parameters:

i M
ai=,/3’l_, %:‘/D_{:,' 12)

To find ¢ and d we use the matching condition (9):

R R
ccosh(o;l) + — = d cosh(a,(1 —1)) + —

1 o

c¢D;a; sinh(a;l) = —d D,a, sinh(a, (1 — 1)),
or, using matrix notation:
cosh(@l) —cosh(ao(1 —1)) \ (¢ R(E-1)
( sinh(oyl) 2% sinh(a, (1 - 1)) ) (d) B ( Yo " )
This set of equations has a unique solution if and only if the determinant of the matrix

on the left, is nonzero. We calculate this determinant:

sinh(a;l) gjg; sinh(ap (1 — 1))

A (cosh(ail) —cosh(a, (1 — 1)) )

Dy,

cosh(e;!) sinh(ea, (1 — 1)) 4 sinh(e;!) cosh(e, (1 — 1)), (13)

i

and see that it is always positive, since both terms of the sum always are. The set of
linear equations therefore has a unique solution:

(C)ZLR (L_L)(—%s}nh(ao(l—z))) "
d A Mi Mo sinh(; 1)

In particular, we see that ¢ < 0 and d > 0. Also, notice that substituting these values
of ¢ and d back into (11), we find that the unique steady state solution is a decreasing
function of x (because its derivative is negative everywhere except in x = [ where it
is not defined, but where 7 is continuous).

Finally, we need to verify thatn(x) > O for all x € [0, 1]. But since n(x) is decreas-
ing, its minimal value is achieved at x = 1, where n(x) equals d + % which is positive.
Thus, n(x) > 0 for all x € [0, 1] as required. |

3 Stability of the steady state solution
The simulation in Fig. 2 suggests that the steady state n(x) determined analytically in

(11) with (14) is asymptotically stable. Stability properties of steady states are often
established using a linearization argument. In this section, we will study the eigenvalue
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Differential movement and movement bias models 675

problem which arises when the system is linearized at the steady state. We will show
that all the eigenvalues are negative, providing further evidence of the stability of the
steady state.

Linearizing model (1) at the steady state yields the following eigenvalue problem:

Aaw = (D@W) —puxw, wO)=w'1)=0 (15)

Solutions of this problem are eigenvalue—eigenfunction pairs (A, w(x)) with
w(x) # 0. We denote the operator on the right hand side of the Eq. (15) by
L[w]. Its domain consists of functions w that are continuous on [0, 1], with con-
tinuously differentiable flux —D(x)w’, and satisfying Neumann boundary condition
inx = 0 and x = 1. Integration by parts shows that this operator is self-adjoint, i.e.
(L[u], v) = (u, L[v]) for all u and v in the domain of L, where (u, v) denotes the
inner product fo uvdx. Consequently, the eigenvalues A of L are real. We will prove
that in fact every eigenvalue must be negative. To see this, assume that there is an
eigenvalue A > 0 and corresponding eigenfunction w(x) # 0, satisfying (15). Using
the Neumann boundary condition, the solution w(x) takes the following form:

| Acosh(y;x), x €[0,1)
)= IBCOSh(Vo(X —-1), xed, 11"

where A and B are constants determined below. The parameters y; and y, are:

o Mi+kand _ Mo+ A
Vi = _Di Yo = Dy

and they are positive because A > 0. To determine A and B we match the values of
w(x) and of the fluxes D(x)w’(x) atx = [:

A cosh(y;l) = B cosh(y,(I — 1))
AD;y; sinh(y;l) = BD,y, sinh(y,(l — 1))

Since A and B cannot be zero (otherwise w(x) would be zero), we can divide both
equations, which yields:

D;y; tanh(y;1) = Doy, tanh(y, (I — 1)).

But this equation cannot holds since y; and y, are positive, so that the left hand side is
always positive, whereas the right hand side is always negative since/ < 1. Thus, there
cannot be an eigenvalue A > 0. The absence of a nonnegative eigenvalue suggests
stability.
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4 Qualitative analysis of the steady state solution
To analyze the steady state solution qualitatively, we introduce and examine four
quantities:

1. Fishing grounds abundance:

1

Ao :/n(x)dx (16)

l

where n(x), the steady state solution to (8) given in (11) and (14) represents the
density of fish in the fishing grounds. The fishing ground abundance is the total
amount of fish in the fishing grounds, at the state state.

