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The chemostat with lateral gene transfer

Patrick De Leenheer∗ Jack Dockery† Tomas Gedeon‡ Sergei S. Pilyugin§

Abstract

We investigate the standard chemostat model when lateral gene transfer is taken into account. We
will show that when the different genotypes have growth rate functions that are sufficiently close to a
common growth rate function, and when the yields of the genotypes are sufficiently close to a common
value, then the population evolves to a globally stable steady state, at which all genotypes coexist. These
results can explain why the antibiotic resistant strains persist in the pathogen population.

1 Introduction

Antibiotic resistance is a growing problem worldwide. In many hospitals the prevalence of multi-strain
resistant bacteria is increasing and the costs of the antibiotic resistance both in human life and expense of
the treatment is skyrocketing.

The rapid evolution of antibiotic resistance is a very complex process, and we are only beginning to under-
stand some of its causes. Many pathogens lack some of the DNA damage detection and repair mechanisms of
eukaryotes, and consequently their mutation rates are higher. Coupled with the fast inter-generational time
this provides bacteria with means of rapidly sampling the available DNA sequence space. In this context,
the frequent use of antibiotics supplies the evolutionary pressure for development of antibiotic resistance.
An additional factor that speeds up this process is the ability of many pathogens to acquire resistance genes
through lateral (horizontal) gene transfer (LGT) [3, 10, 8]. For example, it has been estimated that up to
17% of the genome of the bacterium Synechocystis PCC6803 has been acquired through LGT, and this is an
underestimate, since older gene transfers could not be detected [10].

LGT can occur via transformation, transduction and conjugation. Transformation refers to the process
where naked DNA is picked up from the environment. In transduction, a replicating bacteriophage packages
some donor genetic information and transfers this information upon infection to the new host. Finally,
conjugation refers to the process where two cells come into contact with each other, and genetic material is
exchanged. These mechanisms are illustrated in Figure 1.

In this paper we model competition in a chemostat for a single limiting resource S between different
strains of the same pathogen in the presence of LGT. The strains will differ in their growth rate functions,
which are arbitrary non-linear increasing functions of S, and the effectiveness of the resource utilization.
Because of the genetic diversity we view pathogen population as a finite collection of genetically closely
related strains. If one of these strains acquires resistance either by de nuovo mutation or by LGT it will
gain selective advantage in the presence of antibiotics and can quickly dominate the population. On the
other hand the plasmid with the resistance gene imparts metabolic cost associated with the transcription
and the translation of the resistance gene(s) to its carrier. Therefore in the absence of the antibiotic the
resistance carrying strain will be in competitive disadvantage with the other strains in the population.
Since the antibiotic treatment is in general a rare treatment, why does the resistant strain persist in the
population? The celebrated competitive exclusion principle [5, 12], although not applicable in complete
generality [7, 6, 17, 18], implies that the resistant strain should quickly vanish from the population in the
regular environment, being out competed by its more fit cousins.

To probe the effect of LTG on persistence of the resistant strains in the population we introduce a lateral
transfer operator T . The (i, j) element of T specifies the rate of transformation of the clone j to clone i.

∗email: deleenhe@math.ufl.edu. Department of Mathematics, University of Florida. Supported in part by NSF grant
DMS-0614651.

†email:umsfjdoc@math.montana.edu, Department of Mathematical Sciences, Montana State University.
‡email:gedeon@math.montana.edu, Department of Mathematical Sciences, Montana State University, Supported in part by

NSF grant DMS-0818785
§email: pilyugin@math.ufl.edu. Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA.

Supported in part by NSF grant DMS-0818050.

1

Page 12 of 22

URL: http:/mc.manuscriptcentral.com/tjbd  Email: Nicole.Geary@trinity.edu

Journal of Biological Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 1: Mechanisms of lateral gene transfer.

Taken from http://bacteriology.suite101.com/article.cfm/bacteria horizontal gene transfer

The transfer matrix is similar to a mutation matrix, but it also has significant differences. Unlike mutation
rates, the transfer rates can be quite large in the presence of the antibiotic [9, 15, 16] and can increase as a
result of the SOS response [1].

