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Abstract. Exploiting the fact that standard models of within-host viral infections of target
cell populations by HIV, developed by Perelson and Nelson [SIAM Rev., 41 (1999), pp. 3–44] and
Nowak and May [Virus Dynamics, Oxford University Press, New York, 2000], give rise to competitive
three dimensional dynamical systems, we provide a global analysis of their dynamics. If the basic
reproduction number R0 < 1, the virus is cleared and the disease dies out; if R0 > 1, then the virus
persists in the host, solutions approaching either a chronic disease steady state or a periodic orbit.
The latter can be ruled out in some cases but not in general.
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1. Introduction. Recently there has been a substantial effort in the mathemat-
ical modeling of virus dynamics, primarily motivated by the AIDS epidemic and HIV;
see, e.g., [9, 11, 15]. Perelson and Nelson [14] and Nowak and May [12] provide excel-
lent reviews and many more citations. The latter has a somewhat broader focus, also
treating SIV (the simian version of HIV) and the hepatitis B viral infections. These
models focus on the disease dynamics within an infected individual and contrast with
an earlier parallel literature on the dynamics within the human population. Simple
HIV models have played a significant role in the development of a better understand-
ing of the disease and the various drug therapy strategies used against it. For example,
they provided a quantitative understanding of the level of virus production during the
long asymptomatic stage of HIV infection; see [13, 14, 12].

We focus primarily on HIV models here but note, following [12], that the basic
model applies to many other viral infections. Moreover, similar models exist which
describe infections of marine bacteria by bacteriophages; see [1].

A brief review of the salient features of the role of HIV in the disease will be useful.
The course of an HIV infection is as follows. First, HIV enters its target, a T cell.
Inside this cell it makes a DNA copy of its viral RNA; hence it falls into the class of
so-called retroviruses. In this process it needs the enzyme reverse transcriptase (RT).
The viral DNA is then inserted into the DNA of the T cell, which will henceforth
produce viral particles that can bud off the cell to infect other uninfected T cells.
Before leaving the host cell, the virus particle is equipped with protease, an enzyme
used to cleave a long protein chain. If this feature is lost, the virus particle is not
capable of successfully infecting other T cells.

The models considered in [14, 12] have three state variables: T , the concentration
of uninfected T cells; T ∗, the concentration of productively infected T cells; and V ,
the concentration of free virus particles in the blood. In chemical reaction notation,
the model can be written

T + V → T ∗ → NV,
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because mass action reaction terms are used and each infected T cell is assumed to
produce N viral particles over its lifespan. The interaction between these cells and
virus particles is then given by the following equations:

Ṫ = f(T ) − kV T,
Ṫ ∗ = −βT ∗ + kV T,(1)

V̇ = −γV +NβT ∗,

where we have relabeled many of the parameters used in [14, 12]. The functional form
of f is defined differently by different authors:

1. Perelson and Nelson [14]: f(T ) = f1(T ) ≡ δ − αT + pT (1 − T
Tmax

).
2. Nowak and May [12]: f(T ) = f2(T ) ≡ δ − αT .

The parameters α, β, γ, δ, k, N, p, and Tmax are positive.
We briefly summarize the interpretation of the different parameters in the model.

Parameters α, β, and γ are the death rates of the uninfected T cells, the infected T
cells, and the virus particles, respectively. k is the contact rate between uninfected T
cells and virus particles. δ represents a constant production of T cells in the thymus.
In the literature this process is not assumed to be constant, but to depend on virus
loads. Usually δ is then replaced by a decreasing function of the concentration of
virus particles; see, e.g., [15]. N is the average number of virus particles produced by
an infected T cell. In the case f = f1, healthy T cells are assumed to proliferate logis-
tically, although the control mechanisms for T cell proliferation are largely unknown.
The p and Tmax are the growth rate (respectively, carrying capacity) associated with a
logistic growth of uninfected T cells in the absence of virus particles, infected T -cells,
and natural body sources such as the thymus. Note that simplification of the logistic
term pT (1 − (T + T ∗)/Tmax) to pT (1 − T/Tmax) is not always performed; see, e.g.,
[15]. From a mathematical point of view, this simplification leads to a competitive
system, which opens up a whole arsenal of tools in the subsequent analysis. We will
elaborate on this below. Another simplification, found in all models in the literature,
is that (logistic) proliferation of T ∗ cells has been neglected.

Both Perelson and Nelson and Nowak and May ignore the loss term −kV T , which
should appear in the V equation, i.e.,

V̇ = −γV +NβT ∗ − kV T,(2)

representing the loss of a free virus particle once it enters the target cell, arguing that
this small term can be absorbed into the loss term −γV . We will consider (1) with
and without this added term.

An important feature of this model is that it ignores the reaction of the immune
system, and therefore the model describes a worst-case scenario in some sense; see
[12, 11] for models which include an immune response to the virus. More realistic
models also include a compartment for latently infected T cells [14, 12, 15], which are
capable of but not actively producing virus. A related modeling approach consists
of incorporating a delay term describing the delay between the time of infection of
a T cell and the time of emission of virus particles from this cell [3]. Our model
also neglects virus mutations, which occur very frequently and on a fast time-scale.
Some of these mutations cause drug resistance, which makes effective treatment very
difficult.