2. Yield

1
Y=/ﬂw—mM@ML (17)
1

where v, — p; represents the fishing rate. Hence, the yield represents the number
of fish caught by fishers in the fishing grounds per unit of time, at the steady state.
3. The total abundance

1

A =/n(x)dx, (18)

0

which represents the total number of fish in both the MPA and in the fishing
grounds combined at the steady state.

4. The log ratio
1 rl
7 d
Lzm(%i#ELL) (19)
= J; n(x)dx

the natural log of the ratio of the average abundance of fish in the MPA and in the
fishing grounds evaluated at the steady state.

We are interested in what happens as both D; and D, increase, yet their ratio %
. . o
remains constant. For convenience, we define

1
Di=D. D= 5D (20)

and we let D vary, while all other parameters, including 8, remain constant. We sum-
marize the behavior of A,, Y, A and L as functions of D as follows:
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Fig. 3 The above graphs were produced in MATLAB using the parameters / = 3/16km, R =
0.5%, ni = 0253kn, o = 0.55dy. The values for B differ in the three plots,
where B = 0.5 (top curve in a,b, bottom curve in ¢,d), f = 1 (middle curve in a—d) and B = 2 (bottom
curve in a,b, top curve in ¢,d). The code used can be found in Appendix C

Theorem 2 Assume that (20) holds for some constant 8 > 0. As the diffusion coeffi-
cient D increases, the fishing grounds abundance A, and yield Y are nondecreasing,
whereas both the total abundance A and log ratio L are nonincreasing.

The proof can be found in Appendix A. Figure 3 includes graphs of these quantities
for chosen parameters. We also investigated what happens if instead of the ratio, the
difference of D, and D; remains constant, yet both increase linearly with D. The
conclusions of Theorem 2 remain the same, but since the proof is very similar, it has
been omitted.

5 A movement bias model

In Ovaskainen and Cornell (2003) a model is proposed that incorporates a movement
bias towards the MPA. This model is obtained as the limit of a biased random walk
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model. The bias occurs when the random walker is situated on the boundary of the
MPA, because taking the next step towards the MPA is preferred. It is assumed that
the probability to move to the right is (1 + z)/2, and the probability to move to the
leftis (1 — z)/2, where z takes a value in (—1, 1) as a measure of the degree of bias.
Note that z = 0 corresponds to a case without bias. When the random walker is not
on the boundary, the probability of moving left or right is 1/2. The steady state prob-
lem corresponding to the movement bias model from Ovaskainen and Cornell (2003),
applied in the setup of an MPA, is as follows:

0=Dx)n)Y +R—pnxn, 0<x<1, A/ (0)=n'(1)=0, (21)
with matching conditions:
(I+2n-() = (1 —2ni() and Din’_ (1) = Don’ () (22)

A steady state function is any nonnegative function which is continuously differen-
tiable, except perhaps in x = [, that satisfies (21) and the matching condition (22).
Note that if z # 0, then necessarily 7 is discontinuous at x = [ by the first matching
condition in (22). In what follows, we assume that the bias is towards the MPA, or
equivalently that

—1<z<0. (23)

Since z is negative, it follows from the first matching condition in (22) that n_(l) is
always larger than n (), that is, the limiting values on the MPA boundary are always
higher when the approach occurs within the MPA. We also note that the only difference
between the steady-state problem considered in Theorem 1, and the one considered
here, is in the first matching condition. Nevertheless, this condition has serious impact
on the behavior of the four measures considered earlier. But first, we investigate the
shape of the graph of the steady state:

Theorem 3 There is a unique nonnegative solution n(x) for (21) with (22). Moreover,
there is a critical bias value
% Mo — Mi

=, (24)
Mo + Wi

such that

1. Ifz* < z < 0 (weak bias towards the MPA), then n(x) is decreasing in [0, 1].
If z = 7™ (critical bias), then n(x) is piecewise constant with a jump discontinuity
at x =1, given by the first matching condition in (22).

