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Multistrain virus dynamics with mutations: a global analysis
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To our mentor and good friend Hal Smith on the occasion of his 60th birthday

We consider within-host virus models withn > 2 strains and allow mutation between the strains. If
there is no mutation, a Lyapunov function establishes global stability of the steady state corresponding to
the fittest strain. For small perturbations, this steady state persists, perhaps with small concentrations of
some or all other strains, depending on the connectivity of the graph describing all possible mutations.
Moreover, using a perturbation result due toSmith & Waltman(1999), we show that this steady state also
preserves global stability.
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1. Introduction

The study of the dynamics of within-host virus disease models has been a very fruitful area of research
over the past few decades. Of particular importance has been the work on mathematical models of HIV
infection by Perelson and coauthors (Perelsonet al., 1993; Perelson & Nelson, 1999) andNowak & May
(2000). It has spurred more recent research by among others Hal Smith with one of us (De Leenheer &
Smith, 2003; Wang & Li, 2006; Ronget al., 2007; Ball et al., 2007).

For single-strain virus models, the understanding of the global behaviour has been largely based on
the fact that they are competitive (De Leenheer & Smith, 2003) and the use of particular mathematical
tools developed by Muldowney; seeLi & Muldowney (1995) for an application of these techniques to
the classical SEIR model in epidemiology. Of course, it is well known that for globally stable systems
there is a Lyapunov function, but finding such a function is often difficult, as illustrated by the following
quote from the classical work ofSmith & Waltman(1994, p. 37) on chemostats:

‘Considerable ingenuity, intuition, and perhaps luck are required to find a Liapunov function’.

One of the purposes of this paper is to find such Lyapunov functions for various within-host virus
models following the ingenuity fromKorobeinikov(2004) andIggidr et al. (2006). Another purpose
of the paper is to investigate what happens if we include mutation effects in the model by allowing
different virus strains (also known as quasi-species; seeNowak & May, 2000) to mutate into each other.
This is very relevant in the context of HIV where mutations have profound impact on treatment; see for
instanceRonget al.where a two-strain model is considered. A similar model to the one we will present
here was proposed inBall et al. (2007), where the focus is on the transient dynamics using numerical
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methods and simulations. The purpose of this paper is to present a mathematical analysis of the global
asymptotic behaviour of the within-host multistrain virus dynamics model.

Mathematically, we will treat the model with mutations as a perturbation of the original model.
It turns out that the structural properties of the mutation matrix that describes the possible mutations
dictate how the single-strain steady states of the unperturbed model move in or out of the non-negative
orthant for the perturbed model. For instance, assuming that all single-strain steady states exist for the
unperturbed model, we show that if the mutation matrix is irreducible, then for small values of the
mutation parameter, the perturbed model has only one positive and no other non-trivial disease steady
states. This implies that at a disease equilibrium all strains will be present, although some are at very
low levels. If the mutation matrix is reducible, then the situation is more complicated: some or all of
the single-strain disease steady states persist in the non-negative orthant for the perturbed model, while
others do not. Moreover, the structure of the mutation matrix coupled with the fitnesses of the various
strains (as measured by the value of the healthy T-cell count at steady state) allows us to determine
which strains persist and which ones do not.

An obvious problem is to determine if the globally stable single-strain steady state of the unperturbed
model persists. We will show that this is always the case, regardless of the mutation matrix. Moreover,
taking advantage of the perturbation result developed bySmith & Waltman(1999), we will show that
this steady state remains globally stable for small values of the mutation parameter. In order to apply this
perturbation result, we will first need to establish a particular persistence property, uniform in the pertur-
bation parameter, and to achieve this, we invoke the theory developed byHutson(1984) andHutson &
Schmitt(1992) (see alsoHofbauer & Sigmund, 1998) which uses the notion of an average Lyapunov
function. We will show that a rather simple—in fact, linear—average Lyapunov function exists.

The paper is organized as follows. In Section2, we present a Lyapunov function to establish the
global stability of the disease equilibrium of a single-strain virus model. We extend this Lyapunov
function in Section3 to prove a global stability result for a multistrain model which does not include
mutations. In biological terms, we demonstrate that in the absence of mutations the fittest strain of the
virus drives all other viral strains to extinction. In Section4, we investigate what happens if mutations
are taken into account for two different models. Finally, in Appendix A, we extend all our results to a
slightly modified model which includes an often neglected loss term in the virus equation.

2. Single strain

In this paper, we consider the basic model of the form

Ṫ = f (T)− kV T,

Ṫ∗ = kV T− βT∗,

V̇ = NβT∗ − γV, (1)

whereT , T∗ andV denote the concentrations of uninfected (healthy) and infected host cells and free
virions, respectively. Equations (1) describe a general viral infection where the viral replication is limited
by the availability of target cellsT . In this model, we assume that all the infected cellsT∗ are virus-
producing cells, that is, we do not include any intermediate stage(s) corresponding to latently infected
cells. In addition, we do not explicitly consider the impact of the immune response. Implicitly, the
immune response can be accounted for by the removal term−βT∗. The rate of viral production is
assumed proportional to the removal of infected cells. In case of lytic viruses,N represents the average
burst size of a single infected cell; whereas in case of budding viruses,N can be thought of as the average
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number of virions produced over a lifetime of an infected cell. For different infections, the actual class
of the target cells in (1) may vary from theC D4+ T lymphocytes (in case of HIV), to the epithelial
cells (in case of Influenza), to the red blood cells (in case of Malaria). TheT , T∗, V notation is adopted
from the classical HIV model (Perelson & Nelson, 1999).