Mutation usually creates a closely related individual and rarely induces substantial changes in the genome.
Therefore a mutation matrix can be assumed to be near diagonal. In contrast, lateral gene transfer can cause
large changes in the genome and we do not place any structural assumption on the matrix T . We do, however,
assume that the matrix T does not depend on the substrate level S. In contrast, since the mutations happen
during the duplication of DNA and hence are conditioned on the growth of the population, the mutation
rates do, in general, depend on the growth rate and thus indirectly on the substrate level concentration [4].

We find that with lateral gene transfer all the strains will ultimately coexist at a globally stable steady
state provided that the substrate influx is sufficiently high. Below the critical rate of substrate influx, the
entire population disappears. The coexistence result shows that lateral gene transfer allows the population
to keep the resistance gene. This mechanism avoids penalizing a single carrier strain which would lead to
its extinction and loss of the gene from the entire population. Our persistence result only requires that all
transfer rates are non-negative and that the matrix T is irreducible. That means that there is no lower bound
on the rate of transfer from strain to strain, provided that for each strain i there is at least one positive rate
of transfer to some other strain j, perhaps by passing via a sequence of other strains first.

Throughout the paper we will consider the following system on Rn+1
+ :

ẋ = [M(S)− In + T ]x (1)
Ṡ = 1− S − µT (S) diag−1(Y )x, (2)

where
µT (S) =

(
µ1(S) µ2(S) . . . µn(S)

)
and M(S) = diag(µ(S)),

and In is the identity matrix.
The vector µ(S) contains the growth rate functions of the various cell types and the Yi ∈ (0, 1] are the

respective yield constants. Each growth rate function µi is smooth, zero at zero, with µ′i(S) > 0 for S > 0.
The matrix T contains the rates at which the strains convert from one type to another. It is assumed to be

quasi-positive (i.e. all its off-diagonal entries are non-negative) and irreducible. Then it has a real dominant
eigenvalue by a generalization of the Perron-Frobenius Theorem [2], and we assume that that eigenvalue is
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zero. To clarify the latter assumption, assume that the strains would not grow, nor wash out or die. In that
case equation (1) would be linear: ẋ = Tx and only describe the movement of strains between the various
genotypes. Since growth and washout/death are neglected, the total amount of biomass is conserved. This
can only happen if the dominant eigenvalue of T is zero. If it would be negative, then all solutions would
converge to zero, whereas they would diverge if it were positive.

The Perron-Frobenius Theorem also implies that there is some positive vector wT corresponding to the
zero eigenvalue: wT T = 0. A particular consequence is that the diagonal entries of T must be negative, for
if this were not the case, then vT T could not be zero for any positive vector v, implying that zero is not the
dominant eigenvalue, which in turn would violate the conservation of biomass described above.

We claim that without loss of generality we can assume that wT = (1 1 . . . 1), which implies that T is
in fact compartmental (i.e. it is quasi-positive and all its column sums are zero). To see this, we re-scale x
as follows. Let z = Wx, where W = diag(w). Then (1)− (2) is transformed to

ż = [M(S)− In + T̃ ]z
Ṡ = 1− S − µT (S) diag−1(Y )W−1z,

where T̃ = WTW−1 is still quasi-positive and irreducible, and clearly 1T T̃ = 0. If necessary, the transformed
yield coefficients can be chosen to satisfy Yiwi ≤ 1 by rescaling w in the transformation z = Wx by a
sufficiently small positive scaling factor.

Thus, throughout the rest of the paper we assume that:

T is compartmental and irreducible.

In this case the matrix T represents the lateral gene transfer matrix, and each off-diagonal entry Tij represents
the rate of conversion of genotype j to genotype i.

The main result of this paper is as follows.

Theorem 1. Let µ0(S) be smooth, zero at zero with µ′0(S) > 0 for S > 0, and let Y0 > 0. If µ0(1) > 1,
then there exist ε∗ > 0 such that if ‖µi − µ0‖C0 < ε∗, |Yi − Y0| < ε∗, then system (1) − (2) has a unique
positive steady state (x∗, S∗) which is globally asymptotically stable with respect to initial conditions satisfying
x(0) %= 0. Here, the norm ||.||C0 denotes the usual sup norm for bounded continuous functions.

In Section 2 we will state and prove several general properties of system (1)− (2), including an extinction
result and a uniform persistence property. In Section 3 we first specialize system (1)− (2) to the case where
all growth rate functions µi are the same, and equal to a common function µ0, and where all yields Yi are
equal to some common value Y0. For this case we will be able to prove a global stability result. This in turn
allows Theorem 1 to be proved by means of a perturbation result in the last subsection of Section 3.