3. If —1 < z < z* (strong bias towards the MPA), then n(x) is increasing in the
MPA, and increasing outside the MPA.

The three cases are illustrated in Fig. 4.
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Fig.4 The above graphs were produced in MATLAB using the parameters [ = 3/16 km, D, = 2%,
km? thousands of fish 1 1
D; = 0'04W’ R = O'SW’ Wi = O.ZSW, Lo = O'SW' The plots for weak,
critical and strong bias use the values z = —0.05, —%, —0.9, respectively. The code used can be found in
Appendix C

Proof From (21) considered in the MPA and outside the MPA separately, we find that:

cy cosh(ajx) + %, x €1[0,1)

d; cosh(ay(x — 1)) + %, xed, 1] (25)

nx) =

where «; and «, were defined in (12), and where c¢; and d; are obtained using the
matching condition (22):

a y_ 1 — 3% sinh(, (1 — 1))
(d1 ) - AR(Z)( sinh (e /) ) (20
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680 J. Langebrake et al.

where
R() (1 1_ZI)R 27)
) = _— R
mi 14z
and
Doao . 1—z .
A= sinh (e, (1 — I)) cosh(«;l) + cosh(a, (1 — 1)) sinh(e;l)  (28)
D;a; 1+z

which is positive because of (23). Therefore, the sign of ¢1 and d; is determined by the
sign of R(z), and the latter changes sign when z crosses z*. This in turn implies the
three distinctive cases for the shapes of the graphs of n(x). Finally, we need to check
that n(x) is nonnegative in all three cases. For z = z* this is obvious because in this
case, n(x) is either equal to R/u; or to R/ ., and both values are positive. If z* < z,
then it suffices to check thatn (1) > 0, since n(x) is decreasing. Butn(1) = di1+ R/ 1o,
and d; has the same sign as R(z) which is positive in this case. Similarly, if z < z*, it
suffices to check that n(0) > 0. But n(0) = ¢; + R/u; and c; has the same sign as
—R(z), which is positive as well. O

Assuming that both D; and D,, increase while their ratio remains constant, it turns
out that, provided that the bias is weak, the monotonicity properties of the fishing
grounds abundance, yield, total abundance and log ratio remain the same as in the
case of the unbiased model discussed in Theorem 2. Interestingly however, when the
bias is strong, the monotonicity is reversed.

Theorem 4 Assume that (20) holds for some constant B > 0. As the diffusion coeffi-
cient D increases, the Fishing Grounds Abundance A, and Yield Y are nondecreasing
(nonincreasing), whereas both the total abundance A and log ratio L are nonincreas-
ing (nondecreasing), provided that z* < z < 0 (—1 < z < z*), where z* is given by
(24).

The proof can be found in Appendix B. Figure 5 includes graphs of these quantities
for chosen parameters.

6 Constant diffusion and smooth mortality rate

In this section we show that a different model than the two models discussed before
may also explain the experimental data in Claudet et al. (2010), provided the MPA
size is sufficiently small. We consider a situation with constant diffusion D > 0 in
the entire domain [0, 1], and with nonconstant, positive, smooth and increasing mor-
tality rate (x), say in C*°[0, 1] with d/dx > 0. This reflects that the values of the
mortality rate are higher outside than inside the MPA due to fishing.

We consider the steady state problem:

Dn"4+R—uxn=0, 0<x<1, n'(0)=n'(1)=0. (29)
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Fig. 5 The above graphs for the case of strong bias were produced in MATLAB using the parameters

[ =3/16km, B =0.02, R_osﬂl"(‘lysé‘;f‘r%, wi =025t u, =051 z=-09

(< z* = —1/3). The code used can be found in Appendix C

year ’ year ’

Using the methods in Sect. 3.5 from Cantrell and Cosner (2003) and cited references
therein, it can be shown that (29) has a unique smooth positive solution n(x) with the
following properties:

. R R
Dllinon(x) = m, and lgnoon(x) = fo o 30)

where the limits exist in L°°[0, 1].

We investigate what happens to the fishing grounds abundance A, = fll n(x)dx as
D varies from 0 to co. Contrary to what we found for the solution of model (8), (9)
and (10), the fishing grounds abundance A, (D) is not necessarily nondecreasing with
D as in Theorem 2, at least for sufficiently small MPA sizes:
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Theorem 5 There exists [* € (0, 1) such that if | < I*, there holds that
lim A,(D) > lim A,(D) 31D
D—0 D—oo

Proof In order to establish (31), it suffices to show that

1

/ L s 11_1 (32)
m(x) fO u(x)dx

l

holds, by (30). To that end, we define the following smooth auxiliary function:

1

1
F() := /u(x)dx / : dx | —(0=1D
/ p(x)

0

We have that:

1. F(0) > 0. Indeed, this condition follows from an application of the Cauchy—
Schwarz inequality in L2[0, 1] to the functions 1/ (x) and 1/4/(x) (the inequal-
ity is strict because /u(x) and 1/./u(x) are linearly independent since by
assumption . (x) is not a constant function).