All parameters are assumed to be positive. The parametersβ andγ represent the removal rates of the
infected cells and virus particles, respectively. FollowingPerelson & Nelson(1999) andNowak & May
(2000), we neglect the term in theV equation that represents the loss of a virus particle upon infection.
But all subsequent results hold when this loss term is included, in which case theV equation reads as
follows:

V̇ = NβT∗ − γV − kV T.

The corresponding results will be presented in Appendix A.
The growth rate of the uninfected cell population is given by the smooth functionf (T): R+ → R,

which is assumed to satisfy the following:

∃ T0 > 0: f (T)(T − T0) < 0, T 6= T0. (2)

Since continuity off implies that f (T0) = 0, it is easy to see that

E0 = (T0, 0, 0)

is an equilibrium of (1). Effectively,T0 is the carrying capacity for the healthy cell population.
A second, positive equilibrium may exist if the following quantities are positive:

T̄ =
γ

kN
, T̄∗ =

f (T̄)

β
, V̄ =

f (T̄)

kT̄
. (3)

Note that this is the case if and only iff
( γ

kN

)
> 0 or equivalently by (2) that T̄ = γ

kN < T0. In terms of
the basic reproduction number

R0 :=
kN

γ
T0 =

T0

T̄0
,

existence of a positive equilibrium is therefore equivalent toR0 > 1.We assume henceforth thatR0 > 1
and denote the disease steady state byE = (T̄, T̄∗, V̄). Let us introduce the following sector condition:

(C) ( f (T)− f (T̄))

(
1−

T̄

T

)
6 0.

Note that this condition is satisfied whenf (T) is a decreasing function, independently of the value of
T̄ . For instance,Nowak & May (2000) considersf (T) = c1 − c2T , whereci are positive constants.
Another example (Perelson & Nelson, 1999) is f (T) = s+rT

(
1− T

K

)
provided thatf (0) = s> f (T̄).

THEOREM1 Let (C) hold. Then, the equilibriumE is globally asymptotically stable for (1) with respect
to the initial conditions satisfyingT∗(0)+ V(0) > 0.

Proof. Consider the following function on int(R3
+):

W =
∫ T

T̄

(
1−

T̄

τ

)
dτ +

∫ T∗

T̄∗

(
1−

T̄∗

τ

)
dτ +

β

Nβ

∫ V

V̄

(
1−

V̄

τ

)
dτ.
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Then,

Ẇ= ( f (T)− kV T)

(
1−

T̄

T

)
+ (kV T− βT∗)

(
1−

T̄∗

T∗

)
+

1

N
(NβT∗ − γV)

(
1−

V̄

V

)

= f (T)

(
1−

T̄

T

)
+ kVT̄ − kV T

T̄∗

T∗
+ β T̄∗ − βT∗

V̄

V
−
γ

N
V +

γ

N
V̄ .

Since from (3) we have thatβ T̄∗ = kV̄ T̄ = γ
N V̄ , it follows that

Ẇ= f (T)

(
1−

T̄

T

)
+ β T̄∗

V

V̄
− β T̄∗

T̄∗VT

T∗V̄ T̄
+ β T̄∗ − β T̄∗

V̄ T∗

VT̄∗
− βT∗

V

V̄
+ βT∗

= ( f (T)− f (T̄))

(
1−

T̄

T

)
+ βT∗

(
1−

T̄

T

)
+ β T̄∗

V

V̄

−β T̄∗
T̄∗VT

T∗V̄ T̄
+ β T̄∗ − β T̄∗

V̄ T∗

VT̄∗
− βT∗

V

V̄
+ βT∗

= ( f (T)− f (T̄))

(
1−

T̄

T

)
− β T̄∗

[
T̄

T
+

T̄∗VT

T∗V̄ T̄
+

V̄ T∗

VT̄∗
− 3

]
.

The first term is non-positive by (C). The second term is non-positive as well since the geometric mean
of three non-negative numbers is not larger than the arithmetic mean of those numbers. Hence,Ẇ 6 0
in int(R3

+) and the local stability ofE follows. Note thatẆ equals zero iff both the first term and the
second term are zero, and using (C), this happens at the points where

T̄

T
= 1 and

T̄∗V

T∗V̄
= 1.

Then LaSalle’s (1968) invariance principle implies that all bounded solutions in int(R3
+) converge to the

largest invariant set in

M =
{
(T, T∗,V) ∈ int(R3

+)
∣
∣
∣

T̄

T
= 1,

T̄∗V

T∗V̄
= 1

}
.

Firstly, the boundedness of all solutions follows from Lemma1 which is proved later in a more general
setting. Secondly, it is clear that the largest invariant set inM is the singleton{E}. Finally, note that
forward solutions starting on the boundary ofR3

+ with either T1(0) or V1(0) positive enter int(R3
+)

instantaneously. This concludes the proof. �

3. Competitive exclusion in a multistrain model

Let us now consider a multistrain model:

Ṫ = f (T)−
n∑

i=1
ki Vi T, (4)
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Ṫ∗i = ki Vi T − βi T∗i , i = 1, . . . , n, (5)

V̇i = Niβi T∗i − γi Vi , i = 1, . . . , n, (6)

where all parameters are positive. A calculation similar to the single-strain model shows that there is
a unique disease-free equilibriumE0 = (T0, 0, 0). For eachi , there is a corresponding single-strain
equilibrium Ei with positiveT , T∗i andVi components and zero components otherwise if and only if

1< R0
i .