System (1), with or without the −kV T term in the V equation, is competitive
with respect to the cone K := {(X, Y, Z) ∈ R3|X, Z ≥ 0, Y ≤ 0}—see p. 49 in [16]—
and thus solutions with initial states ordered according to the order of K (i.e., their
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difference is a vector in K) remain ordered for backward time. Indeed, the Jacobian
matrix of system (1) (respectively of system (1) with the V -equation replaced by (2))
at an arbitrary point of R3

+ possesses the following structures:


∗ 0 −

+ ∗ +
0 + ∗


 ,


∗ 0 −

+ ∗ +
− + ∗


 ,(3)

where some of the + and − signs can actually be zero for points on the boundary of
R3

+. Note that these matrices are sign-symmetric; i.e., for every i �= j, the product
of the (i, j)th and the (j, i)th entry of these matrices is nonnegative. The incidence
graph associated with this matrix, where edges between the nodes are furnished with
a + or a − sign, depending on the sign of one of the corresponding entries in the
above Jacobian matrix, satisfies the following property: Every closed loop in this
graph possesses an odd number of edges with − signs. This property implies that
the system is competitive. Alternatively, the change of variables T ∗ → −T ∗ results
in a system the Jacobian for which has nonpositive off-diagonal terms on the relevant
domain and hence is competitive in the usual sense. The theory of competitive (and
cooperative) systems was initiated by Hirsch in a series of six well-known papers, of
which we list [5, 6, 7, 8]. Contributions to this theory were also made by Smith, e.g.,
[17, 18, 20]; see [16] for a review. A particular consequence of the theory of competitive
systems is a generalization of the Poincaré–Bendixson theorem to dimension 3; see,
e.g., [5, 6] or Theorem 4.1 in [16]: A compact limit set of a competitive system in R3

which contains no steady states is a periodic orbit. Furthermore, a periodic orbit of
a competitive system in R3 must contain a steady state inside a certain topological
closed ball on the surface of which lies the periodic orbit; see Theorem 2.4 in [17].
These results will play a major role in our analysis.

We will also exploit the “isomorphism” between system (1) with f = f2 and the
standard SEIR model with constant population size, analyzed by Li and Muldowney
in their well-known paper [10]. Although this isomorphism breaks down when f �= f2
or when the −kV T term is included in the V equation, the method used by Li and
Muldowney to prove orbital asymptotic stability of any periodic orbit, and thereby
to derive a contradiction to their existence, extends under suitable restrictions.

We identify a basic reproduction numberR0 for the model, which gives the number
of infected T cells produced by a single infected T cell in a healthy individual. Our
main results are formulated in terms of this number and extend the existing ones in
the following five directions:

1. If R0 < 1, we show that the virus is cleared.
2. If R0 > 1, then a chronic disease steady state exists which is globally asymp-

totically stable under certain conditions. In particular, these conditions are
satisfied for the special case f = f2 using parameter values appropriate for
HIV.

3. For f = f1, orbitally asymptotically stable periodic orbits are shown to exist
and to attract almost all solutions under suitable conditions if R0 > 1. These
conditions are apparently not satisfied for HIV. We note that sustained oscil-
lations were observed from numerical simulations by Perelson, Kirschner, and
de Boer [15] in a four dimensional model including a compartment of latently
infected T cells.

4. Since the function f , which models healthy T cell dynamics, is poorly under-
stood, we start analyzing our model with only minimal assumptions on f . We
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show that particular choices for f may lead to different qualitative behavior.
For example, for f = f2 the chronic disease steady state, if it exists, is always
locally asymptotically stable, while for f = f1 this steady state may be un-
stable and sustained oscillations may occur. This sensitivity of the behavior
to f , in particular, calls for a better understanding of the mechanisms of T
cell proliferation.

5. Applications are made to drug therapy following Perelson and Nelson’s treat-
ment in [14].

2. Main results. We consider a model of a virus infecting a target cell popula-
tion. Denoting by T the target cell and using the same symbol for its concentration
in the appropriate bodily fluid, we assume that the target cell population is regulated
in a healthy individual according to some dynamics given by

Ṫ = f(T ),

where f is a smooth function. We expect homeostasis to be maintained in a healthy
individual with T cell levels at some positive steady state T̄ > 0. Therefore, assume
that f satisfies

f(T ) > 0, 0 ≤ T < T̄ , f(T̄ ) = 0, f ′(T̄ ) < 0, and f(T ) < 0, T > T̄ .(4)

Consider an individual infected with a virus V which attacks target cells, pro-
ducing productively infected cells T ∗, which, in turn, produce on average N virus
particles during their life spans. Following [14, 12], we obtain the following system
for the dynamics of T, T ∗, V :

Ṫ = f(T ) − kV T,
Ṫ ∗ = −βT ∗ + kV T,

V̇ = −γV +NβT ∗ − ikV T,(5)

where i = 0 if we choose, following [14, 12], to ignore the loss of a viral particle when
it enters a target cell, or i = 1 when we do not.

