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Multistrain virus dynamics with mutations: a global analysis

PATRICK DE LEENHEERF AND SERGEIS. ALYUGIN T
Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA

[Received on 22 March 2007; revised on 11 September 2007; accepted on 7 October 2007]

To our mentor and good friend Hal Smith on the occasion of his 60th birthday

We consider within-host virus models with > 2 strains and allow mutation between the strains. If
there is no mutation, a Lyapunov function establishes global stability of the steady state corresponding to
the fittest strain. For small perturbations, this steady state persists, perhaps with small concentrations of
some or all other strains, depending on the connectivity of the graph describing all possible mutations.
Moreover, using a perturbation result dueSimith & Waltman(1999, we show that this steady state also
preserves global stability.
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1. Introduction

The study of the dynamics of within-host virus disease models has been a very fruitful area of research
over the past few decades. Of particular importance has been the work on mathematical models of HIV
infection by Perelson and coauthoPetelsoret al., 1993 Perelson & Nelso999 andNowak & May

(2000. It has spurred more recent research by among others Hal Smith with onelé us€nheer &

Smith, 2003 Wang & Li, 2006 Ronget al,, 2007 Ball et al., 2007).

For single-strain virus models, the understanding of the global behaviour has been largely based on
the fact that they are competitivB¢ Leenheer & Smith2003 and the use of particular mathematical
tools developed by Muldowney; sée& Muldowney (1995 for an application of these techniques to
the classical SEIR model in epidemiology. Of course, it is well known that for globally stable systems
there is a Lyapunov function, but finding such a function is often difficult, as illustrated by the following
quote from the classical work &mith & Waltman(1994 p. 37) on chemostats:

‘Considerable ingenuity, intuition, and perhaps luck are required to find a Liapunov function’.

One of the purposes of this paper is to find such Lyapunov functions for various within-host virus
models following the ingenuity froniKorobeinikov (2004 and Iggidr et al. (200§. Another purpose
of the paper is to investigate what happens if we include mutation effects in the model by allowing
different virus strains (also known as quasi-speciesNseeak & May, 2000 to mutate into each other.
This is very relevant in the context of HIV where mutations have profound impact on treatment; see for
instanceRonget al. where a two-strain model is considered. A similar model to the one we will present
here was proposed Ball et al. (2007, where the focus is on the transient dynamics using numerical
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methods and simulations. The purpose of this paper is to present a mathematical analysis of the global
asymptotic behaviour of the within-host multistrain virus dynamics model.

Mathematically, we will treat the model with mutations as a perturbation of the original model.

It turns out that the structural properties of the mutation matrix that describes the possible mutations
dictate how the single-strain steady states of the unperturbed model move in or out of the non-negative
orthant for the perturbed model. For instance, assuming that all single-strain steady states exist for the
unperturbed model, we show that if the mutation matrix is irreducible, then for small values of the
mutation parameter, the perturbed model has only one positive and no other non-trivial disease steady
states. This implies that at a disease equilibrium all strains will be present, although some are at very
low levels. If the mutation matrix is reducible, then the situation is more complicated: some or all of
the single-strain disease steady states persist in the non-negative orthant for the perturbed model, while
others do not. Moreover, the structure of the mutation matrix coupled with the fitnesses of the various
strains (as measured by the value of the healthy T-cell count at steady state) allows us to determine
which strains persist and which ones do not.

An obvious problem is to determine if the globally stable single-strain steady state of the unperturbed
model persists. We will show that this is always the case, regardless of the mutation matrix. Moreover,
taking advantage of the perturbation result develope&imth & Waltman(1999, we will show that
this steady state remains globally stable for small values of the mutation parameter. In order to apply this
perturbation result, we will first need to establish a particular persistence property, uniform in the pertur-
bation parameter, and to achieve this, we invoke the theory developddtbgn(1984 andHutson &

Schmitt (1992 (see alsdHofbauer & Sigmund1998 which uses the notion of an average Lyapunov
function. We will show that a rather simple—in fact, linear—average Lyapunov function exists.

The paper is organized as follows. In Sectiyrnwe present a Lyapunov function to establish the
global stability of the disease equilibrium of a single-strain virus model. We extend this Lyapunov
function in Sectior3 to prove a global stability result for a multistrain model which does not include
mutations. In biological terms, we demonstrate that in the absence of mutations the fittest strain of the
virus drives all other viral strains to extinction. In Sectignwve investigate what happens if mutations
are taken into account for two different models. Finally, in Appendix A, we extend all our results to a
slightly modified model which includes an often neglected loss term in the virus equation.

2. Single strain
In this paper, we consider the basic model of the form
T=f(T)—kVT,
T*=kVT - pT",
V=NAT*—yV, @)

whereT, T* andV denote the concentrations of uninfected (healthy) and infected host cells and free
virions, respectively. Equationg)(describe a general viral infection where the viral replication is limited

by the availability of target cell¥ . In this model, we assume that all the infected c@&lfsare virus-
producing cells, that is, we do not include any intermediate stage(s) corresponding to latently infected
cells. In addition, we do not explicitly consider the impact of the immune response. Implicitly, the
immune response can be accounted for by the removal teff*. The rate of viral production is
assumed proportional to the removal of infected cells. In case of lytic virbsespresents the average
burst size of a single infected cell; whereas in case of budding virtlsean be thought of as the average
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number of virions produced over a lifetime of an infected cell. For different infections, the actual class
of the target cells inY) may vary from theC D4+ T lymphocytes (in case of HIV), to the epithelial
cells (in case of Influenza), to the red blood cells (in case of Malaria) TTHe*, V notation is adopted

from the classical HIV modeRerelson & Nelsonl999.

All parameters are assumed to be positive. The paramgtandy represent the removal rates of the
infected cells and virus particles, respectively. Followiterelson & Nelsof1999 andNowak & May
(2000, we neglect the term in the equation that represents the loss of a virus particle upon infection.
But all subsequent results hold when this loss term is included, in which casedheation reads as
follows:

V =NgT*—yV —kVT.
The corresponding results will be presented in Appendix A.

The growth rate of the uninfected cell population is given by the smooth funétian: Ry — R,
which is assumed to satisfy the following:

ITo> 0: f(THT =To) <0, T #To. 2)
Since continuity off implies thatf (Tp) = 0, it is easy to see that
Eo = (To, 0, 0)

is an equilibrium of 1). Effectively, T is the carrying capacity for the healthy cell population.
A second, positive equilibrium may exist if the following quantities are positive:

-I_—z— T:—, \7: = .
KT

kN’ p @)

Note that this is the case if and onlyﬁf(ky—N) > 0 or equivalently by2) thatT = ky—N < To. In terms of
the basic reproduction number

kN T
RO = —TQ = TO’
Y To
existence of a positive equilibrium is therefore eq_uivaleﬂt?o> 1. We assume henceforth thaf > 1
and denote the disease steady stat&by (T, T*, V). Let us introduce the following sector condition:

© (f(T) = t(T) (1— ;) <o

Note that this condition is satisfied whél(T) is a decreasing function, independently of the value of
T. For instanceNowak & May (2000 considersf (T) = c¢; — c,T, wherec; are positive constants.
Another exampleFRerelson & Nelso1999 is f(T) = s+rT (1— %) provided thatf (0) =s > f(T).

THEOREM1 Let (C) hold. Then, the equilibriurg is globally asymptotically stable fo] with respect
to the initial conditions satisfying@ *(0) + V (0) > 0.

Proof. Consider the following function on i(iRi):

T -I_- T -I_-* ﬂ \% \_/
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Then,

*

: T X T 1 i \Y
W= (f(T)—kVT) (1—?)+(kVT—ﬂT )(1—F)+N(NﬂT —yV) (1_V)

T _ T* _ \Y; y Y
—f(M) (1= =) +kVT =kVT— + T = pT*~ - Lv 4+ LV.
()( T)+ T PTG RV TN
Since from 8) we have thapT* = kVT = %V, it follows that

. -I_— _*V T VT *VT* i
W:f(T)(l—?)+/ﬁ’T V_'BTTVT — BT —ﬁ —+/fT

_ T . T _V
=(f(M - 1(T) (1—?)+ﬁT (1—?)+ﬂT v

T*VT VT* \%
BT g T T BT S BTG AT

- T T*VvT VT*
=(f(T)—f(T))(1——) pT* [ T Ty ]

The first term is non-positive by (C). The second term is non-positive as well since the geometric mean
of three non-negative numbers is not larger than the arithmetic mean of those numbers VMidence,

in int(Ri) and the local stability oE follows. Note thatW equals zero iff both the first term and the
second term are zero, and using (C), this happens at the points where

1:—1 and =1
T TV

Then LaSalle’s1968 invariance principle implies that all bounded solutions ir@]ﬁit) converge to the
largest invariant set in
T'*v

(T,T*, V) e int(RS ) Lo =1

Firstly, the boundedness of all solutions follows from Leminahich is proved later in a more general
setting. Secondly, it is clear that the largest invariant setliis the singletonE}. Finally, note that
forward solutions starting on the boundaryI@? with either T1(0) or V1(0) positive enter w(ﬂR )
instantaneously. This concludes the proof.