2 Some general properties of the model

2.1 Uniform boundedness

We start by establishing that all solutions are ultimately bounded by the same bound.

Lemma 1. The solutions of (1) − (2) are uniformly bounded. More precisely, there is some m∗ > 0 such
that for every solution (x(t), S(t)), there is a τ such that

(x(t), S(t)) ∈ L, for all t ≥ τ,

where
L := {(x, S) ∈ Rn+1

+ | 1T x + S ≤ m∗}.

Proof. First note that Rn+1
+ is forward invariant because T is quasi-positive. Define y := (Y −1

1 . . . Y −1
n )T .

Since all Yi ∈ (0, 1] it follows that y − 1 ≥ 0. Let us consider the evolution of the variable:

m = S + 1T x,

along an arbitrary solution (x(t), S(t)) of (1)− (2). Observe that:

ṁ(t) = 1−m(t)− [y − 1]T M(S(t))x(t) ≤ 1−m(t).

The conclusion follows by setting m∗ = 1.1.
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2.2 Steady states

Here we show that system (1)−(2) always has a washout steady state, and we discuss its stability properties.
We also show that the system can have a second coexistence steady state.

In order not to complicate the notation too much, we define for all S ≥ 0 the following matrix:

B(S) = M(S)− In + T,

and notice that it is quasi-positive and irreducible. By the Perron-Frobenius Theorem, for every S ≥ 0,
the matrix B(S) has a real, dominant eigenvalue λ(B(S)) which is simple and has a corresponding positive
eigenvector. Except for this positive eigenvector (and all its scalar multiples with a positive scalar), there
are no other non-negative eigenvectors.

We also have the following property.

Lemma 2. The eigenvalue λ(B(S)) is a continuous and increasing function of S, with λ(B(0)) = −1.

Proof. Continuity is obvious. Since T is compartmental and irreducible, its dominant eigenvalue λ(T ) is 0,
and hence λ(B(0)) = λ(T )−1 = −1. Since each µi(S) is increasing, it follows that λ(B(S)) = λ(B(0)+M(S))
is increasing as well by Corollary (1.5)(b) in [2] (i.e. S1 < S2 implies that λ(B(S1)) < λ(B(S2))).

Lemma 3. The washout state (0, 0, . . . , 0, 1)T is always a steady state of (1)− (2).
There are no other steady states on the boundary of Rn+1

+ .
If λ(B(1)) ≤ 0, then the washout steady state is the only steady state of (1) − (2), and if λ(B(1)) < 0,

then the washout steady state is hyperbolic and locally asymptotically stable.
If λ(B(1)) > 0, then the washout steady state is unstable, and (1)− (2) has a unique positive steady state

(x∗, S∗). Here, S∗ is the unique positive number for which λ(B(S∗)) = 0, and the vector x∗ is the unique
positive vector satisfying B(S∗)x∗ = 0 and x∗T diag−1(Y )µ(S∗) = 1− S∗.

Proof. Steady states are (non-negative) solutions (x∗, S∗) of

B(S∗)x∗ = 0 (3)

x∗T diag−1(Y )µ(S∗) = 1− S∗ (4)

By (4), no steady state can have S∗ = 0, and so we can assume without loss of generality that S∗ > 0 from
now on.

The first assertion is trivial. Linearization at the washout steady state yields the following Jacobian
matrix: (

B(1) 0
−µT (1)diag−1(Y ) −1

)
,

hence all assertions regarding hyperbolicity and local asymptotic stability or instability of the washout steady
state follow immediately.

Let us now focus on finding steady states (x∗, S∗) with (non-negative) x∗ %= 0. Equation (3) implies
that x∗ must be an eigenvector corresponding to the eigenvalue 0. But if x∗ is non-negative, it must be an
eigenvector corresponding to the dominant eigenvalue by the Perron-Frobenius Theorem. Hence, if a steady
state (x∗, S∗) exists with x∗ %= 0, then it is such that λ(B(S∗)) = 0 and moreover x∗ must be a positive
vector (rather than only non-negative).