2. F(1) = 0, which is immediate from the definition of F.

3. i[—f(l) > 0. Indeed, we have that:

dFl— 1 d — ! +1
W()_ //L(x)x ( m) s
0

and since p(x) is increasing on [0,1], there holds that p(x) < p(1) forx < 1, so
that

dFl— | d ! 1 1 1 1=0
ﬁ()_ O/,U«(x)x (—m)-f- >M()(_m)+ =0.

These three facts imply the existence of some [* in (0, 1) such that F(I*) = 0, and
F(l) > Oforalll € [0, [*). But this implies that for these values of /, (32), and hence
(31) holds. O

7 Discussion
Previous models suggested that increasing mobility (e.g., as reflected in an increasing

diffusion parameter) would: (1) reduce the local effect of an MPA (i.e., reduce the
relative disparity in density inside vs. outside of the MPA); and (2) increase the yield
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(i.e., increase the catch by fishers in the unprotected region). Spillover—the movement
of adults from the MPA into the fished region—contributes to both phenomena. Empir-
ical data contradict the first expectation: more mobile fishes show a greater relative
density inside of MPAs compared to more sedentary species. We hypothesize that this
might be the result of ‘spill in’, driven by differential movement of fish into the MPA:
i.e., if fish diffuse at different rates inside versus outside the MPA (as reflected by
the parameter § in our model), then we hypothesize that increased overall movement
(reflected in the parameter D) would lead to a greater buildup of fish inside the MPA.

We described movement and movement bias via a diffusion process and a discon-
tinuity in diffusion parameters. We were able to show that our model had a unique,
nonnegative, continuous steady state solution. At this steady state, as fish mobility
(D) increased, abundances in the fishing grounds and yields increased, whereas total
abundances and log-response ratios decreased (Fig. 3). These qualitative results were
independent of the ratio 8 of the diffusion constants in and outside the MPA. This result
is consistent with past models (using one diffusion parameter, even if these models did
not calculate explicitly the log ratio, a measure commonly used in empirical studies),
but it is inconsistent with the empirical results of Claudet et al. (2010). In a study of
MPAs in the Florida keys, Eggleston and Parsons (2008) observed spill-in of lobster to
MPAs, presumably resulting from greater movement of lobsters in the fished regions
and less movement inside the MPAs. Thus, differential diffusion (as defined in our
model), in the absence of movement bias, cannot explain these interesting empirical
results, nor can other existing models with even simpler diffusion dynamics. However,
the incorporation of a strong movement bias (Fig. 5, z < z*) does resolve this paradox
by reversing the expected relationships between mobility and log ratio and yield. Our
description of movement bias was one of a variety of theoretical options available
based on Ovaskainen and Cornell (2003). Because there are no empirical studies of
movement patterns inside and outside of MPAs and at their boundary, we could not
motivate our approach from relevant data.

Other assumptions likely affected our results. For example, in our first two models
we assumed fishing mortality was homogeneous within the fished region (and through
time), with no reallocation of fishing effort after the closure of areas to fishing pressure.
Although this is a common assumption made for MPA models (e.g. Gerber et al. 2003;
Pérez-Ruzafa et al. 2008; Moffitt et al. 2009), it also is well known that reallocation of
fishing effort (temporal heterogeneity) can influence efficacy of MPAs Le Quesne and
Codling 2009, as can ‘fishing the line’ Kellner et al. (2007), that is, increased fishing
along the borders of an MPA.