3. Competitive exclusion in a multistrain model

Let us now consider a multistrain model:

T=f(T) = > kT, )
i=1
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-I]*Zkl\/lT_ﬁl-I]*a |=l,,n, (5)
Vi =NAT —»Vi, i=1...,n, (6)

where all parameters are positive. A calculation similar to the single-strain model shows that there is
a unique disease-free equilibriuBy = (Tp, 0, 0). For eachi, there is a corresponding single-strain
equilibrium E; with positiveT, T.* andV; components and zero components otherwise if and only if

1 <R

Here,Ri0 is the basic reproduction number for strawhich is defined as

RO = To
=
The positive components & are given by
i L, fdY o fd)
TI = L, T* = -, V = . 7
kN~ fi TR @

In what follows, we assume that afls exist and that (without loss of generality, by permuting the
indicesi if necessary)

TLaT2<..<T"I<T" < T (8)
or, equivalently,

1<RIKRY ;< <RI<RY 9)
and will prove the following competitive exclusion principle. It asserts that the strain with the lowest

target cell concentration at steady state (or equivalently, with highest basic reproduction number) will
ultimately dominate, provided that such strain is present initially.

THEOREM 2 Assume that alE; exist for @-6), (C) holds withT?! instead ofT and @) holds. Then,
E1 is globally asymptotically stable for{6) with respect to the initial conditions satisfyifig'(0) +
V1(0) > 0.

Proof. Consider the following function ol := {(T, T, ..., T5, V1,..., V) € R4 T, T*, vy >
0}:

(T (T Lo v " 1
W= 1-— dr+/1 — L )de +— (1——1)dr+Z(Ti*+—Vi).
T1 T T T N1 /v, T = N;

Then,
. n 1k i;
W=[ (M) -D kuT 1—7-+«NJ—MW)1—F
i—1 L

1 \71 . Vi
— (N BT =V (11— = 2 KVIT — 2=\
+Mf1m1 ylﬂ( Vl)+ (.. N

i=2
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1 T %
—(F(T) - klvm(l - T?) + (AT — AT (1 - I—l)
1

n

1 Vi -1, Vi
— (N1/1 T — V) (1 — — ) — —kiviT —Vi).
+Nl( 1p1Tf =7 1)( V1) Z( VT + |)

i=2

Note that the first three terms can be simplified in a way similar as in the proof of Théoeerd using
the expression fof' in (7), we find that

: _ T! _ (T TwT Ty d _-
W=(fM-f@Y(1- = )-ATr | =+ ==+ o= -3 - D kW (T -TH.
(HT) =K ))( T) Aty [T TATL  ViT) — il )

The first two terms are non-positive as we have already shown in the proof of Th&éofédma third part

is also non-positive by8). ThusW < 0, establishing a local stability &;. An application of LaSalle’s
invariance principle shows that all bounded solutiondJifand as before, boundedness follows from
Lemmal which is proved later) converge to the largest invariant set in

-1 -,

T Y v—ois 2],

T T'V1

[(T,Tf,"',TrT,Vl,"' ,Vn)eU

which is easily shown to be the singletfif; }. Finally, we observe that all solutions on the boundary of
U with T;*(0) + V1(0) > 0 enterU instantaneously. This concludes the proof of Theo?em g

4. Perturbations by mutations

In this section, we expand the multistrain mod&#q) to account for possible mutations between the
n strains. To be exact, we will study two different ways in which mutations occur. Our first extended
model can be written compactly as follows:

T=f(T)—KVT, TeRy, (10)
T*=P(uKVT-BT*, T*eR], (11)
V=NBT"-TV, VeR], (12)
while the second is written as
T=fT)—KVT, TeR,, 13)
T*=KVT-BT*, T*eRl, (14)
V=PwNBT" -V, VeR]. (15)

In both modelsK = diag(k), B = diag($), N = diag(N) andI" = diag(y ) and the matrixP (u) with
u € [0, 1] is defined as follows:

P(uw) =1+ uQ,
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whereQ is a matrix withg;; > O if strain j can mutate to (for i # j) so that different magnitudes
of g reflect the possible differences in the specific mutation rates. The diagonal ent@esrefsuch
that each column o) sums to zero. Note th& is a stochastic matrix (all its entries are in }J and
all its columns sum to one) provided that< —1/q;; for all i (which is assumed henceforth) and that
PO =1I.

The biological interpretation of the difference between mode®s12) and (L3-15) is motivated
by distinct mutation mechanisms. The first modeE{12) is appropriate to describe the mutations of
retroviruses such as HIV. In case of retroviruses, mutations can occur during the reverse transcription of
the viral RNA into viral DNA. The process of reverse transcription is highly error prone due to the lack
of an appropriate correction mechanism. Thus, a virion of tythat entered a previously healthy T cell
may be converted to viral DNA of typg, yielding an infected T cell of typg. The resulting DNA is
then integrated into the DNA of the T cell creating the so-called provirus that will ultimately be used
as a template to produce typevirions until the infected T cell bursts. The second mod&5) is
appropriate to describe the mutation mechanism of DNA viruses such as the herpes virus. Such viruses
bring their own DNA which is transcribed after infection. The transcription process uses both cellular
machinery and viral proteins and is subject to mistakes that give rise to mutations; see for instance
Lopez-Buencet al. (2003. Thus, a virion of type that entered a previously healthy T cell yields an
infected T cell of the same typethat may go on to produce virions of different types.

Despite the structural differences between these models, it will later become clear that their qualita-
tive behaviour is identical; see our main result in Theokem

We also note that both models ignore the possibility of co-infections. A co-infection occurs when a
given T cell becomes simultaneously infected with virions of several distinct types. As a result, several
proviruses may coexist within a single T cell.

We start our analysis with the following result.

LEMMA 1 Both systemsl(0-12) and (L3-15) are dissipative, i.e. there exists a forward-invariant com-
pact seK C Ri”“ such that every solution eventually enté&rs

Proof. From (L0) and (3) follows thatT < f(T), hence
limsupT (t) < To, (16)

t—o0
provided that solutions to both systems are defined fot &l 0. To see that this is indeed the case,
we argue by contradiction and I€T (t), T*(t), V(t)) be a solution with bounded maximal interval of
existencel, := [0, tmax). Then, necessarily (t) < max(T (0), To) := Tmaxforallt € Z,.. Thisimplies
that onZ,, the following differential inequality holds for the solution of systeli{12):

T* < P(u)KV Tpax— BT*, (17)
V<NBT*=TIV (18)
or for system {3-15):
T* < KVThax— BT*, (19)
V < P(u)NBT* - TV, (20)

respectively. Note that the right-hand sides in the above inequalities are cooperative and linear vector
fields. By a comparison principle for such inequalities, we obtain Tt < T(t) andV(t) < V(1)
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(interpreted componentwise) for &lin the intersection of the domains where the solutions are defined.
Here, (T (t), V(1)) is the solution to the linear system whose vector field appears on the right-hand side
of the above inequalities, hence these solutions are defined fopall. But thenT (t) andV (t) can be
extended continuously to the closed interval TRy, contradicting maximality of, .

Inequality (L6) implies that for an arbitrary smadl > 0, there holds thatl (t) < Tp + € for all
sufficiently larget. Now consider the behaviour of the quanfity- 1'T* (here, 1 denotes a row vector
whose entries are all equal to 1) along the solutions of both systEia$3) and (L3-15):

%(T +1T*) = f(T)=VBT* < f(T) = b1'T*,

whereb := min; (5;). By continuity of f on the compact interval [0p + €], there exists (a sufficiently
large)a > 0 such that

f(TY+bT <a, forallT e[0,To+€].

Therefore, for all sufficiently largg there holds that

d
7T +1T)<a—bT—bI'T" <a-b(T +17T"),

and hence
limsupT (®) + IT*(t) < .
t—oo b
Finally, from (12) and (L5), it follows that
max(N B)i

li VO < =, ———
imsupV (t) min
I

a
t—o00 b’

Dissipativity now follows by observing that all the above bounds are independent of the initial

condition. O

LEMMA 2 Foru = O, let all the single-strain equilibri&,, Eo, ..., E, exist for either {0-12) or
(13-15), and assume that

T aT?2< 0 << T =Ty (21)
and

f/(Thy<o, forallj=1,...,n+1. (22)

Then, the Jacobian matrices abE12) or (13-15), evaluated at any of thg;s,i = 1, ..., n+ 1 (where
En+1 := Eo), have the following propertiest(E;) hasi — 1 eigenvalues (counting the multiplicities)
in the open right half-plane andr2+ 1) —i eigenvalues in the open left half-plane. In particulliE )

is Hurwitz.

Proof. Note that wheru = 0, the Jacobian matrix associated to both motle+12) and (L3-15) is the
same and given by the following:

f'(My—kKV 0 —KT
J= KV -B KT

0 NB -rI
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To evaluate the Jacobian at any of tBgs, it is more convenient to permute the components of the
state vector as follows:

1. fori = 1,...,n, we use(T,T*,V) — (T, T Vi, T, Va, o T, Ve, T, Vi, -
T, V).

>

2. fori =n+1,weusegT, T*, V) — (T, T, V1, T, Vo, ..., T, Vh).
Then, the Jacobian matrices have the following structure:
1. Fori=1,...,n,

Ail * * * *
0 B 0 0 0
0
JEH)=]0 0 ... B, 0 .. o],
0 0 0o B, 0
0
0 0 0 0 B!
where
f(TH—-kVi 0 —kT! B
i ) _ : A kT _
A= ki Vi - kT and B/ = , £,
Nig - =
0 Nigi =7

and therefore, the eigenvaluesIf; ) coincide with those o] andB/, | # i. Sincef’(T') <0,
Lemma 3.4 irDe Leenheer & Smitli2003 implies that the eigenvalues éfl belong to the open

left half-plane. The matriceBli are quasi-positive, irreducible matrices, hence by the Perron—
Frobenius theorem, they have a simple real eigenvﬂlu&ith corresponding (componentwise)
positive eigenvector. In addition, we have that

. . Ti
tr(Bll) <0 and de([B||) = ﬁ| Vil (1 - ﬁ) .
and thus byZ1) that
_[<0, foralll > i,
;{I

>0, foralll <i.