If λ(B(1)) > 0, since λ(B(S)) is increasing by Lemma 2 and λ(B(0)) = −1, there is a unique S∗ ∈ (0, 1)
such that λ(B(S∗)) = 0. It follows from (3) that x∗ is simply a positive eigenvector corresponding to
λ(B(S∗)) = 0. Of course, this vector is only determined up to multiplication by some positive scalar, but
(4) determines that scalar uniquely.

Finally, if λ(B(1)) ≤ 0, then λ(B(S∗)) = 0 may be solvable for S∗, but then S∗ ≥ 1, again using
monotonicity of λ(B(S)) established in Lemma 2. But then there cannot exist a corresponding positive
vector x∗ that satisfies (3) and (4). Thus, in this case, the washout steady state is the only steady state of
(1)− (2).
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2.3 Extinction

We show that system (1)− (2) has the following extinction property.

Theorem 2. Suppose that λ := λ(B(1)) < 0. Then every solution (x(t), S(t)) of (1)− (2) is such that

lim
t→∞

(xT (t), S(t)) = (0, 0, . . . , 0, 1),

where (0, 0, . . . , 0, 1) is the washout steady state.

Proof. We see that Lemma 1 is still valid if m∗ = 1 + ε for all ε > 0 by re-examining its proof. Fix ε > 0
such that λ̃ := λ(B(1 + ε)) < 0 (this is possible since eigenvalues of a matrix are continuous in the entries
of the matrix). Let (x(t), S(t)) be a solution of (1)− (2). Then by Lemma 1, there is some τ > 0 such that
S(t) ≤ 1 + ε for all t ≥ τ . Then

ẋ(t) ≤ B(1 + ε)x(t), for all t ≥ τ. (5)

Consider the function V (x, S) = vT x where vT is a positive left eigenvector of B(1 + ε) corresponding to λ̃:
vT B(1 + ε) = λ̃vT . Then along the solution (x(t), S(t)), we have that for all t ≥ τ :

V̇ (x(t), S(t)) = vT ẋ(t) ≤ vT B(1 + ε)x(t) = λ̃vT x(t) = λ̃V (x(t), S(t)) ≤ 0,

where we used (5) to establish the inequality. LaSalle’s invariance principle (see e.g. [12]) implies that
(x(t), S(t)) converges to the largest invariant set contained in the set Ω = {(x, S) ∈ Rn+1

+ | vT x = 0} =
{(x, S) ∈ Rn+1

+ |x = 0}, the non-negative S-axis. Clearly, the largest invariant set contained in Ω is
{(0, 0, . . . , 0, 1)}, which concludes the proof.

2.4 Uniform persistence

Reversing the inequality in the condition of Theorem 2 implies that system (1) − (2) has the following
persistence property. We shall give two proofs of this fact.

Theorem 3. Suppose that λ := λ(B(1)) > 0. Then there exists ∆ > 0 such that

lim inf
t→+∞

1T x(t) ≥ ∆

for all solutions (x(t), S(t)) of the system (1)− (2) with 1T x(0) > 0.

Proof. Define y := (Y −1
1 . . . Y −1

n )T , and let α > 0 be large enough such that α1 ≥ y. By continuity of
µi(·), i = 1, 2, ..., n, there exists δ ∈ (0, 1) such that µi(1 − z) − µi(1) ≥ −λ

2 for all z ∈ [0, δ] and for all
i = 1, 2, ..., n. Define the auxiliary function m(t) := S(t) + α1T x(t). It follows that

ṁ(t) = 1− S(t)− α1T x(t) + (α1− y)T M(S(t))x(t) ≥ 1−m(t),

hence for every solution of (1) − (2), there exists τ > 0 such that m(t) ≥ 1 − δ
2 for all t ≥ τ . By shifting

time, if necessary, we may assume that τ = 0. Hence we have,

S(t) ≥ 1− δ

2
− α1T x(t), ∀t ≥ 0.

Let vT be a positive left eigenvector of B(1) corresponding to λ: vT B(1) = λvT . Consider the set

D :=
{

(x, S)|S ≥ 0, 0 < vT x <
δ

2α
min

i
vi

}
.