Here,R0
i is the basic reproduction number for straini which is defined as

R0
i :=

T0

T̄ i
.

The positive components ofEi are given by

T̄ i =
γi

ki Ni
, T̄∗i =

f (T̄ i )

βi
, V̄i =

f (T̄ i )

ki T̄ i
. (7)

In what follows, we assume that allEi s exist and that (without loss of generality, by permuting the
indicesi if necessary)

T̄1 < T̄2 6 · · · 6 T̄n−1 6 T̄n < T0 (8)

or, equivalently,

1< R0
n 6 R

0
n−1 6 · · · 6 R

0
2 < R

0
1 (9)

and will prove the following competitive exclusion principle. It asserts that the strain with the lowest
target cell concentration at steady state (or equivalently, with highest basic reproduction number) will
ultimately dominate, provided that such strain is present initially.

THEOREM 2 Assume that allEi exist for (4–6), (C) holds withT̄1 instead ofT̄ and (8) holds. Then,
E1 is globally asymptotically stable for (4–6) with respect to the initial conditions satisfyingT∗1 (0) +
V1(0) > 0.

Proof. Consider the following function onU := {(T, T∗1 , . . . , T∗n ,V1, . . . , Vn) ∈ R2n+1|T, T∗1 ,V1 >
0}:

W =
∫ T

T̄1

(

1−
T̄1

τ

)

dτ +
∫ T∗1

T̄∗1

(

1−
T̄∗1
τ

)

dτ +
1

N1

∫ V1

V̄1

(
1−

V̄1

τ

)
dτ +

n∑

i=2

(
T∗i +

1

Ni
Vi

)
.

Then,

Ẇ=

(

f (T)−
n∑

i=1

ki Vi T

)(

1−
T̄1

T

)

+ (k1V1T − β1T∗1 )

(

1−
T̄∗1
T∗1

)

+
1

N1
(N1β1T∗1 − γ1V1)

(
1−

V̄1

V1

)
+

n∑

i=2

(
ki Vi T −

γi

Ni
Vi

)
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= ( f (T)− k1V1T)

(

1−
T̄1

T

)

+ (k1V1T − β1T∗1 )

(

1−
T̄∗1
T∗1

)

+
1

N1
(N1β1T∗1 − γ1V1)

(
1−

V̄1

V1

)
−

n∑

i=2

(
−ki Vi T̄

1+
γi

Ni
Vi

)
.

Note that the first three terms can be simplified in a way similar as in the proof of Theorem1, and using
the expression for̄Ti in (7), we find that

Ẇ= ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3

]

−
n∑

i=2

ki Vi (T̄
i − T̄1).

The first two terms are non-positive as we have already shown in the proof of Theorem1. The third part
is also non-positive by (8). ThusẆ 6 0, establishing a local stability ofE1. An application of LaSalle’s
invariance principle shows that all bounded solutions inU (and as before, boundedness follows from
Lemma1 which is proved later) converge to the largest invariant set in

{

(T, T∗1 , · · · , T
∗
n ,V1, · · · ,Vn) ∈ U

∣
∣
∣
∣
∣
T̄1

T
= 1,

T̄∗1 V1

T∗1 V̄1
= 1,Vi = 0, i > 2

}

,

which is easily shown to be the singleton{E1}. Finally, we observe that all solutions on the boundary of
U with T∗1 (0)+ V1(0) > 0 enterU instantaneously. This concludes the proof of Theorem2. �

4. Perturbations by mutations

In this section, we expand the multistrain model (4–6) to account for possible mutations between the
n strains. To be exact, we will study two different ways in which mutations occur. Our first extended
model can be written compactly as follows:

Ṫ = f (T)− k′V T, T ∈ R+, (10)

Ṫ∗ = P(µ)K V T − BT∗, T∗ ∈ Rn
+, (11)

V̇ = N̂ BT∗ − Γ V, V ∈ Rn
+, (12)

while the second is written as

Ṫ = f (T)− k′V T, T ∈ R+, (13)

Ṫ∗ = K V T − BT∗, T∗ ∈ Rn
+, (14)

V̇ = P(µ)N̂ BT∗ − Γ V, V ∈ Rn
+. (15)

In both models,K = diag(k), B = diag(β), N̂ = diag(N) andΓ = diag(γ ) and the matrixP(µ) with
µ ∈ [0, 1] is defined as follows:

P(µ) = I + µQ,
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whereQ is a matrix withqi j > 0 if strain j can mutate toi (for i 6= j ) so that different magnitudes
of qi j reflect the possible differences in the specific mutation rates. The diagonal entries ofQ are such
that each column ofQ sums to zero. Note thatP is a stochastic matrix (all its entries are in [0, 1] and
all its columns sum to one) provided thatµ 6 −1/qii for all i (which is assumed henceforth) and that
P(0) = I .