There are — 1 unstableB-blocks on the diagonal af(E;), each of which contributes one positive
eigenvalue tal (E;).
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2. Fori =n+1,

ArlH_l * ... *
o BMf ... 0
J(Ent1) = >
0 0 ... B+t

where

) _ﬂ| k|-|‘-n+1
AP = (f/(T™*1) and B! =( . I=1..n
Nig =

Note that by a similar argument as in the previous case, Btblocks on the diagonal af (En+1)
are unstable with one positive and one negative eigenvalue.

O

Whenu # 0, the question arises as to what happens to the equilria. ., E+1. The previous
lemma allows us to apply the implicit function theorem which for small positivestablishes the
existence of (unique) equilibrig; («) near eacltE;. Indeed, denoting the vector field of eithdiO¢
12) or (13-15) by F(X, u), we have that for alf = 1,...,n + 1, F(E;,0) = 0, and under the
conditions of the previous lemma, we also have thayo X(Ej, 0) is invertible. It is also clear that
Ent+1(u) = En+1(0) for all 4 > 0, i.e. the disease-free equilibrium is not affected by mutations.

The main issue is of course whether or not the remaining equilbfia), j = 1, ..., n, are non-
negative. We study this problem next and derive the results in terms of the properties of the mutation
matrix Q.

For the steady-state analysis, we will need the following lemma which is a relevant modification of
Theorem A.12(ii) inSmith & Waltman(1994.

LEMMA 3 Let M be an irreducible square matrix with non-negative off-diagonal entries asd\Bt
be the stability modulus oM. Suppose that there exigtr > 0 such thatMx +r = 0. Then, the
following hold:

1. ifs(M) > 0O, thenx =r = 0;

2. if s(M) = 0, thenr = 0 andx is a multiple of the positive eigenvector bf.

Proof. Due to the Perron—Frobenius theorestiM) is the principal eigenvalue df1. It is also the
principal eigenvalue oM’. SinceM’ is also irreducible and non-negative off-diagonal, there exists a
v > 0 such thaM’v = s(M)wv. Equivalentlyp’M = s(M)v’. Hence,

O0=0v/(Mx+r1)=s(M'x+0'r.
If s(M) > 0, then both non-negative produetx ando’r must be zero which implies that=r = 0.

If s(M) = 0, theno’r = 0 which implies that = 0. Hence Mx = 0 = s(M)x so thatx is a multiple
of the positive eigenvector dil. O
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For convenience, we introduce the following notation. We defiig) := "N P(x)K and as-
sume (by renumbering the strains if necessary) that the strains are numbered in such a way that the
matrix A(u) has the lower block-triangular structure

Alw) O ... 0
uB21  Aa(p) ... 0

A(p) = ' ‘ . , (23)
uBk1 uBk2 ... pA(u)

where each diagonal block
Ai(u) = diag(-i, - ) + 1B
Til Tls,
is such thatB;, i = 1, ..., k, are irreducible with non-negative off-diagonal entries. The off-diagonal
blocksB; j,i > j, are non-negative. We note that the diagonal entries(0f are a permutation of

1 1 1
0< = < = < <=,
Th Thaa T1

We say that the strain groupis reachable from strain groupif there exists a sequence of indices
i =I1 <l2 <... <Im = j suchthat all matriceBy_ , |, are non-zero. Our first result is as follows.

PROPOSITIONL Let the assumptions of Lemn2zhold, then the following hold:
1. For all sufficiently small: > 0, matrix A(x) admitsn distinct positive eigenvalues given by
1 1 1
— < = < ve e < =
Tn(w)  Tn-1(w) Ti(w)

such thaff; (0) = T; fori =1, ..., n

2. Matrix A(u), © > 0, admits a positive eigenvectdss, vo, ..., vk) if and only if #ﬂ) is a
1
principal eigenvalue of;(u), and all strain group$ > 2 are reachable from strain group 1.
3. Matrix A(u), u > 0, admits a non-negative eigenvecatot, v, ..., vk) for each eigenvalugl—

such thatT— is a principal eigenvalue of some diagonal blogKu), ands(Aj (x)) < T) for

allj =i + 1 , k such that strain group is reachable from strain groupThe component;
is positive (zero) if groug is reachable (not reachable) from strain group

4. All other eigenvectors oA(u), « > 0, are not sign definite.

Proof. The first assertion follows readily becausg0) hasn real distinct eigenvalues andi(x) is
continuous (actually, linear) in. The continuity of eigenvalues with respectimplies thatT; (0) =
fori=1,...,n
To prove the second assertion, we begin with sufficiency of the conditior. Let0 be small and
suppose thatT,(lj is a principal eigenvalue of\;1(x) and all strain groupg > 2 are reachable from
1

strain group 1. Sincé\;(u) is irreducible with non-negative off-diagonal entries, Perron—Frobenius
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theorem implies that the eigenvectarassociated Wit% is positive. Sincef%m is also the principal
1 1
eigenvalue ofA(u), it follows that

1
- 07 . 22’
( j () 1(/1) )< J

-1
hence(AJ (n) — == ( 3 —| ) < 0 (see, e.g. Theorem A.12(i) Bmith & Waltman 1994). The remaining
componentso, ..., vk of the eigenvector satisfy the triangular system

0= #32101+(A2(#)— ) )vz,

0= B3 101 + uBg 02 + (A3(#) T( ) )vs,

0= uBy 101+ -+ + u By k—10k— 1+(Ak(#)_m|)0k-

Solving this system recursively, we obtain

I :
< l) (uBjavi+ -+ uBjj-1wj-1), j=2 ...,k
()

V] =—(Aj(ﬂ)—

Since the strain group 2 is reachable from strain group 1, the ve@gfv; > 0 is non-zero. Positivity

of the matl‘IX—(Az(,u) - T)l)_ then implies thab, > 0. By induction onj, it follows thatv; > 0
forall j =2, ...,k,and hence = (v1, v2, ..., vk) iS a positive eigenvector.

To prove the converse (the necessary condition) let (v1, v2, ..., vk) be a positive eigenvector

of A(,u) and Iet# be the corresponding eigenvalue. Sir(dél(ﬂ) T)I)Ul = 0 andov; > O,

must be the pr|nC|paI eigenvalue 8§ (1) (Perron—Frobenius theorem). It remains to prove that

q( )
S(Aj () < A— for all | > 2. Considerj = 2, and for the sake of contradiction, suppose that

( j(u) — T( 5 ) > 0. Since the eigenvalues are real and distinct for smpa# 0, this actually

implies thats(AJ (w) — %I

P ) > 0. Then, we have that

1
(Aj(#)— ~ |)vz+#327101=0
Tq(1)

holds with non-negative vectors and x By 101 which are both non-zero. By Lemnty we have

v2 = 0, a contradiction. Hences(Ag(ﬂ) — ml) < 0. Proceeding by induction op, we find

thats(AJ (u) — —I) < Oforallj > 2. ThereforeT P must be the principal eigenvalue &{x),
q

that is, = . This proves the second assertion.

Tq(u) T1( )’
To prove the third assertion, we again start with the sufficient condition. Supposg—}/lfr)ats a
r

principal eigenvalue of some diagonal blogk(x) ands(Aj(u)) < T forall j =i+1,..,k

(
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such that strain group is reachable from strain group It follows immediately that all the matrices

A(p) — T)I | <i, are non-singular, and thus= 0, | < i. The componeni; is the eigenvector of

Ai(n)— ﬁl and it is positive by Perron—Frobenius theorem. L et i 4 1, then one of the following
holds. Ifi 4+ 1 is not reachable frorm that is,Bj11; = 0 so that

(Ai+1(,u) - %ﬂ)l) viy1 =0

implies thatvi;1 = O becauseAi;1(x) — =1 is non-singular. Ifi + 1 is reachable from and

W
S(Ai+1(y) - ml) < 0, then

1 -1
Ui+l=—(Ai+1(#)_ 3 )|) uBiy1ivi > 0.

r(u

By induction onj, it follows thatoj = O for all j > i that are not reachable fromandv; > 0 for all

j > i that are reachable fromHencep = (O, ..., 0, i, vit1, ..., vk) IS @ non-negative eigenvector.
Now, we prove the necessary condition of the third assertionv et (v1, v2, ..., vk) be a non-

negative eigenvector oA(u) associated with eigenvalu%. Letv; > O be the first non-zero com-

ponent ofv, thatis,o = (0, ..., 0,0, ...,vk). Then,v; satisfies(Ai (0) — %I)ui = 0, hence

T( ) must be an elgenvaluewf.(ﬂ) - Tl Moreover, by Perron—Frobenius theorem, it must be the
rlu “)
principal eigenvalue angl > 0. Now, considerj =i + 1 and the equation

1
(Ai+1(,u) - = |) vi41+ uBiy1jvi =0.
Tr (w)

The vectorsj1 and uBj+1,jvi are non-negative. I$(A.+1(,u) Wl) > 0, then by LemmaB,

uBiy1jvi = 0. Sincex > 0 ando; > 0, this implies thaBj 1 = 0. Equivalently,j =i + 1 is not
reachable from. An induction argument concludes the proof of the third assertion.
The final assertion of this theorem is a simple one. ‘k%‘t; be an eigenvalue o4 («) but not the

principal eigenvalue and let= (v1, v2, .. vn) be the corresponding eigenvector. Since all eigenval-
ues ofA(u) are distinct, the matrices (,u)— I,l <i,arenon-singular sothat = 0,| <i.Then,

vj must be an eigenvector & (¢) and it cannot be sign definite due to Perron—Frobenius theorem. It
follows thato is not sign definite. O

Our second result concerns the existence and the number of non-negative equilibria for the systems
(10-12) and (L3-15) with small u > O.