If (x(t), S(t)) ∈ D, we have that

α1T x(t) <
α

mini vi
vT x(t) <

δ

2
,

hence the following inequality holds:

ẋ(t) ≥
(

M

(
1− δ

2
− α1T x(t)

)
− I + T

)
x(t)

= B(1)x(t) +
(

M

(
1− δ

2
− α1T x(t)

)
−M(1)

)
x(t)

≥ B(1)x(t)− λ

2
x(t),
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by the choice of δ and since α1T x(t) < δ
2 in D. Multiplying the above inequality by vT on the left, we find

that
vT ẋ(t) ≥ vT B(1)x(t)− λ

2
vT x(t) = λvT x(t)− λ

2
vT x(t) =

λ

2
vT x(t).

This implies that the set D is (i) invariant in reverse time and (ii) that all solutions of (1)− (2) leave D in
forward time. It follows immediately that

lim inf
t→+∞

vT x(t) ≥ δ

2α
min

i
vi,

and thus
lim inf
t→+∞

1T x(t) ≥ δ

2α

mini vi

maxi vi
=: ∆ > 0,

for all solutions of (1)− (2) with 1T x(0) > 0. This concludes the proof.

Remark 1. We also provide an alternative proof of Theorem 3. It is based on the fluctuation method,
coupled with the results from [11] which demonstrate when uniform weak repellors are uniform strong
repellors. First we introduce some notation: For a scalar function x(t), t ∈ R+, we denote the (extended)
real numbers lim supt→∞ x(t) and lim inft→∞ x(t) as x∞ and x∞ respectively.

By continuity of eigenvalues of a matrix and since λ = λ(B(1)) > 0, there exists an ε > 0 such that
λ(B(1− ε)) > 0 as well.

Assume that the quantity 1T x is not uniformly weakly persistent for (1)− (2) .
Then there is some solution (x(t), S(t)) with x(0) %= 0 such that

(1T x(t))∞ ≤ ε

2γ
, (6)

where γ := maxi Y −1
i µi(1). Equation (2) implies that S∞ ≤ 1. From Corollary 2.4 in [11] (this is a

consequence of the famous fluctuation lemma) it follows that

0 ≥ lim inf
t→∞

(
1− S∞ − yT M(S∞)x(t)

)

≥ lim inf
t→∞

(
1− S∞ − yT M(1)x(t)

)

≥ lim inf
t→∞

(
1− S∞ − γ(1T x(t))

)

≥ 1− S∞ − γ(1T x(t))∞

≥ 1− S∞ −
ε

2
,

where we used (6) to establish the last inequality. Therefore S∞ ≥ 1 − ε/2, and hence S(t) ≥ 1 − ε for all
sufficiently large t. Then (1) implies that for all sufficiently large t:

ẋ(t) ≥ B(1− ε)x(t).

Since λ (B(1− ε)) > 0, all solutions of ż = B(1− ε)z with z(0) %= 0 and z(0) ≥ 0 diverge as t →∞, and thus
by a comparison argument the same is true for x(t). This contradicts boundedness of x(t), see Lemma 1.

We have established that 1T x is uniformly weakly persistent, or using the terminology of [11], that
X2 := {(x, S) ∈ Rn+1

+ | 1T x = 0} is a uniform weak repellor for X1 := {(x, S) ∈ Rn+1
+ | 1T x > 0}. Using

Lemma 1, it now follows from Theorem 1.4 of [11], that X2 is in fact a uniform strong repellor for X1. This
concludes the proof.

3 Specializing the model

In this section we will first specialize the model (1) − (2) to the case where all growth rate functions µi

are equal to a given growth rate µ0, and all yield coefficients Yi are equal to a given yield Y0. After that,
we will be able to prove the main result of our paper, Theorem 1, using a particular perturbation result.
The perturbation is measured in terms of how much the various growth rate functions µi deviate from µ0,
and the yields coefficients Yi deviate from Y0. Biologically, this means that our main result holds when the
various genotypes are not too different in the way they consume nutrient and in how efficiently they convert
it into new biomass.
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3.1 Local and global stability when all µi are equal to µ0 and all Yi are Y0.

Specializing (1) − (2) to the case where µi(S) = µ0(S) and Yi = Y0 for all i, yields the following simplified
equations:

ẋ = [(µ0(S)− 1)In + T ]x (7)
Ṡ = 1− S − µ0(S)Y −1

0 (1T x). (8)

In this case λ(B(S)) = µ0(S)− 1, and thus if λ(B(1)) = µ0(1)− 1 > 0, then system (7)− (8) has a unique
positive steady state (x∗, S∗) by Lemma 3. We show next that it is asymptotically stable.