In all our models we assumed a constant recruitment rate, originating from a com-
pletely open and well mixed larval pool coming from an external system unaffected
by the MPA (Warner and Hughes 1988). As a consequence, the influx of new recruits
was independent of local adult density or habitat. This assumption simplified our ana-
Iytic approach. Other theoretical studies also assume open recruitment (Gerber et al.
2003; Rodwell et al. 2003). Others assume a totally closed system, usually described
by logistic growth terms with density-dependence arising at particular points in space
(e.g., via reproduction or survival: Le Quesne and Codling 2009; Baskett et al. 2005;
Malvadkar and Hastings 2008; Pérez-Ruzafa et al. 2008; West et al. 2009). Assump-
tions about the recruitment (i.e., reaction) term can affect predicted responses to MPAs
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for organisms with different rates of movement. For example, theoretical work in Lou
(2006), shows that for a reaction diffusion equation with Neumann boundary condi-
tion and logistic reaction term, the total abundance A at steady state, is not monotone
in terms of the spatially uniform diffusion constant D, and increases over certain
ranges of D, but decreases over others. Both approaches (open and closed systems)
are extreme versions of real systems and more appropriate models likely should use
dispersal kernels or other distance-limited dispersal modes Moffitt et al. (2009). More
research is needed to determine if our constant recruitment assumption will alter the
conclusions about the qualitative effects of adult movement. Similarly, more analy-
sis is required to establish whether the form of density-dependence affects predic-
tions about other aspects of MPAs, including the relationship between yield and MPA
size.

We have also presented a movement bias model in which the bias only occurs on
the MPA boundary and nowhere else. In many other movement bias models, the bias
occurs everywhere. For instance, there is a recent body of work on advection diffu-
sion models in the theoretical ecology literature (Cantrell et al. 2007; Chen and Lou
2008). Advection may occur through different mechanisms. An obvious one is when
ocean currents move fish populations, but more sophisticated ways are possible such
as movement of fish in the direction of a resource gradient. Populations will crowd in
regions where there are lots of resources when movement due to this advective source
dominates diffusion. This is comparable to the blow-up phenomenon in chemotaxis
systems Nagai et al. (1997) like the Keller—Segel model (Keller and Segel 1970),
which incorporates movement of cells in the direction of a chemical substance which
they secrete themselves.

Finally, following the suggestion of an anonymous reviewer, we investigated a sim-
ple model with smooth parameters. We assumed that diffusion, and recruitment are
spatially uniform, but that mortality is nonuniform and monotonically increasing so
that the mortality rate is higher outside than inside the MPA. It turns out that the fish-
ing grounds abundance is not necessarily increasing with increased mobility, provided
that the MPA size is small enough. This model therefore provides yet another possible
explanation for the empirical data.

More targeted field research will be needed to elucidate which of these models is
the more accurate one, or what modifications the models should be subject to.
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allowed us to make significant improvements to an earlier version of the paper. The first reviewer suggested
that we try to establish the results in Sect. 5. The result in Sect. 6 is entirely credited to the second reviewer.

Appendix A

In this Appendix we shall prove Theorem 2. First we set A; = fé n(x)dx and A, =
fll n(x)dx. Using the definition of n(x) in (11) and (14), we have:
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A; = [ n(x)dx

R
ccosh(ajx) + —dx

1

/
/

c . RI
— sinh(o;l) + —
o Wi

R(1 1\ Dy, 1 RI
== (— - —) 0% _ Ginh(a;1) sinh(ay (1 — 1)) 4+ —
A\pi o) Diai o Wi

where A is given by (13), and similarly for A,:
1

A, = /n(x)dx

l
1
R
- /dcosh(cx(,(l —x)) + —dx
1

o

d R(1—1
= — sinh(a,(1 — 1)) + ¥
Ao Ho
R (1 1 1 R -1
= — (— — —) — sinh(«;1) sinh(a, (1 — 1)) + ¥
A\ i Mo ] Qo Ho

Recalling the definitions of «; and «, in (12), and using (20), it follows that:

e ooy )

Wi A Wi

(oo )y ) e (5B

Hi Mo ) /to A Mo

and

"

s o (g 00, 5)
+ sinh (JEI %) cosh (M(l - z)@)
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Defining
1 1\ VMo 1 1 1
n-=R(———) . =R(———) s Oi=/Iil 0o =1/po(1=1),
’ wi o) mwit Wi o) o o s ’
we find that:
L) g B
o D sinh (a, JB) sinh (00\/;) N RI .
l b B A Hi
i B
o D sinh (al f) sinh (oo\/;) . RO —1) s
o= B A Mo
and
Mo 1 . B . 1 B
A = |— —=cosh h \ = h{o,— h A=
\/_COS ( @) Sin (o,, D)+51n ((71\/5 cosh| o, D

(35)

The Yield Y, Total Abundance A and Log Ratio L as defined in (17), (18) and (19)
respectively, can be written more compactly in terms of A; and A,:

Y = (o — i) Ao,

A = Al + A07
and
(1 DA;
1A, A,
We start by examining the signs of the derivatives fl% and ‘if};, and will then use
this information to determine the signs of jg gg and dL
Fact:
dA; -0
dD D ’

Before proving this, we introduce more notation.