The biological interpretation of the difference between models (10–12) and (13–15) is motivated
by distinct mutation mechanisms. The first model (10–12) is appropriate to describe the mutations of
retroviruses such as HIV. In case of retroviruses, mutations can occur during the reverse transcription of
the viral RNA into viral DNA. The process of reverse transcription is highly error prone due to the lack
of an appropriate correction mechanism. Thus, a virion of typei that entered a previously healthy T cell
may be converted to viral DNA of typej , yielding an infected T cell of typej . The resulting DNA is
then integrated into the DNA of the T cell creating the so-called provirus that will ultimately be used
as a template to produce type-j virions until the infected T cell bursts. The second model (13–15) is
appropriate to describe the mutation mechanism of DNA viruses such as the herpes virus. Such viruses
bring their own DNA which is transcribed after infection. The transcription process uses both cellular
machinery and viral proteins and is subject to mistakes that give rise to mutations; see for instance
López-Buenoet al. (2003). Thus, a virion of typei that entered a previously healthy T cell yields an
infected T cell of the same typei that may go on to produce virions of different types.

Despite the structural differences between these models, it will later become clear that their qualita-
tive behaviour is identical; see our main result in Theorem5.

We also note that both models ignore the possibility of co-infections. A co-infection occurs when a
given T cell becomes simultaneously infected with virions of several distinct types. As a result, several
proviruses may coexist within a single T cell.

We start our analysis with the following result.

LEMMA 1 Both systems (10–12) and (13–15) are dissipative, i.e. there exists a forward-invariant com-
pact setK ⊂ R2n+1

+ such that every solution eventually entersK .

Proof. From (10) and (13) follows thatṪ 6 f (T), hence

lim sup
t→∞

T(t) 6 T0, (16)

provided that solutions to both systems are defined for allt > 0. To see that this is indeed the case,
we argue by contradiction and let(T(t), T∗(t),V(t)) be a solution with bounded maximal interval of
existenceI+ := [0, tmax). Then, necessarilyT(t) 6 max(T(0), T0) := Tmax for all t ∈ I+. This implies
that onI+, the following differential inequality holds for the solution of system (10–12):

Ṫ∗ 6 P(µ)K V Tmax− BT∗, (17)

V̇ 6 N̂ BT∗ − Γ V (18)

or for system (13–15):

Ṫ∗ 6 K V Tmax− BT∗, (19)

V̇ 6 P(µ)N̂ BT∗ − Γ V, (20)

respectively. Note that the right-hand sides in the above inequalities are cooperative and linear vector
fields. By a comparison principle for such inequalities, we obtain thatT(t) 6 T̃(t) andV(t) 6 Ṽ(t)
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(interpreted componentwise) for allt in the intersection of the domains where the solutions are defined.
Here,(T̃(t), Ṽ(t)) is the solution to the linear system whose vector field appears on the right-hand side
of the above inequalities, hence these solutions are defined for allt > 0. But thenT(t) andV(t) can be
extended continuously to the closed interval [0, Tmax], contradicting maximality ofI+.

Inequality (16) implies that for an arbitrary smallε > 0, there holds thatT(t) 6 T0 + ε for all
sufficiently larget . Now consider the behaviour of the quantityT + 1′T∗ (here, 1′ denotes a row vector
whose entries are all equal to 1) along the solutions of both systems (10–12) and (13–15):

d

dt
(T + 1′T∗) = f (T)− 1′BT∗ 6 f (T)− b1′T∗,

whereb := mini (βi ). By continuity of f on the compact interval [0, T0+ ε], there exists (a sufficiently
large)a > 0 such that

f (T)+ bT 6 a, for all T ∈ [0, T0+ ε].

Therefore, for all sufficiently larget , there holds that

d

dt
(T + 1′T∗) 6 a− bT − b1′T∗ 6 a− b(T + 1′T∗),

and hence

lim sup
t→∞

T(t)+ 1′T∗(t) 6
a

b
.

Finally, from (12) and (15), it follows that

lim sup
t→∞

V(t) 6
a

b
,

max
i
(N B)i

min
i

fi
.

Dissipativity now follows by observing that all the above bounds are independent of the initial
condition. �

LEMMA 2 Forµ = 0, let all the single-strain equilibriaE1, E2, . . . , En exist for either (10–12) or
(13–15), and assume that

T̄1 < T̄2 < · · · < T̄n < T̄n+1 := T0 (21)

and

f ′(T̄ j ) 6 0, for all j = 1, . . . , n+ 1. (22)

Then, the Jacobian matrices of (10–12) or (13–15), evaluated at any of theEi s, i = 1, . . . , n+1 (where
En+1 := E0), have the following properties:J(Ei ) hasi − 1 eigenvalues (counting the multiplicities)
in the open right half-plane and 2(n+1)− i eigenvalues in the open left half-plane. In particular,J(E1)
is Hurwitz.

Proof. Note that whenµ = 0, the Jacobian matrix associated to both model (10–12) and (13–15) is the
same and given by the following:

J =








f ′(T)− k′V 0 −k′T

K V −B K T

0 N̂ B −Γ







.
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To evaluate the Jacobian at any of theEi s, it is more convenient to permute the components of the
state vector as follows:

1. for i = 1, . . . , n, we use(T, T∗,V) → (T, T∗i ,Vi , T∗1 ,V1, . . . , T∗i−1,Vi−1, T∗i+1,Vi+1, . . . ,
T∗n ,Vn).

2. for i = n+ 1, we use(T, T∗,V)→ (T, T∗1 ,V1, T∗2 ,V2, . . . , T∗n ,Vn).

Then, the Jacobian matrices have the following structure:

1. Fori = 1, . . . , n,

J(Ei ) =























Ai
1 ∗ . . . ∗ ∗ . . . ∗

0 Bi
1 . . . 0 0 . . . 0

...
...