The basic reproduction number for the model is intuitively determined by consid-
ering the fate of a single productively infected cell in an otherwise healthy individual
with normal target cell level T = T̄ . This infected cell produces N virions, each with
life span γ−1, which will infect kT̄Nγ−1 healthy target cells. Thus we expect the
amplification factor to be kT̄Nγ−1. In fact, a local stability calculation, carried out
in the proof of Lemma 3.2 below, leads to

R0 =
kT̄ (N − i)

γ
,(6)

reflecting the loss of the original productively infected cell if i = 1. In any case, as N
is typically large, this is a minor point.

Our main result, proved in a series of results in the next section, shows that the
global dynamics is largely determined by R0.

Theorem 2.1.

1. For R0 < 1 the only steady state is the disease-free state E0 ≡ (T̄ , 0, 0), and
it is globally attracting; the virus is cleared.
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2. For R0 > 1, in addition to the disease-free state, which is unstable, there is a
“chronic disease” steady state Ee ≡ (Te, T

∗
e , Ve) given by

Te =
γ

k(N − i) (≡ T̄ /R0), T ∗
e =

γVe
(N − i)β , Ve =

f(Te)

kTe
,(7)

which is locally attracting if f ′(Te) ≤ 0, e.g., when f = f2.
In particular, with R0 as a bifurcation parameter, E0 exchanges its local stabil-
ity properties with Ee when R0 passes through 1, making Ee locally attracting
if R0 > 1 and R0 − 1 small.
The disease persists in the sense that there exist ε > 0 and M > 0, indepen-
dent of initial data (T0, T

∗
0 , V0) satisfying T ∗

0 + V0 > 0, such that

ε < T (t), T ∗(t), V (t) < M

for all large t.
The omega limit set of every solution with initial conditions as restricted above
either contains Ee or is a nontrivial periodic orbit.
If f ′(T ) < 0 for T ∈ [0, T̄ ], and denoting 0 < α∗ = −maxT∈[0, T̄ ] f

′(T ),
Ee is a globally asymptotically stable steady state for system (5) with respect
to initial conditions not on the T axis in case i = 0 or in case i = 1 and
kf(0) − min(α∗, β)β < 0.
In the special case f = f1, for both i = 0, 1 there exist parameter val-
ues for which Ee is unstable with a two dimensional unstable manifold (see
Lemma 3.4). In this case, there exists an orbitally asymptotically stable peri-
odic orbit; every solution except those with initial data on the one dimensional
stable manifold of Ee or on the T axis converges to a nontrivial periodic orbit.

Observe that, as f(T ) > 0 only if T < T̄ , the positivity of Ve requires that Te < T̄ ,
or equivalently, R0 > 1.

Our main result says that if a typical productively infected target cell, introduced
into an otherwise healthy individual where T = T̄ , cannot replace itself by producing
virus that infects at least one healthy target cell, then the virus is eventually cleared
and the individual returns to the disease-free state. However, if the infected cell can
replace itself, then the disease persists indefinitely into the future in the sense that
the viral load is ultimately bounded from below by an initial-condition-independent
value. Moreover, the omega limit set either contains the chronic disease state Ee,
coinciding with it in case it is locally attracting, or is a nontrivial periodic orbit. In
the latter case, the viral load and the target cell populations cycle periodically.

If f = f2 and R0 > 1, then f ′ = −α < 0 is automatically satisfied and therefore
Ee is globally asymptotically stable if i = 0 or if i = 1 and kf2(0) − min(α∗, β)β =
kδ − min(α, β)β < 0. In case of HIV, α ≤ β is expected to hold, reflecting the fact
that removal rates for healthy target cells are lower than those for infected target
cells, and thus the last condition reduces to kδ − αβ < 0, which is easily verified for
the (biologically plausible) numerical data for HIV in [15].

In the special case f = f1, Ee is asymptotically stable when R0 > 1 and R0 − 1 is
small, but this stability can be lost for certain parameter values. In Figure 1 below,
we show that periodic oscillations in the viral load and T cell populations are possible.
The parameter values are not chosen to match those for a particular viral infection;
they are chosen simply to establish the possibility for oscillations. As in [15], time is
measured in days and T, T ∗, V have units mm−3. See Lemma 3.4 for more information
about parameter ranges for which periodic solutions are expected.
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Fig. 1. Periodic solution for f = f1. Parameters: δ = 10day−1mm−3, α = 0.02day−1, p =
3day−1, Tmax = 1500mm−3, β = 0.24day−1, γ = 2.4day−1, k = 0.0027mm3day−1, N = 10, and
i = 1.