Lemma 4. Let µ0(S) be smooth, zero at zero, with µ′0(S) > 0 for S > 0, and let Y0 ∈ (0, 1]. If µ0(1)−1 > 0,
then the steady state (x∗, S∗) is hyperbolic and locally asymptotically stable for (7)− (8).

Proof. In this particular case, the positive steady state (x∗, S∗) satisfies:

B(S∗)x∗ = 0 (9)
µ0(S∗)(1T x∗) = Y0(1− S∗) (10)

The first equation implies that λ(B(S∗)) = 0, and thus that:

µ0(S∗) = 1.

Therefore, the equations (9)− (10) simplify to:

Tx∗ = 0 (11)
1T x∗ = Y0(1− S∗) (12)

Linearization of (7)− (8) at (x∗, S∗) yields the following block-matrix:
(

T µ′0(S∗)x∗

−Y −1
0 1T −1− µ′0(S∗)(1− S∗)

)

where we used (12). We decompose this matrix as follows:

A + kbcT :=
(

T 0
−Y −1

0 1T −1

)
+ µ′0(S

∗)
(

x∗

−(1− S∗)

) (
0 0 . . . 0 1

)
.

Notice that the spectrum of the (n + 1)× (n + 1) matrix A is given by

σ(A) = σ(T ) ∪ {−1},

and thus all eigenvalues of A have negative real part, except for a simple eigenvalue at 0 (because T is
compartmental and irreducible). Also notice that the parameter

k = µ′0(S
∗)

is positive. We will show that for all k > 0, the eigenvalues of A + kbcT have negative real part. To see this
we perform a similarity transformation as follows. Let

P =
(
b v1 v2 . . . vn

)
,

where v1, . . . , vn are chosen aribitrarily such that

span{b}⊕ span{v1, v2, . . . , vn} = Rn+1

Then using (11)− (12) it follows that:

P−1AP + kP−1bcT P =
(

0 ∗
0 Ã

)
+ k

(
−(1− S∗) ∗

0 0

)
,

where the ∗’s do not matter for our purposes, and the eigenvalues of the n × n matrix Ã are −1 and the
n−1 eigenvalues of the matrix T that belong to the open left-half plane (Indeed, this follows from similarity
which implies that σ(A) = {0} ∪ σ(Ã), and since σ(A) = σ(T ) ∪ {−1}.). It follows that the eigenvalues of
A + kbcT are given by

−k(1− S∗),
which is negative because k > 0 and 1 − S∗ > 0 by (12), and by the eigenvalues of Ã, all of which have
negative real part. This concludes the proof.
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Remark 2. The argument in the proof of Lemma 4 is routinely used in control theory [14]. The problem
amounts to showing that the following output feedback system

ẋ = Ax + bu, y = cT x

u = ky

is asymptotically stable for arbitrary k > 0, or equivalently, that all eigenvalues of A + kbcT have negative
real part.

It is easy to see that the controllability matrix of this system:

R(A, b) := [b Ab A2b . . . Anb] = [b 0 0 . . . 0],

(we used (11) − (12) here) has a one-dimensional column space span{b}. Thus the feedback system has a
single controllable mode at 0 (notice that b is an eigenvector of A corresponding to eigenvalue 0 because
Ab = 0), and n uncontrollable modes (the n − 1 eigenvalues of T having negative real part, and −1). The
linear coordinate transformation:

x = Pz,

yields the (Kalman) controllable canonical form

ż =
(

0 ∗
0 Ã

)
z +

(
b1

0

)
u, y = cT Pz

u = ky

where the scalar b1 %= 0, which shows that the only mode of the open loop system that can be shifted by
output feedback is the zero mode, while none of the uncontrollable modes can be changed by output feedback
(or even by state feedback). The rest of the proof of Lemma 4 shows that output feedback shifts the zero
mode in the right direction for all k > 0, namely into the open left half-plane of the complex plane.

Theorem 4. Let µ0(S) be smooth, zero at zero, with µ′0(S) > 0 for S > 0, and let Y0 ∈ (0, 1]. If µ0(1)−1 > 0,
then the steady state (x∗, S∗) is globally asymptotically stable for (7)− (8) with respect to initial conditions
satisfying x(0) %= 0.