. . .
...

... . . . 0

0 0 . . . Bi
i−1 0 . . . 0

0 0 . . . 0 Bi
i+1 . . . 0

...
... . . .

...
...

. . . 0

0 0 . . . 0 0 . . . Bi
n























,

where

Ai
1 =







f ′(T̄ i )− ki V̄i 0 −ki T̄ i

ki V̄i −βi ki T̄ i

0 Niβi −γi





 and Bi

l =

(
−βl kl T̄ i

Nlβl −γl

)

, l 6= i,

and therefore, the eigenvalues ofJ(Ei ) coincide with those ofAi
1 andBi

l , l 6= i . Since f ′(T̄ i ) 6 0,
Lemma 3.4 inDe Leenheer & Smith(2003) implies that the eigenvalues ofAi

1 belong to the open
left half-plane. The matricesBi

l are quasi-positive, irreducible matrices, hence by the Perron–
Frobenius theorem, they have a simple real eigenvalueλi

l with corresponding (componentwise)
positive eigenvector. In addition, we have that

tr(Bi
l ) < 0 and det(Bi

l ) = βlγl

(
1−

T̄ i

T̄ l

)
,

and thus by (21) that

λi
l

{
< 0, for all l > i,

> 0, for all l < i .

There arei−1 unstableB-blocks on the diagonal ofJ(Ei ), each of which contributes one positive
eigenvalue toJ(Ei ).
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2. Fori = n+ 1,

J(En+1) =












An+1
1 ∗ . . . ∗

0 Bn+1
1 . . . 0

...
...

. . .
...

0 0 . . . Bn+1
n












,

where

An+1
1 =

(
f ′(T̄n+1)

)
and Bn+1

l =

(
−βl kl T̄n+1

Nlβl −γl

)

, l = 1, ..., n.

Note that by a similar argument as in the previous case, alln B-blocks on the diagonal ofJ(En+1)
are unstable with one positive and one negative eigenvalue.

�
Whenµ 6= 0, the question arises as to what happens to the equilibriaE1, . . . , En+1. The previous

lemma allows us to apply the implicit function theorem which for small positiveµ establishes the
existence of (unique) equilibriaEj (µ) near eachEj . Indeed, denoting the vector field of either (10–
12) or (13–15) by F(X, µ), we have that for allj = 1, . . . , n + 1, F(Ej , 0) = 0, and under the
conditions of the previous lemma, we also have that∂F/∂X(Ej , 0) is invertible. It is also clear that
En+1(µ) = En+1(0) for all µ > 0, i.e. the disease-free equilibrium is not affected by mutations.

The main issue is of course whether or not the remaining equilibriaEj (µ), j = 1, ..., n, are non-
negative. We study this problem next and derive the results in terms of the properties of the mutation
matrix Q.

For the steady-state analysis, we will need the following lemma which is a relevant modification of
Theorem A.12(ii) inSmith & Waltman(1994).

LEMMA 3 Let M be an irreducible square matrix with non-negative off-diagonal entries and lets(M)
be the stability modulus ofM . Suppose that there existx, r > 0 such thatMx + r = 0. Then, the
following hold:

1. if s(M) > 0, thenx = r = 0;

2. if s(M) = 0, thenr = 0 andx is a multiple of the positive eigenvector ofM .

Proof. Due to the Perron–Frobenius theorem,s(M) is the principal eigenvalue ofM . It is also the
principal eigenvalue ofM ′. SinceM ′ is also irreducible and non-negative off-diagonal, there exists a
v > 0 such thatM ′v = s(M)v. Equivalently,v′M = s(M)v′. Hence,

0= v′(Mx + r ) = s(M)v′x + v′r.

If s(M) > 0, then both non-negative productsv′x andv′r must be zero which implies thatx = r = 0.
If s(M) = 0, thenv′r = 0 which implies thatr = 0. Hence,Mx = 0 = s(M)x so thatx is a multiple
of the positive eigenvector ofM . �
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For convenience, we introduce the following notation. We defineA(µ) := Γ −1N̂ P(µ)K and as-
sume (by renumbering the strains if necessary) that the strains are numbered in such a way that the
matrix A(µ) has the lower block-triangular structure

A(µ) =












A1(µ) 0 . . . 0

µB2,1 A2(µ) . . . 0

...
...

. . .
...

µBk,1 µBk,2 . . . µAk(µ)












, (23)

where each diagonal block

Ai (µ) = diag

(
1

T̄i 1
, . . . ,

1

T̄isi

)
+ µBi

is such thatBi , i = 1, ..., k, are irreducible with non-negative off-diagonal entries. The off-diagonal
blocksBi, j , i > j , are non-negative. We note that the diagonal entries ofA(0) are a permutation of

0<
1

T̄n
<

1

T̄n−1
< · · · <

1

T̄1
.

We say that the strain groupj is reachable from strain groupi if there exists a sequence of indices
i = l1 < l2 < ... < lm = j such that all matricesBls+1,ls are non-zero. Our first result is as follows.

PROPOSITION1 Let the assumptions of Lemma2 hold, then the following hold:

1. For all sufficiently smallµ > 0, matrix A(µ) admitsn distinct positive eigenvalues given by

1

T̂n(µ)
<

1

T̂n−1(µ)
< · · · <

1

T̂1(µ)

such thatT̂i (0) = T̄i for i = 1, ..., n.