Our results can be used to give a mathematically rigorous justification for the
plausible approximation arguments employed by Perelson and Nelson [14] to show
that combination drug therapy can be effective in clearing the virus. Currently, the
main drugs are RT inhibitors and protease inhibitors, and in practice, cocktails of
several of these drugs have been most successful. The first type inhibits the copying
of viral RNA to DNA and results in unsuccessful infection of the T cell by the virus.
The second type results in virus particles that are noninfectious. Following [14],
the short-term behavior after infection is given by the following system describing
uninfected and infected T cells, infectious virus VI , and noninfectious virus VNI :

Ṫ = f(T ) − k(1 − ηRT )VIT,

Ṫ ∗ = −βT ∗ + k(1 − ηRT )VIT,

V̇I = −γVI +Nβ(1 − ηPI)T ∗ − ikVIT,(8)

V̇NI = −γVNI +NβηPIT
∗,

where, again, i = 0 corresponds to the system treated in [14], and i = 1 takes
account of the loss of a virus particle when it enters a target cell (whether or not the
virus is able to convert its RNA to DNA and insert itself in the host genome). The
“effectiveness” coefficients ηRT for RT inhibitor and ηPI for protease inhibitor are
assumed to lie somewhere between zero, meaning totally ineffective, and one, which
represents 100% effectiveness.

Of course, the primary focus of drug therapy is on the possibility of clearing the
virus. Observing that the first three equations are decoupled from the last one and
that this subsystem is essentially similar to (5), we can calculate the basic reproduction
number Rc

0 under combination therapy by linearizing about the disease-free state E0
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to obtain

Rc
0 =

kT̄ [N(1 − ηRT )(1 − ηPI) − i]
γ

.(9)

Comparing this with (6), we see that, in essence, N has been reduced toN(1−ηRT )(1−
ηPI). As i is typically much smaller than N and can be neglected, we see that the
two inhibitors act in concert to reduce R0 in (6) by the factor (1 − ηRT )(1 − ηPI). If
Rc

0 < 1, the virus is cleared.
Corollary 2.2. If Rc

0 < 1, then the disease-free steady state E0 is globally
attracting. If Rc

0 > 1, then E0 is unstable.
Assuming that current treatment does not allow for HIV eradication in an indi-

vidual, this result implies one of the following: The efficiency of drugs is never high
enough to make Rc

o < 1, or model (8) is not appropriate to describe HIV dynamics
in a treated individual. It is argued in the recent paper by Callaway and Perelson
that the first explanation is not viable. The second is adopted instead, and modified
models are proposed to bring reality and theory closer to each other; see [2] for details.

3. Proofs.

3.1. Boundedness and stability of the disease-free steady state. First
we show that solutions of model (5) are bounded.

Lemma 3.1. The closed positive orthant is positively invariant for (5) and there
exists M > 0 such that all solutions satisfy T (t), T ∗(t), V (t) < M for all large t.

Proof. The positive invariance of the positive orthant is trivial; we sketch the
ultimate boundedness argument. Since Ṫ < f(T ), we see that T (t) < T̄ + 1 for all
large t, say t > t0. Let S = maxT≥0 f(T ). Adding the first two equations gives

Ṫ + Ṫ ∗ = f(T )− βT ∗ ≤ S− βT ∗. Let A > 0 be such that βA > S+ 1. Then, so long
as T (t) + T ∗(t) ≥ A + T̄ + 1 and t > t0, we have Ṫ + Ṫ ∗ < −1. Clearly, there must
exist t1 > t0 such that T (t) + T ∗(t) < A+ T̄ + 1 for all t > t1.

The asymptotic bound for T ∗(t), namely, T (t)∗ ≤ A + T̄ + 1, together with the
differential inequality V̇ ≤ −γV + Nβ[A + T̄ + 1], which holds for large t, leads
immediately to the asymptotic bound V (t) ≤ γ−1Nβ[A+ T̄ + 1].

Next we consider the local stability behavior of (5) at the disease-free steady state
E0.

Lemma 3.2. If R0 < 1, then the disease-free state E0 is a locally asymptotically
stable steady state of system (5); if R0 > 1, then it is unstable.

Proof. The Jacobian matrix of the vector field corresponding to system (5),
evaluated at E0, is

J0 :=


f

′(T̄ ) 0 −kT̄
0 −β kT̄
0 Nβ −γ − ikT̄


 .(10)

Here f ′(T̄ ) < 0 is an eigenvalue, and the remaining eigenvalues derive from the two-
by-two lower right submatrix, whose trace is negative and determinant is βγ[1−R0].
The result follows immediately.