PROPOSITIONZ Let the assumptions of Lemn2zhold and suppose that the strains are renumbered so
that A(x) has the form23). Let Ej(u) = (Tj(u), Tj*(y), Vj(x)) denote the non-trivial equilibria of
both (10-12) and (L3-15) for smallx > 0. Then,

1. Ej(u) is positive if and only if%ﬂ) is an eigenvalue of\(x) with a positive eigenvectov,
J

2. Ej(n) is non-negative if and only |fT%7 is an eigenvalue oA(x) with a non-negative eigen-
J
vectorVj;
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3. Ej(u) ¢ Ri”*l if and only if ﬁ is an eigenvalue oA(x) with eigenvectoVj which is not
sign definite.

Proof. We will prove the proposition only for systerh@12) (the proof for (3-15) is similar). Observe

that the equilibrium relation following froml@) can be expressed ﬁ$ (1) = (NB)~1I'Vj (u). Hence,

the signs of the corresponding componentﬁ'p(,u) andV;j(u) are the same. Substituting the above

expression intoX1) and (12), we find thatV; (x) must satisfy -

. 1 N N
I INP()K — = |]vj (1) = |:A(,u) - — |} Vj(u) = 0.
[ Tj(w) Tj ()
Thus, for each non-trivial equilibriunk; (u), the quantity#ﬂ) must be an eigenvalue &(«) and
]

\7] («) must be a multiple of the corresponding eigenvedfarlf V; is not sign definite, it follows that
Ej(u) ¢ Ri”*l. For allVj > 0, the components d;j («) are uniquely determined via

; F (T () . S
Vi(p) = —322V, Tr(w) = (NB)™IVi ().
i (1) (kY j j (1) = (NB) i (1)
Hence,E;j(«) is positive (non-negative) if and only if; is positive (non-negative). O

An immediate corollary to Propositiorisand? is that if the mutation matrixQ is irreducible, then
A(n) is irreducible and system4@-12) and (L3-15) with small x > 0 admit a unique positive equi-
librium E1(x) and no other non-trivial non-negative equilibria. If the mutation mafiis reducible,
then a positive equilibrium exists if and only if the fittest strain (with lowest vdli)ebelongs to strain
group 1 and all other strain groups are reachable from group 1, meaning that the fittest strain can even-
tually mutate into any other strain. In addition, non-trivial non-negative equilibria (that are not positive)
are feasible fopt > 0 only if Q is reducible. Specifically, if the strains can be numbered according to
(23), then at mosk non-trivial non-negative equilibria exist. An extreme case is when the fittest strain
belongs to grouf, in which case no positive and only one non-negative equilibrium exist. We illustrate
a few mutation scenarios in Fid, and indicate the number and type of the various disease equilibria
for models (0-12) and (L3-15) when the mutation parameter> 0 is sufficiently small.

4.1 On uniform strong repellers

To prove our main result (TheoreR), we first need to establish a particular uniform persistence prop-
erty that models{0-12) and (L3-15) exhibit for small positive values of the mutation paramater

To establish this property, we need to introduce several preliminary concepts and results. Inspired by
Thieme(1993, we make the following definition.

DEFINITION 1 Consider a system

X = F(x) (24)
on a compact forward-invariant skt ¢ R™ with a continuous flows (t, x). Let Ko ¢ K be a closed
forward-invariant subset df. Letd(x, A) denote the distance from a poito the setA. We say that

Ko is a uniform strong repeller i if there exists @ > 0 such that for all solutiong(t, x) € K\Ko,
liminfi_, o0 d(¢(t, X), Ko) > 6.
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(@)

(b) () (d)

Fic. 1. Representative mutation graphs with three strains. F1 denotes the fittest strain, F2 the second fittest and F3 the least-fit
strain (fitter strains have lowdr-value at equilibrium; se€()). (a) is an irreducible case and (b), (c) and (d) are reducible cases.
Non-trivial equilibria for (0-12) and (L3-15) for small x > 0: (a) one positive equilibriumEy («)), (b) one positive Eq (x))

and two distinct non-negative non-trivial equilibrigf(x), E3(x)), (c) no positive and two non-negative non-trivial equilibria
(E1(n), E2(w)) and (d) no positive and one non-negative non-trivial equilibriln(f)).

THEOREM 3 Let /7: K — RT be a continuously differentiable function such tiia¢x) = 0 if and
only if x € Ko. Suppose there exists a lower semi-continuous fungtioK — R such that

7
==y, ¥XeK\Ko. (25)
In addition, suppose that the following condition holds:

(H) vxeKo, 3T >0:(ypT, X)) >0,

where(y (¢ (T, x))) denotes the average valuewf{s (t, X)) on the interval [0T]. Then,Kg is a uni-
form strong repellor irK.

Proof.

Step 1.Note that by lower semi-continuity af and continuity ofp, for everyp € Ko, there exists an
open selUy, containingp and a lower semi-continuous map: Uy, — (0, 4-00) such that for every

q € Up, (H) holds withx = g andT = Tp(q). For everyp € Ko, we choose a non-empty open set
Vp with Vp, € Up. Then, by the lower semi-continuity of each nifipand compactness d,, we have
that

inf Tp(q) >0
geVp

is achieved at some point Mp. SinceUpek,Vp is an open cover oKp, there exists a finite open

,,,,,
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Note that for everyp € Ko, there is @ > 7 such that (H) holds witlx = p. Hence is a uniform (in
Ko) lower bound forT s for which (H) holds.
Step 2.Leth > 0 be given. Define

Unh={xeK|AT > z: (w(¢(T,x))) > h}. (26)

We claim thatUy, is open. Indeed, let € Uy. Then, there is som€& > ¢ such that

€= (y(@(,2))—h>0
Then, from the continuity of and the lower semi-continuity af (and therefore uniform lower semi-

continuity of w on compact sets), it follows that there exists an opeetontainingz such that for
all Z € W,, it holds that

y@t.2) > y(@(t.2)—e Vtel0, T (27)
Since
(w(@(T,2) =€+h,
it follows from (27) that for allz’ € W,
(w(@(T,2)) > h,

and thusW; c Uy, establishing our claim.
Step 3.DefineTy: Uy — [z, +00) as

Th(2) :=inf{T > t|{w(¢(T, 2))) > h}.

We claim thatT} is upper semi-continuous. Lete U and lete’ > 0 be given. Then, there is some
T > 7 such that

(w(@(T,2)) > h,
which implies that
T <Th(2) +¢€. (28)
By the argument in Step 2, there is some opevgetontainingz such that for ale’ € W, it holds that
(w(p(T,2))) > h,
and thus that for alt’ € W,
Th(Z) < T. (29)

Our claim follows by combiningd8) and @9).
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Step 4.The nested familyUn}n- o is decreasing (under set inclusion), and forms an open couep.of
Hence, there is someso thatU coversKg. SinceK := K \ Uy is compact and? is continuous//
attains its minimal valuen > 0 onK. Choosep € (0, m) and define

lp:={zeK]|I(2) € (0, p]} C U;.
Step 5.We claim that every forward solution startinglip eventually leavesp, that is,
Vzelp, 3t;>0:4(7,2) ¢ lp.

By contradiction, if(t, z) € Ip forallt > 0, theng(t, z) € U, for all t > 0, and thus,

1 t+Ty _
AT > ¢ ?/ w(p(s,2))ds > h.
t Jt

Integrating equation2b) fromt tot + T, we find that
n (H(qs(t +Tt,z))) - AT,
11(¢(t, 2))
which implies that

It +Ti,2) > LT, 2). (30)

Settp = 0 andtyx = tx—1 + Ty,_, fork = 1,2,.... Since eaclly, > ¢ > 0, it follows thatty — oo.
Then, by 80) and sincdy > 7 for all k, we have that

(¢ (. 2) > €M1 1T (p(t-1.2)) > & 11(2),
so thatl7 (¢ (tk, z)) — oo ask — oo. This contradicts the boundednesgbon the compact se .
Step 6.Let

We will show that there is song € (0, p) so that forward solutions starting outsiﬂenever reacHg,
that is,

3ge O, p):zé¢lp=pt,2)¢lg, Vt=0.

Consider a forward solutio# (t, z) with z ¢ fp. If ¢(t,2) ¢ fp forallt > 0, then we are done since
Iq C Tp, so let us assume that for some> 0 = ¢(tz, 2) € Ip. Denote the first time this happens by
to:

to = minft > 0¢(t, 2) € Ip).

Setz* = ¢(to, z) and note thaf7(z*) = p. Denote infck, ¥ (z) by m'. If m" > 0, then @5) implies
that17(¢(t, z*)) > I (z*) = pforallt > 0, so that we are done. If on the the other harid< 0, we
first define

T=maxTh(2) (=1t > 0).
zelp
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Note that this maximum is indeed achieved on the compadfpseiHchTh iS upper semi-continuous.
Now, we define

q=pe"T,

and note thag is independent of the chosen solutipf). We will show that for this choice af, our
claim follows. Indeed, we have that

t
Wemjyééwwgfmb>m

and thus by Z5) that
Vte (0,T): H(p(t,2*) > (2" > q, (31)

which implies that during the time intervéd, T), the solutionp(t, z*) has not reachety;. On the other

hand, during that same time inten@, T), the solutiong (t, z*) must have IeftINp. If this were not the
case, then by the argument in Step 5, there would be §6me[z, T) such that

@, 2) > 0T > p

and thus thap(T*, z*) ¢ I~p, a contradiction to our assumption. This process can be repeated iteratively
to show that the forward solutiafi(t, z) that did not start i, will never reachl.