2. Matrix A(µ), µ > 0, admits a positive eigenvector(v1, v2, . . . , vk) if and only if 1
T̂1(µ)

is a

principal eigenvalue ofA1(µ), and all strain groupsj > 2 are reachable from strain group 1.

3. Matrix A(µ),µ > 0, admits a non-negative eigenvector(v1, v2, . . . , vk) for each eigenvalue 1
T̂r (µ)

such that 1
T̂r (µ)

is a principal eigenvalue of some diagonal blockAi (µ), ands(Aj (µ)) <
1

T̂r (µ)
for

all j = i + 1, . . . , k such that strain groupj is reachable from strain groupi . The componentv j

is positive (zero) if groupj is reachable (not reachable) from strain groupi .

4. All other eigenvectors ofA(µ), µ > 0, are not sign definite.

Proof. The first assertion follows readily becauseA(0) hasn real distinct eigenvalues andA(µ) is
continuous (actually, linear) inµ. The continuity of eigenvalues with respect toµ implies thatT̂i (0) = T̄i

for i = 1, . . . , n.
To prove the second assertion, we begin with sufficiency of the condition. Letµ > 0 be small and

suppose that 1
T̂1(µ)

is a principal eigenvalue ofA1(µ) and all strain groupsj > 2 are reachable from

strain group 1. SinceA1(µ) is irreducible with non-negative off-diagonal entries, Perron–Frobenius
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theorem implies that the eigenvectorv1 associated with 1
T̂1(µ)

is positive. Since 1
T̂1(µ)

is also the principal

eigenvalue ofA(µ), it follows that

s

(
Aj (µ)−

1

T̂1(µ)
I

)
< 0, j > 2,

hence
(

Aj (µ)− 1
T̂1(µ)

I
)−1

< 0 (see, e.g. Theorem A.12(i) inSmith & Waltman, 1994). The remaining

componentsv2, . . . , vk of the eigenvector satisfy the triangular system

0=µB2,1v1+
(

A2(µ)− 1
T̂1(µ)

I
)
v2,

0=µB3,1v1+ µB3,2v2+
(

A3(µ)− 1
T̂1(µ)

I
)
v3,

...

0=µBk,1v1+ · · · + µBk,k−1vk−1+
(

Ak(µ)− 1
T̂1(µ)

I
)
vk.

Solving this system recursively, we obtain

v j = −
(

Aj (µ)−
1

T̂1(µ)
I

)−1

(µBj,1v1+ · · · + µBj, j−1v j−1), j = 2, . . . , k.

Since the strain group 2 is reachable from strain group 1, the vectorµB2,1v1 > 0 is non-zero. Positivity

of the matrix−
(

A2(µ)− 1
T̂1(µ)

I
)−1

then implies thatv2 > 0. By induction onj , it follows thatv j > 0

for all j = 2, . . . , k, and hencev = (v1, v2, . . . , vk) is a positive eigenvector.
To prove the converse (the necessary condition), letv = (v1, v2, . . . , vk) be a positive eigenvector

of A(µ) and let 1
T̂q(µ)

be the corresponding eigenvalue. Since
(

A1(µ) − 1
T̂q(µ)

I
)
v1 = 0 andv1 > 0,

1
T̂q(µ)

must be the principal eigenvalue ofA1(µ) (Perron–Frobenius theorem). It remains to prove that

s(Aj (µ)) <
1

T̂q(µ)
for all j > 2. Considerj = 2, and for the sake of contradiction, suppose that

s
(

Aj (µ) − 1
T̂q(µ)

I
)
> 0. Since the eigenvalues are real and distinct for smallµ > 0, this actually

implies thats
(

Aj (µ)− 1
T̂q(µ)

I
)
> 0. Then, we have that

(

Aj (µ)−
1

T̂q(µ)
I

)

v2+ µB2,1v1 = 0

holds with non-negative vectorsv2 andµB2,1v1 which are both non-zero. By Lemma3, we have

v2 = 0, a contradiction. Hence,s
(

A2(µ) − 1
T̂q(µ)

I
)
< 0. Proceeding by induction onj , we find

thats
(

Aj (µ) − 1
T̂q(µ)

I
)
< 0 for all j > 2. Therefore, 1

T̂q(µ)
must be the principal eigenvalue ofA(µ),

that is, 1
T̂q(µ)

= 1
T̂1(µ)

. This proves the second assertion.

To prove the third assertion, we again start with the sufficient condition. Suppose that1
T̂r (µ)

is a

principal eigenvalue of some diagonal blockAi (µ) and s(Aj (µ)) <
1

T̂r (µ)
for all j = i + 1, ..., k
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such that strain groupj is reachable from strain groupi . It follows immediately that all the matrices
Al (µ)− 1

T̂r (µ)
I , l < i , are non-singular, and thusvl = 0, l < i . The componentvi is the eigenvector of

Ai (µ)− 1
T̂r (µ)

I and it is positive by Perron–Frobenius theorem. Letj = i +1, then one of the following

holds. If i + 1 is not reachable fromi , that is,Bi+1,i = 0 so that
(

Ai+1(µ)−
1

T̂r (µ)
I

)
vi+1 = 0

implies thatvi+1 = 0 becauseAi+1(µ) − 1
T̂r (µ)

I is non-singular. Ifi + 1 is reachable fromi and

s
(

Ai+1(µ)− 1
T̂r (µ)

I
)
< 0, then

vi+1 = −
(

Ai+1(µ)−
1

T̂r (µ)
I

)−1

µBi+1,i vi > 0.