We remark that the same result holds for (8) with drug therapy, where Rc
0 replaces

R0.
The following result deals with the global stability behavior of the disease-free

steady state E0.
Lemma 3.3. If R0 < 1, then all solutions approach the disease-free state E0.
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Proof. On consideration of the competitive vector field given by (5) on the three
faces of the positive orthant, we see that any nontrivial periodic orbit must lie entirely
in the interior of the positive orthant. If P denotes such a nontrivial periodic orbit,
then it follows that the smallest box B containing P whose sides are parallel to the
coordinate planes must also lie interior to the positive orthant. We can express B as
B = [p, q]K , where K denotes the cone K ≡ {(T, T ∗, V ) : T, V ≥ 0, T ∗ ≤ 0}. Indeed,
if XP (respectively, XP ) denotes the maximum (respectively, minimum) of coordinate
X = T, T ∗, V on the periodic orbit P , then p = (TP , T

∗P , VP ) and q = (TP , T ∗
P , V

P ).
By Proposition 4.3 of [16], B must contain a steady state of (5). However, E0 is the
only steady state and E0 /∈ B. We conclude that no nontrivial periodic orbit exists.
By the Poincaré–Bendixson theory for three dimensional competitive systems and the
local stability of E0, all solutions must approach E0 in the limit.

The same result holds for (8), with Rc
0 in place of R0. The entirely similar

argument uses the fact that an endemic steady state exists only when the disease-free
state is unstable (Rc

0 > 1).

3.2. Local stability of the disease steady state. The local stability of the
disease steady state is discussed next.

Lemma 3.4. Let R0 > 1 and f ′(Te) ≤ 0; then the nontrivial steady state Ee ∈
int(R3

+) is locally asymptotically stable for system (5), for i = 0, 1. If R0 > 1 and
f = f1, then Ee is unstable with a two dimensional unstable manifold under each of
the following conditions:

(a) i = 0 with Tmax large enough and (19) holds.
(b) i = 1 with kTmax large (see (20)) and p large enough.
Proof. A calculation shows that the Jacobian matrix of the vector field corre-

sponding to system (5), evaluated at Ee, takes the following form:

J1 :=


 −a 0 −kTe
kVe −β kTe

−ikVe Nβ −c


 ,(11)

where

a := −f ′(Te) + kVe and c := γ + ikTe.(12)

The characteristic equation associated with J1 is given by

λ3 + (a+ β + c)λ2 + [a(β + γ) − ikTef ′(Te)]λ+ kβγVe = 0,(13)

where we have used the expressions (6), (7) to simplify the coefficient of first and
zeroth order. If f ′(Te) ≤ 0, then it is easy to see that all coefficients are positive.

To finish the proof by means of the Routh–Hurwitz criterion, we need to show
that

∆ ≡ (a+ β + c)(a(β + γ) − ikTef ′(Te)) − kβγVe(14)

is positive. Using (12), it follows that

∆ = (−f ′(Te) + kVe + β + γ + ikTe)[(−f ′(Te) + kVe)(β + γ) − ikTef ′(Te)] − kβγVe
= (β + γ)2(kVe − f ′(Te)) − (β + γ)ikTef

′(Te) + (β + γ)ikTe(kVe − f ′(Te))
− (ikTe)

2f ′(Te) + (β + γ)(kVe − f ′(Te))2 − ikTef ′(Te)(kVe − f ′(Te))
− kβγVe.(15)
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If f ′(Te) ≤ 0, then all terms in (15) are nonnegative except the last. However, the
very first term (β+γ)2(kVe−f ′(Te)) can be expanded, yielding a term 2βγkVe, which
exceeds the last term −kβγVe. This implies that ∆ is positive.

Hereafter, we consider the case in which f = f1. A calculation yields

a =
δ

Te
+
pTe
Tmax

> 0,(16)

and thus the coefficients of the zero and second powers of λ in the characteristic
polynomial are positive. Together with the claim (which is proved below) that the
Jacobian matrix has a real eigenvalue which is strictly less than the real parts of any
other eigenvalue, it follows that if the Jacobian is hyperbolic and unstable, then there
can be only one eigenvalue with negative real part (in fact it is negative) and two with
positive real part. Further, hyperbolicity can only fail by a pair of pure imaginary
eigenvalues and one negative eigenvalue.

Proof of claim. We prove that the Jacobian matrix possesses a real eigenvalue
which is strictly less than the real part of the other eigenvalues. This follows from
an application of the Perron–Frobenius theorem. Recall that the Perron–Frobenius
theorem holds for nonnegative matrices and states that these matrices possess a real
eigenvalue which is nonnegative. In addition, the modulus of every eigenvalue is not
larger than this real eigenvalue. Now notice that the linear transformation (x, y, z) →
(x,−y, z) puts J1 in the following form:

J̃1 :=


 −a 0 −kTe

−kVe −β −kTe
−ikVe −Nβ −c


 .(17)

Of course, the eigenvalues of J1 and J̃1 are the same. Finally, observe that −J̃1 is a
nonnegative matrix for which the Perron–Frobenius theorem holds. The claim then
follows immediately since the eigenvalues of −J̃1 are the opposites of the eigenvalues
of J1.