So far we have shown that for any solutigrt, X) ¢ Ko, inequality I7(¢(t,x)) > q > 0
holds for all sufficiently large. The setsKg = 1771({0}) and I7~1([q, +00)) N K are compact and
disjoint. Therefore, there existssa> 0 such that(¢(t, x), Kog) = J for all x ¢ Ko and all sufficiently
larget. O

4.2 Global stability for smally > 0

The following lemmas will be used to prove the global stability of the positive equilibrium for small
u > 0.

LEMMA 4 Leta: R™ — R" be continuous and &t € int(R7). Let f: R™ x (R \{0}) — R be defined
as

a’'(x)y
f = .
X, y) by
Then,
iminf  fooy) = min 300, (32)
X—=X0.y—0+ ie(L..n} b ’

,,,,,

function onR™ x R7 whose restriction oR™ x {0} is continuous.

Proof. Extending the functionf (x, y) by defining f(xo,0) = liminfy_x, yso+ f(X,Yy) clearly
produces a lower semi-continuous function. Furthermore, sa(@® is continuous, the function
MiNieq1,....n} aa_éixz is continuous as well. So it remains to show ttg#) (holds.
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Without loss of generality, we may assume that @i n ﬂl = %’1‘0). Settingx = Xg and

Yo =Yy3 = --- =Y, = 0and lettingy; — 0%, we find thatf(xo, v1,0,...,0) —> M. Hence,
IimianXo,yHOJr f(x,y) < al(xf’) . We also observe that as longypg R" \{O} the value

a (x)y Z i (x) bi yi
by biyi+---+ bpyn

is a convex linear combination of the valu%tg— i =1,...,n. By continuity ofa(x), for anye > 0,
there exists @ > O such thavi € {1,...,n} andv x e Ba(xo) we haveg; (X) > g (Xp) — ¢b;. Hence,
for all x € Bs(xo) and for ally € R" \{0} f(x,y) > 329 — & We have established that

a1(Xo) > liminf f(xy) > a1(Xo)
bl X—Xg,y—> 0+
Sincee > 0 is arbitrary, 82) follows. O

LEMMA 5 Suppose thaB] holds. Then, there exigt, o > 0 such that
liminf 'V(t) > >0
t— oo

for any i € [0, uo] and for any solution of{0-12) and (L3-15) with 1’V (t) > O.

Proof. We will prove the claim for systenil(0-12) (the proof for (3-15) is similar). The proof consists
of two parts. We first show that there exigt, 1o > 0 such that liminf, . I'(T*(t) + V(t)) > 70> 0
for all solutions withT *(t), V (t) # 0.

We choosen positive numbers\; so that < N; < N; forall 1 <i < n. This is possible since

we assumd; = k._' < To. Leto = (N, 1). It foIIows that

B KT 5 . . .
v Ns )" (b1(N1 — N1), ..., bn(Nn — Np), kiToN1 — y1, ..., knToNn — yn)

is a positive vector. By continuity, there existgg > 0 such that

‘M(To. ), whereM(T. gy = (10 T KTo

v , 1), =

0, M u B r

is a positive vector for alle € [0, uo].

Consider a system
T=f(T)—KVT, TeRy, (33)
T* = P(W)KVT - BT*, T*eR], (34)

V=NBT" -7V, VeR], (35)

=0, uel0,puo] (36)
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Let K’ be the forward-invariant compact set fdr0OF12) established in Lemma and defineK =
K’ x [0, uo). Itis clear thatK is compact and forward invariant und&3¢36). The set

Ko := ([0, To] x {0} x {0} x [0, uo]) N K

is clearly a compact forward-invariant subsetof
Let I7(T*,V) := o/(T*, V). The function/7 is clearly smooth and zero dfg and positive on
K\ Kp. Furthermore,

I _O'M(T, ) (T, V)

ARG

is lower semi-continuous ol by Lemma4 once we define the value gf on Kg as
) "M(T, w)i
V/(T’ ,U) = min M
i=1,..,n 0j

We note that the function (T, x) is continuous in(T, x). Since all solutions 0f33-36) in Ko have
the property that lim, o, T (t) = T, it follows thaty (T (t), ) > 0 for all sufficiently larget. Hence,
by Theorem3, the setKg is a uniform strong repeller iK. If we use theL1-norm of (T*, V) as the
distance function t&o, we find that there exists ajpp > 0 such that

liminf '(T* + V) > no
t—o00

for all solutions of 83-36) in K\ Kp.

To complete the proof, we need to show that there existg an0 such that liminf_, o, 'V (t) >
n > 0 for all solutions with 1V (t) > 0. Observe that’¥ (t) > 0 implies that 1T*(t) > 0. Hence, by
the result of part one, we have that liminf, '(T*(t) + V (t)) > no > 0 or, equivalently, T *(t) >
no/2 — 'V (t) for all sufficiently larget. We substitute this inequality intd ) and find that

1V > A (% - 1’V(t)) — ALUV(1), Ag:=min(Nif) > 0, Ar:=max(yi) > 0

holds for larget. It follows immediately that

___noAo
= 2ot A) 0

S
I|trn>|orgf1V(t) >n

LEMMA 6 Let

z 1

X,V,2) =X — — 3z3.

a(X,Y,2) +y+ Xy
Then, for anyzg, M > 0, there exists & > 0 such that(x,y,z) > Mforall0 < x < d,ally > 0and
all z > zg.

Proof. Observe that the minimum of the functier(x, -, z) on the sety € (0, +00) is achieved at
y = 4/z/x. Hence, for ally > 0, it holds that

V4 Z 1
> — = —_ = 3.
f(x,y,z)/f<x,,/x,2) x+2,/X 373



MULTISTRAIN VIRUS DYNAMICS WITH MUTATIONS 305

Let zg > 0 and define
4z9

(M +3z§)2'

Thenforall0O< x < 4, ally > 0, and allz > z, it holds that
2 172 _1
fxy.2>2/% -3 (—1—32—%)>zg (—1—3206)=M.
X X2 52

THEOREM4 LetK be the absorbing compact set established in Lerhnaad let

0 .=

wl=
Nl

=Z

U={(T,T*V)eR™T, T}, Vi > 0.

Suppose that (C) holds with! instead ofT. Then, there exist a; > 0 and a compact sé; c U
such that for any: € [0, x1] and for any solution of{0-12) or (13-15) in U, there exists & > 0 such
that(T (t), T*(t), V(t)) € Ksforallt > to.

Proof. Both for system10-12) and (L3-15), the proof will be based on the same Lyapunov function

T T1 T T 1
W = 1- — dr+/ 1— -1 )dr+— (l——)dr—i—ZT*—l- —V
F1 T T} T N1 =

that we used to show competitive exclusion witk= 0.
Casel. System (0-12).
ComputingW for system 10-12), we obtain after some simplifications

. _ T TL  TWT Ty
W=(f(M) = f(TYH{1- — — 1 _3
(fF(T) = f( ))( ) ﬁll[T+T1VT1+V1T1*

n
= > kVi(T' - 1)+ MZQ1JKJVJT+#ZZQIJKJVJ
i—2

i=2j=1
Recombining the terms, we further obtain

: - Tl T T)WT T
W=(f(M) = fTYH{1- — I S . A
(f(T) = f( ))( ) Ty [T AT

—Zku\/u(T' -ThH - —ﬂ qulkJVJT +ﬂZZQIJkJVJ

i=1j=1
We note that

Zunk,V,T Z(Zq”)k VT =0

i=1j=1
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since all column sums d are zero. Hence,

: _ T! _ [T TwT Ty
W=(f(M-fTYW[1-—)-/T|—+L— + =L _3
(f(T) = f( ))( T) piTy [T TGt T T

n I -I_—
=D k(T =ThH - —,UCI11|<1V1T - —/J ijk ViT.

We rewriteW as

: _ T! | T TiT Ty
W=(fM-fTY(1-—)-4T| —+0@ —1 _ 31+ 13
(f(T) = f( ))( T) paTy |:T +( +C111,u)T VT1+V1T1* (14 quip)

3T (A= A qun®) = 3 k(T = TH = L > ayk Vi T
i=2 1 j=2

Note that the last term a# is non-positive, hence

: . T! | T *V1T 1T}
WM =-FfaTYW(1-—)-5T'|—+q —~1_31 13
(f(T) ( ))( T) PiTy [T + ( +Q11ﬂ) AR +V1Tl* (14 dz1p)

n
31T (L - L+ ) ) = D k(T = TH.
i=2
By Lemmabs, there existy, ua > 0 such that W (t) > » for all u € [0, ua] and all sufficiently large.
Leta = minj>o ki (T' — T1) > 0, then

Zk.v.(T -T )>aZV. a(n = V).

Thus, by shifting time forward if necessary, we have the inequality

. _ T! _ | 7! *V]_T \71T*
W<(f(M=FfTY1-— )-/T|—+0 1 _31 13
(f(T) ( ))( T) P |:T +( +Q11/t) AR +V1Tl* A+ gr1p)

+341 T (1 — A4 qu)¥®) —an + aVi.
Let up > 0 be such that for allk € [0, up],

1 _ o
1+ quu e [5, 1} . 3T - A+ quu)®) —an < —7’7.