By induction on j , it follows thatv j = 0 for all j > i that are not reachable fromi andv j > 0 for all
j > i that are reachable fromi . Hence,v = (0, . . . , 0, vi , vi+1, . . . , vk) is a non-negative eigenvector.

Now, we prove the necessary condition of the third assertion. Letv = (v1, v2, . . . , vk) be a non-
negative eigenvector ofA(µ) associated with eigenvalue1

T̂r (µ)
. Let vi > 0 be the first non-zero com-

ponent ofv, that is,v = (0, . . . , 0, vi , . . . , vk). Then,vi satisfies
(

Ai (µ) − 1
T̂r (µ)

I
)
vi = 0, hence

1
T̂r (µ)

must be an eigenvalue ofAi (µ)− 1
T̂r (µ)

I . Moreover, by Perron–Frobenius theorem, it must be the

principal eigenvalue andvi > 0. Now, considerj = i + 1 and the equation
(

Ai+1(µ)−
1

T̂r (µ)
I

)
vi+1+ µBi+1,i vi = 0.

The vectorsvi+1 andµBi+1,i vi are non-negative. Ifs
(

Ai+1(µ) − 1
T̂r (µ)

I
)
> 0, then by Lemma3,

µBi+1,i vi = 0. Sinceµ > 0 andvi > 0, this implies thatBi+1,i = 0. Equivalently,j = i + 1 is not
reachable fromi . An induction argument concludes the proof of the third assertion.

The final assertion of this theorem is a simple one. Let1
T̂r (µ)

be an eigenvalue ofAi (µ) but not the

principal eigenvalue and letv = (v1, v2, . . . , vn) be the corresponding eigenvector. Since all eigenval-
ues ofA(µ) are distinct, the matricesAl (µ)− 1

T̂r (µ)
I , l < i , are non-singular so thatvl = 0, l < i . Then,

vi must be an eigenvector ofAi (µ) and it cannot be sign definite due to Perron–Frobenius theorem. It
follows thatv is not sign definite. �

Our second result concerns the existence and the number of non-negative equilibria for the systems
(10–12) and (13–15) with smallµ > 0.

PROPOSITION2 Let the assumptions of Lemma2 hold and suppose that the strains are renumbered so
that A(µ) has the form (23). Let Ej (µ) = (T̂j (µ), T̂∗j (µ), V̂j (µ)) denote the non-trivial equilibria of
both (10–12) and (13–15) for smallµ > 0. Then,

1. Ej (µ) is positive if and only if 1
T̂j (µ)

is an eigenvalue ofA(µ) with a positive eigenvectorVj ;

2. Ej (µ) is non-negative if and only if 1
T̂j (µ)

is an eigenvalue ofA(µ) with a non-negative eigen-

vectorVj ;
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3. Ej (µ) /∈ R
2n+1
+ if and only if 1

T̂j (µ)
is an eigenvalue ofA(µ) with eigenvectorVj which is not

sign definite.

Proof. We will prove the proposition only for system (10–12) (the proof for (13–15) is similar). Observe
that the equilibrium relation following from (12) can be expressed asT̂∗j (µ) = (N̂ B)−1Γ V̂j (µ). Hence,

the signs of the corresponding components ofT̂∗j (µ) and V̂j (µ) are the same. Substituting the above

expression into (11) and (12), we find thatV̂j (µ) must satisfy -

[

Γ −1N̂ P(µ)K −
1

T̂j (µ)
I

]

V̂j (µ) =

[

A(µ)−
1

T̂j (µ)
I

]

V̂j (µ) = 0.

Thus, for each non-trivial equilibriumEj (µ), the quantity 1
T̂j (µ)

must be an eigenvalue ofA(µ) and

V̂j (µ) must be a multiple of the corresponding eigenvectorVj . If Vj is not sign definite, it follows that
Ej (µ) /∈ R

2n+1
+ . For allVj > 0, the components ofEj (µ) are uniquely determined via

V̂j (µ) =
f (T̂j (µ))

T̂j (µ)k′Vj
Vj , T̂∗j (µ) = (N̂ B)−1Γ V̂j (µ).

Hence,Ej (µ) is positive (non-negative) if and only ifVj is positive (non-negative). �
An immediate corollary to Propositions1 and2 is that if the mutation matrixQ is irreducible, then

A(µ) is irreducible and systems (10–12) and (13–15) with smallµ > 0 admit a unique positive equi-
librium E1(µ) and no other non-trivial non-negative equilibria. If the mutation matrixQ is reducible,
then a positive equilibrium exists if and only if the fittest strain (with lowest valueT̄1) belongs to strain
group 1 and all other strain groups are reachable from group 1, meaning that the fittest strain can even-
tually mutate into any other strain. In addition, non-trivial non-negative equilibria (that are not positive)
are feasible forµ > 0 only if Q is reducible. Specifically, if the strains can be numbered according to
(23), then at mostk non-trivial non-negative equilibria exist. An extreme case is when the fittest strain
belongs to groupk, in which case no positive and only one non-negative equilibrium exist. We illustrate
a few mutation scenarios in Fig.1, and indicate the number and type of the various disease equilibria
for models (10–12) and (13–15) when the mutation parameterµ > 0 is sufficiently small.