If i = 0 and f = f1, then all coefficients of (13) are positive as noted above.
Inserting (16) and the values of Ve, Te into (15) leads to

∆ = (β + γ)2a+ (β + γ)a2 − kβγVe
= m

(
p

Tmax

)2

+ n
p

Tmax
+ q,(18)

where

m =
(β + γ)γ2

(Nk)2
,

n =
(β + γ)2γ

Nk
+ 2δ(β + γ) − βγTmax +

βγ2

Nk
,

q = (β + γ)2
Nkδ

γ
+ (β + γ)

(Nkδ)2

γ2
− βδNk + βγα.

Clearly, m > 0 and, less obviously, q > 0 since the first term exceeds the third in
absolute value. By choosing Tmax large, we may make n < 0 and as large in absolute
value as we desire. In particular, if n < 0 and n2 > 4om, then the quadratic (18) in
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p/Tmax is negative for an interval of values of p/Tmax centered on

p

Tmax
=

−n
2m
,(19)

ensuring that ∆ < 0. It follows that Ee is hyperbolic and unstable with a two
dimensional unstable manifold.

If i = 1 and f = f1, then a straightforward calculation shows that the coefficient
of λ in (13) is given by

a2 ≡ γp

N − 1

[
β + γ

kTmax
+

2γ

k(N − 1)Tmax
− 1

]
+

γα

N − 1
+

(β + γ)δ(N − 1)k

γ
,

which can be negative when the term in brackets is negative, provided that p is large
enough. Fixing kTmax so large that

kTmax > β + γ +
2γ

N − 1
(20)

ensures that the term in brackets is negative. Then, provided that p is large enough, it
follows that Ee is hyperbolic and unstable with a two dimensional unstable
manifold.

3.3. Disease persistence. We discuss persistence of the disease next.
Lemma 3.5. If R0 > 1, then there exists ε > 0, independent of initial conditions

satisfying T ∗(0) + V (0) > 0, such that lim inft→∞X(t) > ε for X = T, T ∗, V .
Proof. The result follows from an application of Theorem 4.6 in [19], with

X1 = int(R3
+) and X2 = bd(R3

+). This choice is in accordance with the conditions
stated in this theorem. Furthermore, note that by virtue of Lemma 3.1 there exists
a compact set B in which all solutions of system (5) initiated in R3

+ ultimately enter
and remain forever after. The compactness condition (C4.2) is easily verified for this
set B. Denoting the omega limit set of the solution x(t, x0) of system (5) starting in
x0 ∈ R3

+ by ω(x0) (which exists by Lemma 3.1), we need to determine the following
set:

Ω2 = ∪y∈Y2ω(y), where Y2 = {x0 ∈ X2|x(t, x0) ∈ X2, ∀t > 0}.(21)

From the system equations (5) it follows that all solutions starting in bd(R3
+) but

not on the T axis leave bd(R3
+) and that the T axis is an invariant set, implying

that Y2 = {(T, T ∗, V )T ∈ bd(R3
+)| T ∗ = V = 0}. Furthermore, it is easy to see

that Ω2 = {E0} as all solutions initiated on the T axis converge to E0. Then E0 is
a covering of Ω2, which is isolated (since E0 is a hyperbolic steady state under the
assumption of the theorem) and acyclic (because there is no nontrivial solution in
bd(R3

+) which links E0 to itself). Finally, if it is shown that E0 is a weak repeller for
X1, the proof will be done.

By definition, E0 is a weak repeller for X1 if for every solution starting in x0 ∈ X1

lim sup
t→+∞

d(x(t, x0), E0) > 0.(22)

We claim that (22) is satisfied if the following holds:

W s(E0) ∩ int(R3
+) = ∅,(23)
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where W s(E0) denotes the stable manifold of E0. To see this, suppose that (22) does
not hold for some solution x(t, x0) starting in x0 ∈ X1. In view of the fact that the
closed positive orthant is positively invariant for system (5) (recall Lemma 3.1), it
follows that lim inft→+∞ d(x(t, x0), E0) = lim supt→+∞ d(x(t, x0), E0) = 0 and thus
that limt→+∞ x(t, x0) = E0, which is clearly impossible if (23) holds.

What remains to be shown is that (23) holds. To that end, recall that the Jacobian
matrix of system (5) at E0, given in (10), is unstable if R0 > 1. In particular, J0

possesses one eigenvalue with positive real part, which we denote as λ+, and two
eigenvalues with negative real part, f ′(T̄ ), and an eigenvalue which we denote as λ−.
(Note that λ− may be equal to f ′(T̄ ).) We proceed by determining the location
of Es(E0), the stable eigenspace of E0. Clearly (1, 0, 0)T is an eigenvector of J0

associated to f ′(T̄ ). If λ− �= f ′(T̄ ), then the eigenvector associated to λ− has the
following structure: (0, p2, p3)T , where p2 and p3 satisfy the eigenvector equation(−β kT̄

Nβ −γ − ikT̄
)(

p2
p3

)
= λ−

(
p2
p3

)
.(24)

If λ− = f ′(T̄ ), then λ− is a repeated eigenvalue, and an associated generalized eigen-
vector will possess the following structure: (∗, p2, p3)T , where the value of ∗ is irrel-
evant for what follows and p2 and p3 also satisfy (24).