Proof. By Lemma 1 and Theorem 3, all solutions of (7) − (8) with x(0) %= 0 eventually enter the compact
forward invariant set

D := L ∩ {(x, S) ∈ Rn+1
+ | 1T x ≥ ∆}.

Thus, without loss of generality, we henceforth restrict initial conditions to D.
Define the variable

m = S + Y −1
0 (1T x),

and note that
ṁ = 1−m,

and hence that m(t) → 1 as t → ∞. Consequently, we replace S by 1 − Y −1
0 (1T x) in (7) − (8), and study

the limiting system:
ẋ =

[(
µ0

(
1− Y −1

0 (1T x)
)
− 1

)
In + T

]
x, (13)

which evolves on the forward invariant set

Ω = {x ∈ Rn
+ | ∆ ≤ (1T x) ≤ Y0}.

Consider the following function on Ω:

V (x) =
1
2

(
Y −1

0 (1T x)− (1− S∗)
)2

.

Then its time-derivative along solutions of (13) is:

V̇ = (Y −1
0 (1T x)− (1− S∗))Y −1

0 (1T ẋ) = Y −1
0 (1T x)(Y −1

0 (1T x)− (1− S∗))
(
µ0

(
1− Y −1

0 (1T x)
)
− 1

)
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Notice that in Ω,

Y −1
1 (1T x)− (1− S∗) > (or <) 0 ⇔

S∗ > (or <) 1− Y −1
0 (1T x) ⇔

µ0(S∗) > (or <) µ0

(
1− Y −1

0 (1T x)
)
⇔

µ0(S∗)− 1 > (or <) µ0

(
1− Y −1

0 (1T x)
)
− 1 ⇔

0 > (or <) µ0

(
1− Y −1

0 (1T x)
)
− 1,

where we have used that µ0 is monotonically increasing in the third line, and that µ0(S∗) = 1 (this follows
from multiplying [(µ0(S∗)− 1)In + T ]x∗ = 0 by 1T on the left, and using that 1T T = 0 and that 1T x∗ > 0)
in the last line. Therefore, since the first factor in V̇ is always non-negative in Ω, it follows that:

V̇ ≤ 0.

By LaSalle’s invariance principle all solutions of (13) converge to the largest invariant set contained in
S := {x ∈ Ω | 1 − Y −1

0 (1T x) = S∗}. We claim that this set is the singleton {x∗}. To see this, first notice
that the set S is a forward invariant set for (13), that S contains the unique steady state x∗, and the that
dynamics on S are given by:

ẋ = B(S∗)x, x ∈ S (14)

Now, consider the linear system:
ż = B(S∗)z, z ∈ Rn. (15)

Clearly, every solution of (14) coincides with a solution of (15). We examine the dynamics of (15). Since
λ(B(S∗)) = 0, the state space Rn of (15) is foliated by invariant hyperplanes (generated by the (n − 1)-
dimensional vector space which is given by the direct sum of all generalized eigenspaces that correspond
to eigenvalues with negative real part), and all forward solutions of (15) converge to a unique steady state
in each hyperplane (each steady state is an eigenvector corresponding to the eigenvalue λ(B(S∗)) = 0). In
backward time on the other hand, all non-equilibrium solutions of (15) starting in Rn

+, leave Rn
+ in finite

time. In particular, this happens to non-equilibrium solutions of (15) starting in the set S. Consequently,
the largest invariant set of (13) contained in S is the steady state x∗. Summarizing, we have established
that all solutions of (13) in Ω with converge to x∗.

Finally, in order to return from the behavior of (13) to the original system (7)− (8) we will use a limiting
theorem applied to the asymptotically autonomous system

ṁ = 1−m (16)
ẋ =

[(
µ0

(
m− Y −1

0 (1T x)
)
− 1

)
In + T

]
x, (17)

evolving on D′ = {(m, x) ∈ Rn+1
+ |m ≤ m∗, 1T x ≥ ∆}, which is equivalent to the original system (7)− (8)

on D.
Notice that (13) has a unique steady state x∗ which is hyperbolic and locally asymptotically stable by

Lemma 4. Moreover, we have shown that all solutions of (13) converge to x∗, and clearly x∗ cannot be
chained to itself. Now it follows from Theorem F.1 in [12] that all solutions of (16)− (17) in D′ converge to
(1, x∗). This in turn implies that all solutions of (7)− (8) in D converge to (x∗, S∗).