Lincidentally, ifg;1 = 0, we obtain global stability of the boundary equilibritig for all ;2 > 0.
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Let #1 = min(ua, up) and choose sufficiently larde > 0 so that
3Ty (A — L+ quu)® —an+avi < L

for all solutions of (0-12) in K and allux € [0, u1]. For anyu € [0, u1], we have that

; - T _, [T TrwT Ty
WM - f@Y(1-=)-aTi|=+0@ L _301 1/3
(f(T) = f( ))( T) BTy [T +( +Q11,u)_|_ VT1+V1T1* (14 du1p)

an
L4 aw,
2 V1

where the first two terms are non-positive ané dg11 € 3, 1]. Inspecting the first term iV, we find
that there exists & > 0 such that

} 71
(f(T) - f(Tl))(l— ?) <—(L+12

forall T < dgand allu € [0, 11]. Now, we inspect the the second termih Using Lemmab with

X_\71T1* Tt
STy T

1
z=14duiu, ZOZEs

we conclude that there exist$a> 0 such that

- | T? *VlT Vi T
/T | =+ @1+ —
piT] |:T ( Q11ﬂ) AERAVAR

—3(1+Q11ﬂ)1/3] <—(L+1

for all < v < drandallu € [0, ua]. Finally, there exists & > 0 such that-%! + aVy < =% for all
Vi < 2 ‘and allu € [0, u1]. Let

Ks={(T,T*,V) e KNUIT > o, V1 > &2, T} > 61V}
ConsidenT, T*, V) e (K NU)\Ky and letu € [0, 1], then at least one of the following holds:
e T <do,inwhichcaseV < —(L+1)+L < —1;
e T;/Vi<dyinwhichcaseV < —(L+1)+L < —1;
e Vi <, inwhich caseV < —%L.

Hence, for al(T, T*, V) € (K NU)\K; and allx € [0, 1], we have
W < —min(l, ﬁ) <0.
4

We postpone the rest of the proof until we have showed that a similar inequality holds for system
(13-15).
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Case2. System (3-15).
ComputingW for system {3-15), we obtain after some simplifications

: _ T! TL TWT ATy
W=(f(T)— f(TYH{1- — — 3
(f(T) = f( ))( ) ﬁ11|:T+TfVT +V1T*

—> kW —T'1>+ﬂ( Vl)qul N AT YN NATE
i=2

i=2j=1

Note that thex dependent terms can be rearranged as follows:

ﬂ(ZQiiﬁi th N ﬁ]TJ)—I—ﬂ(quJ Ny < BT +quu ,BJ J*) v Q11/f1T1~
i—1

i=2 j#i
In the above, the first term is non-positive and the second term can be rewritten as follows:

n
#Zai'ﬁ*,
i—1

for suitablea; > 0, and the third term will be absorbed in the square bracktetrin inW. We find that

. _ T1 1 _*VT
W<(f(T)—f(Tl))(1_T?) puTy [T +-l 1 Q11/1)

L 31+ 13
T T vlT1 (L Gug)

3T A ™)+ 2o = D kA =T,
i=1 i=2

By Lemmabs, there exist;, ua > 0 such that W (t) > » for all u € [0, ua] and all sufficiently large.
Leta = minj>o ki (T' — T1) > 0, then
n .
D k(T -T! aZV. a(n = V).
i=2

Thus, by shifting time forward if necessary, we have the inequality

e -ty (1o 1) pfr | T AT Ly >_T* 31+ qu)t3
< T 1l | Ty V71 Quapu AR Quapu

n
31T (L — A+ qu) ) + 1 D i Ty —an + aVa.
i=1

Since solutions are in the compact Eefor sufficiently large times, there is sorpg > 0 such that
an

n
ﬂzal-ﬂ*<7a vﬂe[07ﬂ/a]7
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and therefore,

T! TL  TWnT ViT;
W< (F(T) - f(T1)>(1——) AuT] [? T Ve s CR Tl AR —3(1+CI11/1)1/3}

+31T] (1 - A+ quw'?) - T+ avi.
Let up > 0 be such that for allt € [0, up],
14+ 0qupu e E» 1] . 3T — @+ qu)®) - S/ AP
Let u1 = min(ua, 5, ub) and choose sufficiently larde > 0 so that

/T (A— 1+ )3 —an+aVy < L

for all solutions of (3-15) in K and alli € [0, u1]. Foranyu < [0, u1], we have that

W< (F(T) = (T (1 T ATy T +T_VT+<1+ ) T*—3(1+ )3
< T th |+ TVT1 Quiu AR Quiu

an
21 Vi,
2 + aVy

where the first two terms are non-positive anél dg11 € [ 3. 1]. Inspecting the first term i/, we find
that there exists & > 0 such that

) 71
(f(T) - f(Tl))(l— ?) <—(L+12

forall T < dpandallx € [0, u1]. Inspecting the second term WY, we use Lemm& with

*

x=>1 T —fl z=1+ _1
= +Q11#)VT*, y=+, z=l+tquu, =3

and conclude that there existga> 0 such that

PRe T! N T
1 T Tl*\71-|:1

+ A+ )vlTl*
Quipu ViTr

-3(1+ qlw)m] <—(L+1
10

for all I/—l < drand ally € [0, u1]. Finally, there exists @ > 0 such that-%! + aV; < —% for all
V1 < dpand allu € [0, u1]. Let

Ko={((T,T*,V) e KNUIT > o, V1 > &2, Tf > d1Vi).
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ConsidenT, T*, V) e (K NU)\Ks and letu € [0, 1], then at least one of the following holds:
e T <do inwhichcaseV < —(L +1)+ L < —1;

e T;/Vi<dyinwhichcaseV < —(L+1)+L < -1,

e Vi < 4y, in which caseV < —4L.

Hence, for al(T, T*, V) € (K NU)\Ky and allx € [0, 1], we have
. . an
< = -1
W < m|n(1,8)<0.

The remainder of the proof is the same for both the above two cases and presented next.
The non-negative functiow/ (T, T*, V, u) is continuous and bounded from above on thekgek
[0, u1] becausel, T.*, V; are bounded away from zero. Hence, it attains a finite positive maximum

w:= max W(T, T*V,u)>0.
Ksx[0, 1]

Define a new set
Ks={(T, T, V) e KNUIW(T,T*,V, u) < w, ¥V u [0, uil}.

By construction, we have thdﬁg c Ks ¢ K NU. The continuity ofW implies thatK is closed, and
therefore compact ibJ.

It remains to show that all the solutions df0-12) in U enter and remain it for all sufficiently
large times. Sinc& N U is an absorbing set for all > 0 (Lemmal), without loss of generality we
need to prove this for all solutions K NU.

Let@(t) = (T(1), T*(1), V(1)) € KN U be a solution of 10-12) for some fixedu e [0, x1].
Observe that in the s¢K N U)\Ky, the inequalit\/ < — min (1, %) < 0 holds. Sinc&V > 0, there

exists atg > 0 such tha (tg) € K(; c Ks. We will show that@(t) € K; for allt > tg. For the sake
of contradiction, let us suppose that there exists a tp such that®d(t1) ¢ Ks. Then there exists a
to € [to, t1) such tha®? (t2) € Ks and®(t) ¢ Ky for allt e (i, t1]. On the one hand, we have that

W(D(t2), u) < w < W(D(t1), 1)

by definition of K;. On the other hand, for atl € (tz, t1], we have®(t) ¢ K, and consequently
D(t) ¢ Kgso that%W(qﬁ(t), 1) = W < 0. This contradiction shows thdt(t) € K; for all t > tg and
concludes the proof of the theorem. O

THEOREM5 Let the assumptions of Lemn2zhold, letU be the set from Theoredhand define
U'={(T, T V) e R%"Tr + Vi > 0} o UL

Then, there exist ag > 0 and a continuous map: [0, xo] — U such that the following holds:

1. E(0) = E; (whereE; is the same as in Lemn®), andE(x) is an equilibrium of {0-12) or of
(13-15) for all u € [0, uo];

2. for eachu € [0, uo], E(n) is a globally asymptotically stable equilibrium dfG~12) or (13-15)
inU’.
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Proof. To prove the first assertion, we begin by noting that for= 0, E; is a stable hyperbolic
equilibrium of (L0-12) or (13-15) by Lemma2. Since the vector field ofl0-12) and (L3-15) is linear
in u, by the implicit function theorem there exisha> 0 and a continuous map: (—h, h) — R?"+1
such thate (x) is an equilibrium of {0-12) or (13-15) for all « € (—h, h). The fact thate(x) € U for
all u € [0, h) follows from Propositior2 and the fact thal; < T, i > 2. Note that foru > 0, E(x)
may be positive (ifQ is irreducible) or non-negative (i) is reducible). Nevertheless, in both cases,
u > 0impliesE(u) € U.

The proof of the second assertion is based on the res8inith & Waltman(1999 Proposition 2.3).
We have already established the fact tB@d) is a stable hyperbolic equilibrium 01(-12) or (13-15).
By Theorem2, E(0) is globally asymptotically stable it/ for x = 0. In addition, by Theorem,
there exist qug > 0 and a compact sé€s c U such that for eaclx € [0, uo] and each solution
(T (), T*(t), V(1)) of (10-12) or (13-15) in U, there exists & > 0 such thatT (t), T*(t), V(1)) €
Ks for all t > tg. Hence, the condition (H1) of Proposition 2.3 $mith & Waltman(1999 holds.
Proposition 2.3 itself then implies the global stability Bfx) in U for all sufficiently smallg > 0.
Finally, solutions of {0-12) or (13-15) starting inU enterU’ instantaneously, hence global stability of
E(u) in U’ follows as well. O
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Appendix A. Inclusion of loss of virus in the model
A.1 Single strain

If we explicitly account for the loss of the free virions upon infection, modgbgecomes
T=f(T)-kVT,
T*=kVT-pT",
V=NAT*—yV —kVT. (A1)

We still assume that the growth rate of the healthy cell population is giveR)blignceEg = (To, 0, 0)
is still an equilibrium of A.1). A positive equilibrium exists if the following quantities are positive:

_ I TE S
A SO LD v

f(T)
k(N —1)’ B kT

(A.2)

Note that this is the case whéh> 1 and f (k N—p) > 0or (equivalently by2)) whenT = KN=D) <
To. In terms of the basic reproduction number

N

k(N — Do _
y

RO =

| 5

existence of a positive equilibrium is therefore equivalerinb> 1. Assuming thaR® > 1, we will
still denote this disease steady statebby= (T, T*, V). We introduce the following condition:

(C) f'(c)+ k f(T) <0, forallcel0,To.
Y

Note that this condition is satisfied whérT) is a decreasing function with a sufficiently large negative
derivative.