We claim that in both cases (i.e., λ− �= f ′(T̄ ) and λ− = f ′(T̄ )) the vector
(p2, p3)T /∈ R2

+. The matrix in (24) is an irreducible Metzler matrix. A Metzler
matrix is a matrix with nonnegative off-diagonal entries. For the definition of an ir-
reducible matrix, see [4]. Observe that adding a sufficiently large positive multiple of
the identity matrix to the matrix in (24) results in a nonnegative irreducible matrix
for which the Perron–Frobenius theorem [4] holds. Consequently, the matrix in (24)
possesses a simple real eigenvalue which is larger than the real part of any other eigen-
value, also called the dominant eigenvalue. Clearly, the dominant eigenvalue here is
λ+. But the Perron–Frobenius theorem also implies that every eigenvector that is not
associated with the dominant eigenvalue does not belong to the closed positive orthant.
Applied here, this means that (p2, p3) /∈ R2

+. Consequently, Es(E0) ∩ int(R3
+) = ∅,

and therefore also W s(E0) ∩ int(R3
+) = ∅, which concludes the proof.

3.4. Oscillations. Lemma 3.4 provides sufficient conditions for the Jacobian at
Ee to have two eigenvalues with positive real part and one negative eigenvalue. The
dynamical consequences of this are described in the following result.

Lemma 3.6. If R0 > 1, the omega limit set of a solution which is not initiated
on the T axis either contains Ee or is a nontrivial periodic orbit. If R0 > 1 and if the
Jacobian matrix at Ee has two eigenvalues with positive real part and one negative
eigenvalue, then there exists an orbitally asymptotically stable periodic orbit. Every
solution except those with initial data on the one dimensional stable manifold of Ee

or on the T axis approaches a nontrivial periodic orbit.
Proof. For R0 > 1 it follows from the persistence result in Lemma 3.5 that the

omega limit set of a solution which is not initiated on the T axis cannot contain a
point on the T axis. Since there is only one steady state Ee which does not belong to
the T axis, the first statement of the theorem follows from the generalized Poincaré–
Bendixson theorem for competitive systems in dimension 3.

The assertions regarding the existence of an orbitally asymptotically stable peri-
odic orbit follow from Theorem 1.2 in [20] and the fact that nonlinearities in (5) are
analytic. In order to apply that result, we take the domain for (5) to be the interior
of the positive orthant, in which the only steady state is Ee. Lemmas 3.1 and 3.5
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imply that the dissipativity hypothesis of Theorem 1.2 is satisfied. The negativity of
the Jacobian determinant, also required for Theorem 1.2, follows from our hypothe-
ses concerning the eigenvalues. The assertion that suitably restricted forward orbits
approach a periodic orbit follows from Theorem 4.2 in [16]. That result is stated for
systems which are competitive in the traditional sense and so it applies to (5) since
it can be transformed to a system which is competitive in the traditional sense. See
also the remarks following Theorem 4.2, where it is noted that the second hypothesis
of Theorem 4.2 holds if the Jacobian matrix is irreducible.

3.5. Global asymptotic stability of the disease steady state. Finally we
provide sufficient conditions preventing oscillations and leading to a globally asymp-
totically stable disease steady state.

Lemma 3.7. Suppose that R0 > 1, f ′(T ) < 0 for T ∈ [0, T̄ ], and denote 0 <
α∗ = −maxT∈[0, T̄ ] f

′(T ). If i = 0 or if i = 1 and kf(0) − min(α∗, β)β < 0, then
Ee is a globally asymptotically stable steady state for system (5) with respect to initial
conditions not on the T axis.

Proof. The proof is based on an extension of the Poincaré–Bendixson theorem
for the class of three dimensional competitive systems [16] and a powerful theory of
second compound equations to prove asymptotic orbital stability of periodic solutions;
see [10] and references cited therein. We do not wish to repeat the details of a precise
proof here, because many of the arguments are the same as in [10], where a global
stability result for a related epidemiological model is proved. Instead we provide only
a sketch of the proof and go into details only where our proof is different. Under
the assumptions of this lemma, system (5) possesses a steady state Ee ∈ int(R3

+),
which is unique in int(R3

+). Moreover, from the proof of Lemma 3.5 it follows that
the omega limit sets of solutions not initiated on the T axis are in int(R3

+). We claim
that the only possible omega limit sets of solutions of system (5) are Ee or nontrivial
periodic orbits. Indeed, if an omega limit set of a solution does not possess Ee, then
it cannot contain another steady state (Ee is the unique steady state in int(R3