We set 6, = 0,4/B, v = ;%‘5’ fi = n;//B, and we let y = \/1—5. Then we can
rewrite A in (35) as follows:

A = y sinh(6,y) cosh(o;y) + sinh(o;y) cosh(6,Y), (36)
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and (33) becomes:

. sinh(6,y) sinh(o;y)  RI
Ni + —

Ay Hi
and then
dA; d7y dA;
dD ~ dD dy
s ﬁi sinh(d,y) sinh(o; y)
= —2dy Ay
y 3 (6, cosh(G,y) sinh(o;y) + o; sinh(6,y) cosh(o;y)) (Ay) — sinh(6,y) sinh(o; y) ( = A)
" (ay)?
=1 mf()’),

where we used (36) in the last step and introduced

f(y) = sinh?(0;y) [6,y — sinh(G,Y) cosh(G,)]
+y sinh?(6,y) [0y — sinh(o; y) cosh(o; )] . (37)

Thus, the sign of % is equal to the sign of f(y). To determine this, we exam-
ine the function a — sinh(a) cosh(a) = a — 1 5 sinh(2a) for a > 0. Note that when
a=0,1 smh(2a) =0andthat £ (a) = 1 < Cosh(2a) = 4 (1sinh(2a)) fora > 0.
Thus, a < 5 L sinh(2a) for all a Z 0 and consequently (37) is nonpositive for y > 0.

This shows that dA' <0.
We use a 51m11ar calculation for A,. Setting 71, = 1,/+/B, We rewrite A, as

- sinh(G,y) sinh(07y) | R(1—1)

o= lo

Ay Ho
Then
dA, dy dA,
dD ~ dD dy
- y3 d [ sinh(6,y) sinh(o;y)
) -2 dy Ay
ﬁumf(y)

v

0 for all y > 0.

Proof of Theorem 2 1. ‘i]A" > (. This has already been shown.

2. 4% > 0.Indeed, since ¥ = (11, — jti) A, and %3 > 0, it follows that

dYy Y ')dAg -0
dD Mo — Mi aD =
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dA

Since A = A; + A,, it follows that

dA  (dA; N dA,
dD \dD dD

(57! (1/P) =z (1199))

= Niw(ﬂi — o) f (\/B)

Recall from (37) that f(y) < 0if y > 0. Moreover,

ﬁ._ﬁzi(i_i)(u)>o
O B\ o) \ iyt ’

and therefore Z—g <0.
dL

4. 95 =<0.
Notice that
1 —-DA;
L =1n g
lA,
1 -1 A;
=In +In|—].
l A,
Moreover,
A fé n(x)dx fol n(x)dx - A
Ao ﬁl n(x)dx j}l n(x)dx Y/(o — mi)
Since A is nonincreasing and Y is nondecreasing with D, it follows that A; /A,
and hence L is nonincreasing with D.
Appendix B

Here we only sketch part of the proof of Theorem 4, as it is similar to that of
Theorem 2.

Since A; = fé n(x)dx, and n(x) is given by (25), with (26), there holds that

D,a,
2
i

sinh(a, (1 — 1)) sinh(e; /) R(2) + R—l

Wi
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where R(z) is given by (27), and A by (28). By (20), recalling (12) and setting 6, =
Jio(1 —1)/B and o; = /u;l, it follows that

A= Vo sinh(a,y) sinh(o;y) R() + Ri
wiN/B Ay Wi

where as before, we have set y = 1/+/D, and where:

1—
A = y sinh(6,y) cosh(o;y) + I < cosh(d,y) sinh(o;y)
Z

with y = /1to/(Bi). Therefore,

dA; dy dA; A/uo y Rz ) sinh(6,y) sinh(o; y)
dD — dD dy M,fz Ay

Proceeding similarly as in the proof of Theorem 2, but being cautious because now
the factor (1 — z)/(1 + z) appears in the second term of A here, it follows that:

dAi _ o
dD ,uM/_ZAZ

R(2) [y sinh?(5,)8(07) + 7 - j sinh%my)g(&m} ,

where
g(x) = x — sinh(x) cosh(x).