THEOREM Al Let (C) hold. Then, the positive equilibriurk is globally asymptotically stable for
(A.1) with respect to the initial conditions satisfyifig (0) + V (0) > 0.
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Proof. Consider the following function on i(iRi):
T T T* T+ % .
W=(N—1)/ (1——)dr+N/ (1——)dr+/ (1——)dr.
T T T T \Y T

W= (N-=21)(f(T)=kVT) (1— ;) + NKVT - T (1— ;)

Then,

Y
+(NBT* —ypV —kVT) (1 - V)

T *

T T - \Y; - -
=(N=21)f(T) (1—?)— NkVTF+N,BT*— NﬂT*v+yV+kVT

=(N—-1)(f(T) - f(T)) (1—;>+(N—1)f(f) (1—%)

T % T % _*I
+NBT [2—\7_———}—5T +AT =

_ A ToT
=(N—1)(f(T)—f(T))(l—?)+/3T (—Z—I—?—I-?)

(T-T)
TT

where we usedA.2) repeatedly; in particular, in the second, third and fourth lines. By the mean value
theorem, there exists sorme= (T, T) or (T, T) such that

=[(N=D(f(T) = FTNT + FT*(T = T)]

fF(T) — (M= f@©T-T),

hence usingA.2) once more, we obtain

T2
W:(N—l)[f/(c)+y£f('l_')}(TTT)—FN,B'I_'
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The first term is non-positive by (Land because we can assume thak Ty by dissipativity (see
LemmaAl later). The second term is non-positive as well since the geometric mean of three non-
negative numbers does not exceed the arithmetic mean of these numbers. We concMdectiBain

mt(R ), hence local stability oE follows. Note thatW equals zero if and only if both the first term and

the second term are zero. This occurs at points where

TV
TV
Then, LaSalle’s invariance principle implies that all bounded solutions (and as before, solutions are

easily shown to be bounded, see also Len#fdater) in int(Ri) converge to the largest invariant set
in

=1 and

| —

T*V

==1
T*V

I(T T*,V) eint(®3 )

It is clear that the largest invariant set i is the singleton{E}. Finally, note that forward solutions
starting on the boundary dﬁi with eitherTy(0) or V1(0) positive enter ir(ﬂRi) instantaneously. This
concludes the proof. O

A.2 Competitive exclusion

Now, we modify the multistrain mode#{6) to

T=1(T)-kVT, TeR,, (A.3)
T*=KVT-BT*, T*eRl, (A.4)
V=NBT"-7IV-KVT, VeR], (A.5)

wherek = (kg, ..., kn), K = diagky, ..., kn), B = diag(f1, ..., Bn), N = diag(Ny, ..., Np), and

I' = diagiys, - - ., yn) Suppose that each strain is capable to persist at steady state by itself, that is,
N; > 1andT;, = KN (N -5 < To, and denote the corresponding equilibria alsdy. . ., E,. Assume

that

0<T1<To< - <Th < To. (A.6)
In addition, suppose that (Cholds withT = T1. Then, we have the following theorem.

THEOREM A2 The single-strain equilibriunk; is globally asymptotically stable fo’(3—A.5) with
respect to the initial conditions satisfyifig (0) + V1(0) > 0.

Proof. Consider the functioV defined orlJ := {(T, T*, V) € R4 T, T* Vi > 0} as

T 'I_' T* T* Vi v
W= (Ni — 1) (1——)dr+N1/ (1——)d1+/ (1__1)d,
T-l T * T \71 T
n

3 (N V),
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ComputingW, we find that

T —T)?

W=(N1—1)[f/(0)+y5f(fl)]( + N1 Ty [3—7—____}
1

e (v oy N D
+Zz:(_klvl(T_Tl)+ N1

(NKVIT = NisiT"+ NigiT" — i — kiViT)) :
After simplifications, we have

. k., - J(T-=T }
W=(N;—-1) [f’(C) + ;f(Tl)i| (T + N1 Ty

—(N1 =D D kVi(Ti — To).
i=2

The first term is non-positive since )Gvith T = T; holds and becaust < Ty by dissipativity (see
LemmaAL later). The second term is non-positive as well and so is the third\I$).(Thus,W < 0
which already implies thak; is stable. An application of LaSalle’s invariance principle shows that all
the bounded solutions id (boundedness follows from LemnAdl which is proved later) converge to
the largest invariant set in
T TV
{(T,Tf,...,T,f,Vl,...,Vn) eU|==1, 1\/1

=1LV, =0,i >2],

which is easily shown to be the singletfB;}. Finally, solutions on the boundary of with T;*(0) +
V1(0) > 0 enterU instantaneously, which concludes the proof. O

A.3 Adding mutations

We modify the model4.3-A.5) to account for mutations. Again, we consider two alternative models:
T=f(T)—kVT, TeR,,

T*=P(uKVT - BT*, T*eRl,

V=NBT*—I'V-KVT, VeR], (A.7)
and
T=f(T)-kVT, TeR,,
T*=KVT-BT*, T*eR],
V=P@NBT*—I'V-KVT, VeR], (A.8)
wherek, K, B, N and I" are the same as before(x) = | + xQ andQ is a stochastic matrix with

non-negative off-diagonal entries.
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LEMMA Al Both systemsA.7) and (A.8) are dissipative, i.e. there is some compactisetuch that
every solution eventually enteks and remains irK forever after.

Proof. The proof is similar to the proof of Lemniaand will be omitted. a

LEMMA A2 Foru = 0, let all the single-strain equilibrig1, Eo, . .., Ep exist for either A.7) or (A.8),
and assume that

TLaT?2<.<cTN T =Ty (A.9)

and
f/(Tly<o, forallj=1,...,n+1 (A.10)

Then, the Jacobian matrices &.7) or (A.8), evaluated at any of thg;js,i = 1,...,n + 1 (where
En+1 := Ep) have the following propertiest(E;) hasi — 1 eigenvalues (counting multiplicities) in the
open right half-plane and(@ + 1) — i eigenvalues in the open left half-plane. In particull(E;) is
Hurwitz.

Proof. The proof is similar to that of Lemm2 The only difference is that the entries of the Jacobian
matrices change. In particular, tiig, 1)- and (3, 3)-entry of A} now become-k;V; and—y; — kT',

respectively, but byA.9) and Lemma 3} in De Leenheer & Smitl2003, Ail is still Hurwitz. O
To study the equilibria of systemé.(7) and @.8), we introduce the matrix
A(p) = I YN P(u) — DK, (A.11)

which has non-negative off-diagonal entries for- 0 and

ki(N; — 1 kn(Nh — 1 1 1
A(O):diag( iNi =D k(W ))zdiag(f,...,f).
71 ’n T Th

Clearly, Propositiori holds with A(x) given by @A.11). Hence, we have the following proposition.

PROPOSITIONAL Let the assumptions of Lemn#& hold and suppose that the strains are renumbered
so thatA(u) has the form23). Let Ej (1) = (Tj (), Tj* (1), Vj(n)) denote the non-trivial equilibria of
both A.7) and @A.8) for smallx > 0. Then,

1. Ej(u) is positive if and only if%ﬂ) is an eigenvalue ofA(x) with a positive eigenvectov,
J
2. Ej(n) is non-negative if and only % is an eigenvalue oA(u) with a non-negative eigenvec-
J
tor Vj;
3. Ej(x) ¢ R if and only if =1 ) is an eigenvalue oA(x) with eigenvectolV; which is not
sign definite.

Proof. We will prove the proposition only for systemh(7) (the proof for A.8) is similar). Observe
that at equmbrlumT (n) = (NB)~L(I" + KTJ (y))vJ (u). Hence, the signs of the corresponding

components oﬂ'J () and VJ (u) are the same. Substituting the above expression #fd),(we find
thatVj (1) must satisfy

. 1 . 1 .
r- 1| Vi(n) = | A = 1 |Vj(un) =0
[ .00 ] i () [ U %0 } j(u
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Thus, for each non-trivial equilibriunk; (u), the quantity#ﬂ) must be an eigenvalue @%(x) and
J

\7,- (1) must be a multiple of the corresponding eigenvedfarlf V; is not sign definite, it follows that
Ej(x) ¢ R ForallVj > 0, the components &&; (x) are uniquely determined via

; RGO R - O
Vi(u) = Vi, T (w) = (NB)™(I" + KTj(u)Vj (n).
Ti (wkV; .
Hence,Ej (u) is positive (non-negative) if and only ¥f; is positive (non-negative). O

A.4 Lower bounds
LEMMA A3 Suppose thatX.9) holds. Then, there exigt uo > 0 such that

Y S
Imlor;flV(t) >n>0

for any u € [0, uo] and for any solution of4.7) and @A.8) with 1’V (t) > O.