+)), and
thus it must be a nontrivial periodic orbit according to the extension of the Poincaré–
Bendixson theorem for competitive systems. On the other hand, if an omega limit set
does contain Ee, it is {Ee}, because Ee is a locally asymptotically stable steady state
of system (5) according to Lemma 3.4 (notice that the condition needed to apply this
Lemma, f ′(Te) ≤ 0, is satisfied here because Te = T̄ /R0 < T̄ and f ′ < 0 in [0, T̄ ] by
assumption), which establishes the claim. Finally we will show below that if system
(5) possesses a nontrivial periodic solution, then this solution must be asymptotically
orbitally stable. This fact will imply that Ee is a globally asymptotically stable
steady state of system (5) with respect to initial conditions not on the T axis, which
concludes the proof of this theorem. A proof of this implication can be found in [10].
The argument is that if Ee would not be globally asymptotically stable, then there
would have to be a nontrivial periodic solution in int(R3

+). But it can then be shown
that the region of attraction of Ee would have nonempty intersection with the region
of attraction of the periodic solution, a contradiction. We prove the following: If
system (5) possesses a nontrivial period solution, then this solution is asymptotically
orbitally stable. Denote the periodic solution by p(t) ≡ (p1(t), p2(t), p3(t))T and
suppose that its minimal period is ω > 0. Recall that from the proof of Lemma 3.1

0 ≤ p1(t) ≤ T̄ ∀t ∈ [0, ω].(25)

To establish asymptotic orbital stability of a periodic solution, we resort to the so-
called method of the second compound equation; see [10] and references cited therein.
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The second compound equation is the following periodic linear system:

ż =
∂f [2]

∂x
(p(t))z,(26)

where z = (z1, z2, z3)T and ∂f [2]

∂x is derived from the Jacobian matrix of system (5)
and defined as follows:

∂f [2]

∂x
:=


j11 + j22 j23 −j13

j32 j11 + j33 j12
−j31 j21 j22 + j33




=


f

′(T ) − β − kV kT kT
Nβ f ′(T ) − γ − k(iT + V ) 0
ikV kV −β − γ − ikT


 ,(27)

where jkl is the (k, l)th entry of the Jacobian matrix associated with system (5). The
importance of the second compound equation is that if system (26) is asymptotically
stable, then the periodic solution p(t) is asymptotically orbitally stable for system
(5); see [10]. We will show that the function

V (z1, z2, z3; p(t)) := sup

{
|z1|, p2(t)

p3(t)
(|z2| + |z3|)

}
(28)

is a Lyapunov function for system (26). This function is positive, but not differentiable
everywhere. Fortunately, this lack of differentiability can be remedied by using the
right derivative of V , denoted as D+V (t). We have

D+(|z1(t)|) ≤ −(−f ′(p1(t)) + β + kp3(t)).|z1(t)| + k
p1(t)p3(t)

p2(t)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

(29)

and

D+

(
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

)
=

(
ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)

)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

+
p2(t)

p3(t)
D+(|z2(t)| + |z3(t)|)

≤
(
p2(t)

p3(t)
(Nβ + ikp3(t))

)
.|z1(t)|

+

(
ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)
− γ − ikp1(t)

)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

− p2(t)

p3(t)
(−f ′(p1(t))|z2(t)| + β|z3(t)|)

≤
(
p2(t)

p3(t)
(Nβ + ikp3(t))

)
.|z1(t)|

+

(
ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)
− γ − ikp1(t)

−min(α∗, β)

)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|),
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where the last inequality was obtained using the definition of α∗ and (25).
Defining the following functions,

g1(t) = −(−f ′(p1(t)) + β + kp3(t)) + k
p1(t)p3(t)

p2(t)

= −(−f ′(p1(t)) + kp3(t)) +
ṗ2(t)

p2(t)
,(30)

g2(t) =
p2(t)

p3(t)
(Nβ + ikp3(t)) +

ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)
− γ − ikp1(t) − min(α∗, β)

= ikp2(t) +
ṗ2(t)

p2(t)
− min(α∗, β),(31)

where the second equalities in (30) and (31) stem from the fact that p(t) satisfies the
system equations (5), we obtain that

D+V (t) ≤ sup(g1(t), g2(t))V (t).(32)

Using the definition of α∗ and (25), it follows from (30) that g1(t) ≤ −α∗+ṗ2(t)/p2(t),
and thus that g1(t) ≤ g2(t). Then (32) can be rewritten as

D+V (t) ≤ g2(t)V (t).(33)

We claim that the following holds:

∫ ω

0

g2(t)dt < 0.(34)

If this is established, it will follow from (33) that V is a Lyapunov function for system
(26), and this will conclude the proof of the theorem.

(a) When i = 0, (34) is immediate from (31).
(b) When i = 1, using the fact that p(t) is a periodic solution of (5), we see that

∫ ω

0

βp2(t)dt =

∫ ω

0

kp3(t)p1(t)dt =

∫ ω

0

f(p1(t))dt ≤ f(0)ω

because, by assumption, f ′(T ) < 0 for all T ∈ [0, T̄ ] and since (25) holds.
Consequently,

∫ ω

0

g2(t)dt =

∫ ω

0

[kp2(t) − min(α∗, β)]dt ≤
[
k
f(0)

β
− min(α∗, β)

]
ω,(35)

and it follows, under the assumption that kf(0) − min(α∗, β)β < 0, that (34) holds
as claimed.
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