Since g(x) < 0if x > 0, it follows that the sign of d A; /d D is opposite to the sign of
R(z) (R(z) is defined in (27)). As the latter is negative if z < z*, zero if z = z*, and
positive if z > z*, it follows that

A 1= 0, ifz > z*(weak bias)
—— 1=0, if z = z*(critical bias)

aD | 0, if z < z*(strong bias)

In particular, we notice that the sign of dA; /d D is reversed when z moves from weak
bias values to strong ones. We omit the rest of the proof of the Theorem 4 as it is
similar to that of Theorem 2.

Appendix C

In this Appendix we provide the MATLAB code that was used to simulate System (1)
for ¢ > 0, and the four measures and steady state for the various models.

The following code was used to generate the simulation of System (1) for chosen
t > 0in Fig. 2.
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function MPAplot
%$This m file is to plot the {MPA} system (with recruitment R) after a
%specified number of time steps

%see help file for {pdepe}

m = 0;
x = linspace(0,1,100);
$Time

t = linspace(0,10,100);

sol = pdepe (m,@MPAplotpde, @MPAplotic, @MPAplotbe,x,t) ;
% Extract the first solution component as u.
u=sol(:,:,1);

% Solution profile:

figure

plot(x,u(end, :))

xlabel ('Distance x')

yvlabel ('n(x,10) ")

% ______________________________________________________________
function [c,f,s] = MPAplotpde (x,t,u,DuDx)
1 =3/16;
b=0.02;
Di = 0.04;
Do = Di/b;
R =0.5;
mi = 0.25;
mo = 0.5;
if x<1
h = 0;
else
h =1;
end

D = Di + (Do-Di)*h;

mu = mi + (mo-mi)*h;

c =1;

f = D*DuDx;

s = R-mu*u;

e ———————————————— e

function u0 = MPAplotic (x)

R =0.5;

mo = 0.5;

u0 = R/mo;

&
function [pl,qgl,pr,qgr] = MPAplotbc(xl,ul,xr,ur,t)

b=0.02;

Di = 0.04;

Do = Di/b;
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pl = 0;

gl = 1/Di

pr = 0;

gr = 1/Do;

% ______________________________________________________________

The following code was used to generate the steady state solution of System (1) for
t > 01in Fig. 2.

function symbolic2

syms x
1 =3/16;

Di = 0.04;

Do = 2;

b = Di/Do;

R = 0.5;

mi = 0.25;

mo = 0.5;

ai = sgrt(mi/Di);
ao = sqgrt(mo/Do) ;
%p = Delta

p = sgrt(mo/ (b*mi)) *sinh(ao* (1-1)) *cosh(ai*l)
+ sinh(ai*1l) *cosh(ao*(1-1));

¢ = (1/p)*R*(mo-mi)/ (mo*mi) *sqgrt (mo/ (b*mi))* (-1)
*sinh(ao* (1-1));

d = (1/p)*R* (mo-mi)/ (mo*mi) *sinh(ai*1l) ;

ni = c*cosh(ai*x) + (R/mi);

no = d*cosh(ao*(1-x)) + (R/mo) ;

n = ni + heaviside(x-1)* (no-ni) ;

p0 = ezplot(n, [0, 11);
set (p0, 'Color’, "blue’, ’'LineWidth’, 2);

The following code was used to generate Fig. 3.

function symbolic

syms x D

1 =3/16;

b = [-5 1 2]/
R =0.5;

mi = 0.25;

ai(i) = sqgrt(mi/D);
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end
for i=1:3

ao(i) = sqgrt(b(i)*mo/D);
end

*mi) ) *sinh(ao (i) *(1-1))