3.2 A persistence property, uniform in model parameters

We strengthen the persistence result of Theorem 3 as follows: If system (1)− (2) deviates only slightly from
a system where all species have the same growth rate function µ0(S) and the same yield Y0, then the total
population ultimately persists above a level which is both independent of the initial population composition,
and of the growth rate functions and yield coefficients.

Theorem 5. Let µ0(S) be smooth, µ0(0) = 0, µ′0(S) > 0 for S > 0, and µ0(1) > 1, and let Y0 ∈ (0, 1].
Then there exist ε > 0, ∆ > 0, and a forward invariant set K ⊂ {(x, S)|x, S ≥ 0, 1T x ≥ ∆}, such that for
any solution (x(t), S(t)) of the system (1)− (2) with ‖µi−µ0‖C0 < ε, |Yi−Y0| < ε and 1T x > 0, there exists
τ > 0 such that (x(t), S(t)) ∈ K for all t > τ .
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Proof. By continuity of µ0(·), there exist δ ∈ (0, 1) and λ̃ > 0 such that µ0(S) ≥ 1 + 2λ̃ for all S ≥ δ. If, in
addition, ‖µi − µ0‖C0 < λ̃, we have that µi(S) ≥ 1 + λ̃ for all S ≥ δ and for all i. Since δ < 1, there exist
sufficiently small positive numbers β and ∆0 such that

1
1 + 2β

−∆0 ≥ δ.

Finally, we let ε > 0 be sufficiently small, so that ε < λ̃ and so that if |Yi − Y0| < ε for all i, then
µi(S)

(
Y0
Yi
− 1

)
< β for all values of S ∈ [0, 2] and i. By shifting time, if necessary, we will assume that

S(t) ∈ [0, 2] for all t ≥ 0.
Define the auxiliary function m = S + 1

Y0
(1T x), and observe that

ṁ(t) = 1− S(t)− 1
Y0

∑

i

(
1 + µi(S(t))

(
Y0

Yi
− 1

))
xi(t).

Since µi(S)
(

Y0
Yi
− 1

)
< β for all S and i, we have the inequality

ṁ(t) ≥ 1− S(t)− 1
Y0

(1 + β)(1T x(t)) ≥ 1− (1 + β)S(t)− 1
Y0

(1 + β)(1T x(t)) = 1− (1 + β)m(t).

In particular, there exists a T > 0 such that m(t) ≥ 1
1+2β for all t ≥ T . Moreover, the set

K0 := {(x, S)|x, S ≥ 0, S +
1
Y0

(1T x) ≥ 1
1 + 2β

}

is forward invariant. Let K1 := {(x, S) ∈ K0| 0 < 1T x < Y0∆0}. For any solution (x(t), S(t)) ∈ K1, we have
the following estimates:

S(t) ≥ 1
1 + 2β

− 1
Y0

(1T x(t)) >
1

1 + 2β
−∆0 ≥ δ,

and thus µi(S(t)) ≥ 1 + λ̃, which implies that

ẋ(t) ≥
(
λ̃I + T

)
x(t).

Since 1T T = 0 (the matrix T is compartmental), the above inequality implies that for all solutions in K1

the inequality
1T ẋ(t) ≥ λ̃1T x(t)

holds. Thus, all solutions starting in K1 enter the forward invariant complementary set K = {(x, S) ∈
K0| 1T x ≥ ∆}, where ∆ := Y0∆0 > 0. This concludes the proof.

3.3 Proof of Theorem 1.

The proof is an application of Theorem 2.2 in [13].
First notice that if all µi(S) equal µ0(S), and all Yi equal Y0, then system (1) − (2) has a unique

positive steady state (x∗0, S∗0 ) by Lemma 3 which is hyperbolic and locally asymptotically stable by Lemma
4. Moreover, all solutions with x(0) %= 0 converge to (x∗0, S∗0 ) by Theorem 4.

By Theorem 5 and Lemma 1, there exist ε > 0 and ∆ > 0 such that whenever ‖µi − µ0‖C0 < ε and
|Yi − Y0| < ε, all solutions of (1)− (2) with x(0) %= 0 eventually enter the compact invariant set

D = K ∩ L.

The conclusion now follows immediately from Theorem 2.2 in [13].
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