Proof. We will prove the claim for systemA(7) (the proof for A.8) is similar). The proof consists of
two parts. We first show that there exigt 1o > 0 such that liminf . '(T*(t) + V(1)) = 5o > O for
all solutions withT *(t), V (t) # 0. We choos@ positive numbers\; so that%k‘oTO < N; < N; forall

1 <i < n. This is possible since we assuifie= k,(N -5 < To which is equivalent ta\; > V'[{ﬁoTo
Leto = (N, 1). It follows that
-B KTo . . .
o' . = (b1(N1 = N1), ..., bn(Nn — Nn), kK1 ToNg
NB —I'—KTp
—(1+KkiTo), .., knToNn — (7n + knTo))
is a positive vector. By continuity, there existgg > 0 such that
—-B  P(u)KT
'M(To, 1), whereM(T, u) :={ . ,
NB —-I'—KT
is a positive vector for alle € [0, uo].
Consider a system
T=f(T)-KVT, TeRy, (A.12)
T"=PuKVT-BT*, T*eR], (A.13)
V=NBT"-I'V-KVT, VeR, (A.14)
=0, uel0,uo. (A.15)

Let K’ be the forward-invariant compact set féx.7) established in LemmA1l and defineK = K’ x
[0, o). Itis clear thatK is compact and forward invariant undét.{2-A.15). The setKg = ([0, Tg] x
0 x 0 x [0, uo]) N K is clearly a compact forward-invariant subsetof
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Let I71(T*,V) = »/(T*, V). The function/I is clearly smooth and zero dfp and positive on
K\ Kp. Furthermore,

o o'M(T, (T V)
F7 AT TRV
is lower semi-continuous ol by Lemma4 once we define the value gf on Kg as

/M T .
| .

=1,..., n Dj

We note that the functiony (T, ) is continuous in(T, ). Since all solutions of4.12-A.15) in Ko
have the property that lim, o, T (t) = To, it implies thaty (T (t), ) > O for all sufficiently larget.
Hence, by Theorers, the setKg is a uniform strong repellor it . If we use thel.1-norm of (T*, V)
as the distance function t9g, we find that there exists ap > 0 such that

R, <
I|trn)|0r<1)f1(T +V)=no

for all solutions of A.12-A.15) in K\ Kp.

To complete the proof, we need to show that there existg an0 such that liminf_, o, 'V (t) >
n > 0 for all solutions with 1V (t) > 0. Observe that'V (t) > 0 implies that 1T *(t) > 0. Hence, by
the result of part one, we have that liminf,, 1'(T*(t) + V (t)) > no > 0 or, equivalently, I *(t) >
no/2 — 'V (t) for all sufficiently larget. From (A.14), we have that

n n n n
VY NAT =D 0i+kTIVi = D NiBT =D (i +kiTo)Vi.
i=1 i=1 i=1 i=1
Hence,

1V > Ag (% - 1’V(t)) — ALV, Agi=min(Nifi) > 0, Ay:=maxy +kiTo) > O,

holds for larget. It follows immediately that

10A0

= 2ot Ap

S S
|Itnllor<1)f V(@) > g

A.5 Existence of an absorbing compact set for srpal 0

THEOREMAS Let K be the absorbing compact set established in LerAfiyand let
U={(T,T* V) e RE"T, T/, vi > 0.

Suppose that there exists an- 0 such that
/ Ky =
(C) f(c)+ —=f(T) <—€ <0, forallce]lO, Tyl
71
Then, there exist a1 > 0 and a compact s&t; c U such that for any: € [0, x1] and for any solution

of system A.7) in U, there exists & > 0 such tha(T (t), T*(t), V(t)) € Ksforallt > to.
An identical statement holds for syste/.8).
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Proof.

(&) We first prove the statement for systei?). Consider the function

W= (N1 -1 (1—T—)dT+N1/ (1——)dr—|—/ (1——l)dr
Ty T * T A T

- ¢ 1)2 TTY T/ Ty
=(N1=1)| f'(c) + — f(T AN T 3— L - L= =
(N1 )[ (© (1)] 1511 VT v T
n _ _ T*__*
~(N1 = 1) > kVi (T = Ta) + uN =
i=2 1

x quijVJT+,u(N1—1)Z—Zq”k VT

j=1

Recombining the terms, we find that

W= (N, — 1) [f’(e) + ; f (T&)] T T

i=2

n n n
_ _ N;
—(NL =D D KVi(Ti = T) + u(NL =D D —— > gijkjV; T
S Ni—-1 j=1

T ViT
T* —Hu 1_qujk ViT,
1 1

—uNygr1—+

where the last term is clearly non-positive. Let

0ﬂ=(N1—1)gif21ki('|:i—'|:1)>0,
n N: n
L=supiN1—1) > —— i kiViT >0
KF( 1 )éNi—ljzzlq” iVij

By LemmaA3, there exist;, uq > 0 such thatV (t) > # for all u € [0, ug] and all sufficiently
larget. Hence, by shifting time forward if necessary, we have the inequality
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. (T —T1)? _ viTTy TtVi Ty
(N1 =D)—= ATy ViTTE Tpvi T
TwiT
—a(n—V1) + uL — uN1011 e
1

which holds inK for all u € [0, ua]. We combine the second and the last terms to obtain

. (T —T1)? _ IiTT), T/Vi T
W < —e(Np — 1) ——— + Ny 1T 1+ -t
(N1 —1) T 1517 | 3—( Q11#)V1T1T* v T
—a(n—V1) + pul.
Further, we rewrite the above inequality as
(T — T1)?

W< —e(Ny — 1)

. Wty T T
+ N Ty [3(1+q11ﬂ)1/3—(1+q11ﬂ) e S 1]

T VITiTy T/ T

—a(n = V1) + uL + 3N A1 T 1 — (L + qua) ™).
Let up > 0 be such that for allk € [0, up],
1 _ Farg 13 o
(1+aqup) € > 1, —an+puL + 3N/ T [1— A+ 0qup)”] <

Now, we letus = min[ua, up], o that for allu € [0, x1] and all points inK,

. (T — T1)? _ 1 T TV T
W < —€e(Ng — 1)——— + Ny 4177 31 + B 1+ -1l - =
(N1 —1)——= 18117 B+ quap) ™ — ( Q11#)V1T1T* v, T
_0‘_2’7 + a V.
LetL; = a sup Vi. Inspecting the first term iV, we find that there existsd > 0 such that
T —Ty)?
—e(Ng — 1)(—1) < -l

T

forall T < do. Similarly, inspecting the second term\ii and using Lemma, we find that there
exists aj1 > 0 such that

_, y3 WTT
N1S1 T | 3(L+ duap) 1+ Q11,u)
ViTy

for aII < dp and allu € [0, u1]. Finally, there exists @, > 0 such that-5! +aVy < —%.
for all V1 < dy. Let

K(; ={(T,T"V)e KNUIT > dy, V1 = do, T{" = 1V}
ConsidernT, T*, V) e (K NU)\K; and letu e [0, 1], then at least one of the following holds:
o T <do,inwhichcaseV < —L; — 4 + L1 < —%;
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e T;/Vi < dy,inwhichcaseV < — —Li—-F + L < -,
_an.

e Vi < &, in which casal < -

Hence, foral(T, T*,V) € (K ﬂU)\K(; and allu € [0, u1], we haveW < —"7’7 < 0. From this
point forward, the proof is identical to the proof of Theordnso it will be omitted.

(b) Now, we consider system\(8). Let W be the same as in part (a). Computhffor the system
(A.8), we obtain

i k., = 1@ —-T)? _ WTT: T:Vi T
W=(N1—1)[f’(c)+;f(T1)}%Jerﬁle[s—#—_l—l__l}

—(N1 = D> kVi(Ti = To) + u
i=2

quj NjB; T +,UZ Zq'l NjBiT;

Recombining the terms, we find that
: kK, - 1(T-T2 _ WTTF T/Vi T
W= (N1 -1 [f’(c)+;f(T1)] (Tl) + N1 T [3— R U e _1}

—(N1— 1) D kiVi(Ti -

i=2 j =1

ViNi g1 T)

—MQl—— ZQM Njg; T J,

where the last term is clearly non-positive. Let

@ =(Nu=Dmink (i =) > 0,

NjpjT; >0

By LemmaA3, there exisly, ua > 0 suchthatV (t) > 5 forall u € [0, ua] and all sufficiently
larget. Hence, by shifting time forward if necessary, we have the inequality

. T —Ty)? - ViTTF  T*Vi T
W< —e(Ny - T T Tl) +N1,6’1T*[3 - 1}

V-
—a(n—V1) + ul — pau1
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which holds inK for all 4 € [0, ua]. We combine the second and the last terms to obtain

(T —T)?

W< —e(Ny — 1) T

_ ViTTS Vi T
F N T3 —L 14 11
151 T] [ ViTTy ( Q11ﬂ).|.1*vl T

—a(n—Vi) +uL.
Further, we rewrite the above inequality as

(T —T)?
=

WITT
#—(1—%(111#) = =

W< —e(Np —1 el
(N1 =1) AR v, T

. T*Vi T
+ N1 Ty [?J(l-thﬂ)l/3 - L 1]
—a(n— V1) + uL + 3N AT [L = (1+ quap) ).
Let up > 0 be such that for allk € [0, up],

1 - a
(1+aup) [5, 1} L man L 4 3NATIIL - A+ qun < -5

Now, we letu1 = min[ua, up), so that for allu € [0, «1] and all points inK,

. (T —T)? - 3 VATTY Vi T
W < —€e(Ng — 1)——— + Ny 41 T7 31+ -—1 1+ L - =
Ny —1)—— 14177 B(L + duap) VT 1+ aup) v T

_0‘_2’7 + aVi.

From this point forward, the proof is identical to the proof of part (a), so it will be omitted.
O

THEOREMAA4 Let the assumptions of Lemm#& hold, letU be the set from Theored3 and define
U'={((T, T V) e RE" T + V1> 0} o U.

Then, there exist @ap > 0 and a continuous map: [0, «o] — U such that the following holds:

1. E(0) = E1 (whereE; is the same as in Lemn#&?), andE (x) is an equilibrium of A.7) or (A.8)
forall u € [0, uol;

2. For eachu € [0, uo], E(n) is a globally asymptotically stable equilibrium oA.(7) or (A.8)
inU’.

Proof. The proof is similar to that of Theorem d
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