(1)
)*1) + sinh(ai(i)*1)
i)*

p(i) = sgrt(mo/ (b
*cosh(ai (i
(

*cosh (ao (1-1));
end
for i=1:3
c(i) = (1/p(i))*R* (mo-mi)/ (mo*mi) *sgrt (mo/ (b (i) *mi))
*(-1)*sinh(ao(i)*(1-1));
end
for i=1:3
d(i) = (1/p(i))*R*(mo-mi)/ (mo*mi)*sinh(ai(i)*1);
end
for i=1:3
ni(i) = c(i)*cosh(ai(i)*x) + (R/mi);
end
for i=1:3
no(i) = d(i)*cosh(ao(i)*(1l-x)) + (R/mo);
end
for i=1:3
Ii(i) = int(ni(i),x,0,1);
end
for i=1:3
Io(i) = int(no(i),x,1,1);
end
for i=1:3
Y(i) = (mo-mi)*To (i) ;
end
for 1i=1:3
A(l) = (I1(i)+Io(1));
end
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for i=1:3
L(i) = log(((1-1)*Ti(i))/(1*To(i)));
end
for i=1:3
(i) = ni(i) + heaviside(x-1)*(no(i)-ni(i));
end
PO ezplot (A(1l), [0, 21);

set (p0, 'Color’, 'blue’, ’'LineWidth’, 2);
hold on;

pl = ezplot(A(2), [0, 2]1);

set (pl, 'Color’, 'red’, ’'LineWidth’, 2);
p2 = ezplot(A(3), [0, 21);

set (p2, 'Color’, 'green’, ’'LineWidth’, 2);
hold off

The following code was used to generate Fig. 4.

function bias

syms x

1 = 3/16;

b =10.02;

Di = 0.04;

Do = Di/b;

z = [-.05 -1/3 -.9]1;
RO = 0.5;

mi = 0.25;

mo = 0.5;

ai = sgrt(mi/Di);

ao sgrt (mo/Do) ;
for i=1:3

R(i) = RO* ((1/mi) - (1-z(i))/(1l+z(i))/mo);
end

%$p = Delta
for i=1:3
p(i) = (Do*ao)/(Di*ai)*sinh(ao*(1-1))*cosh(ai*l)
+(1-z(1))/(1+z(i))*sinh(ai*l)*cosh(ao* (1-1));
end
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for i=1:3
c(i) = -(1/p(i))*R(i)*(Do*ao)/(Di*ai)
*sinh(ao* (1-1));
end
for i=1:3
d(i) = (1/p(i))*R(i)*sinh(ai*1l);
end
for i=1:3
ni(i) = c(i)*cosh(ai*x) + (RO/mi);
end
for i=1:3
no(i) = d(i)*cosh(ao*(1-x)) + (R0O/mo) ;
end
for i=1:3
Ii(i) = int(ni(i),x,0,1);
end
for i=1:3
Io(i) = int(no(i),x,1,1);
end
for i=1:3
Y(i) = (mo-mi)*Io (i) ;
end
for i=1:3
A(i) = (Ii(i)+Io(i));
end
for i=1:3
L(i) = log(((1-1)*Ii(i))/(1*Io(1)));
end
for i=1:3
n(i) = ni(i) + heaviside(x-1)*(no(i)-ni(i));
end
p0 = ezplot(n(3), [0, 11);
set (p0, 'Color’, "blue’, ’'LineWidth’, 2);

The following code was used to generate Fig. 5.
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function bias2

syms X D
1 = 3/16;
b =0.02;
Do = D/b;
$Di = D;
z = -.9;
RO = 0.5;
mi = 0.25;
mo = 0.5;

ai = sgrt(mi/D);
ao = sqgrt(mo/Do) ;

s
|

RO* ((1/mi) - (1-z)/(l+z)/mo);
p = Delta

oP

p = (Do*ao)/(D*ai)*sinh(ao*(1-1))*cosh(ai*1l)
+(1-z)/(1l+z)*sinh(ai*1l) *cosh(ao* (1-1));

c = -(1/p)*R*(Do*ao)/(D*ai) *sinh(ao*(1-1));

d = (1/p)*R*sinh(ai*1);

ni = c*cosh(ai*x) + (RO/mi);

no = d*cosh(ao*(1l-x)) + (R0O/mo) ;

Ii = int(ni,x,0,1);

Io = int(no,x,1,1);

Y = (mo-mi)*Io ;

A = (Ii+Io);

L = log(((1-1)*Ii)/(1*Io));

p0 = ezplot(L, [0, 21);
set (p0, "Color’, 'blue’, ’'LineWidth’, 2);
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