4.1 On uniform strong repellers

To prove our main result (Theorem5), we first need to establish a particular uniform persistence prop-
erty that models (10–12) and (13–15) exhibit for small positive values of the mutation parameterµ.
To establish this property, we need to introduce several preliminary concepts and results. Inspired by
Thieme(1993), we make the following definition.

DEFINITION 1 Consider a system

ẋ = F(x) (24)

on a compact forward-invariant setK ⊂ Rm with a continuous flowφ(t, x). Let K0 ⊂ K be a closed
forward-invariant subset ofK . Let d(x, A) denote the distance from a pointx to the setA. We say that
K0 is a uniform strong repeller inK if there exists aδ > 0 such that for all solutionsφ(t, x) ∈ K\K0,
lim inf t→∞ d(φ(t, x), K0) > δ.
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FIG. 1. Representative mutation graphs with three strains. F1 denotes the fittest strain, F2 the second fittest and F3 the least-fit
strain (fitter strains have lowerT-value at equilibrium; see (21)). (a) is an irreducible case and (b), (c) and (d) are reducible cases.
Non-trivial equilibria for (10–12) and (13–15) for smallµ > 0: (a) one positive equilibrium (E1(µ)), (b) one positive (E1(µ))
and two distinct non-negative non-trivial equilibria (E2(µ), E3(µ)), (c) no positive and two non-negative non-trivial equilibria
(E1(µ), E2(µ)) and (d) no positive and one non-negative non-trivial equilibrium (E1(µ)).

THEOREM 3 LetΠ : K → R+ be a continuously differentiable function such thatΠ(x) = 0 if and
only if x ∈ K0. Suppose there exists a lower semi-continuous functionψ : K → R such that

Π̇

Π
= ψ, ∀ x ∈ K\K0. (25)

In addition, suppose that the following condition holds:

(H) ∀ x ∈ K0, ∃T > 0: 〈ψ(φ(T, x))〉 > 0,

where〈ψ(φ(T, x))〉 denotes the average value ofψ(φ(t, x)) on the interval [0, T ]. Then,K0 is a uni-
form strong repellor inK .

Proof.

Step 1.Note that by lower semi-continuity ofψ and continuity ofφ, for everyp ∈ K0, there exists an
open setUp containingp and a lower semi-continuous mapTp: Up → (0,+∞) such that for every
q ∈ Up, (H) holds withx = q andT = Tp(q). For everyp ∈ K0, we choose a non-empty open set
Vp with V̄p ⊂ Up. Then, by the lower semi-continuity of each mapTp and compactness of̄Vp, we have
that

inf
q∈V̄p

Tp(q) > 0

is achieved at some point in̄Vp. Since∪p∈K0Vp is an open cover ofK0, there exists a finite open
subcover∪i=1,...,nVpi . Let τi = infq∈V̄pi

Tpi (q) > 0 and let

τ := min
i=1,...,n

τi > 0.
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Note that for everyp ∈ K0, there is aT > τ such that (H) holds withx = p. Hence,τ is a uniform (in
K0) lower bound forTs for which (H) holds.
Step 2.Let h > 0 be given. Define

Uh = {x ∈ K |∃ T > τ : 〈ψ(φ(T, x))〉 > h}. (26)

We claim thatUh is open. Indeed, letz ∈ Uh. Then, there is someT > τ such that

ε := 〈ψ(φ(T, z))〉 − h > 0.

Then, from the continuity ofφ and the lower semi-continuity ofψ (and therefore uniform lower semi-
continuity ofψ on compact sets), it follows that there exists an open setWz containingz such that for
all z′ ∈ Wz, it holds that

ψ(φ(t, z′) > ψ(φ(t, z))− ε, ∀ t ∈ [0, T ]. (27)

Since

〈ψ(φ(T, z))〉 = ε + h,

it follows from (27) that for allz′ ∈ Wz,

〈ψ(φ(T, z′))〉 > h,

and thusWz ⊂ Uh, establishing our claim.
Step 3.DefineTh: Uh→ [τ,+∞) as

Th(z) := inf{T > τ |〈ψ(φ(T, z))〉 > h}.

We claim thatTh is upper semi-continuous. Letz ∈ Uh and letε′ > 0 be given. Then, there is some
T > τ such that

〈ψ(φ(T, z))〉 > h,

which implies that

T < Th(z)+ ε
′. (28)

By the argument in Step 2, there is some open setWz containingz such that for allz′ ∈ Wz, it holds that

〈ψ(φ(T, z′))〉 > h,

and thus that for allz′ ∈ Wz,

Th(z
′) 6 T . (29)

Our claim follows by combining (28) and (29).



MULTISTRAIN VIRUS DYNAMICS WITH MUTATIONS 301

Step 4.The nested family{Uh}h>0 is decreasing (under set inclusion), and forms an open cover ofK0.
Hence, there is somēh so thatUh̄ coversK0. SinceK̃ := K \ Uh̄ is compact andΠ is continuous,Π
attains its minimal valuem> 0 on K̃ . Choosep ∈ (0,m) and define

I p := {z ∈ K |Π(z) ∈ (0, p]} ⊂ Uh̄.

Step 5.We claim that every forward solution starting inI p eventually leavesI p, that is,

∀ z ∈ I p, ∃tz > 0: φ(tz, z) /∈ I p.

By contradiction, ifφ(t, z) ∈ I p for all t > 0, thenφ(t, z) ∈ Uh̄ for all t > 0, and thus,

∃ Tt > τ :
1

Tt

∫ t+Tt

t
ψ(φ(s, z))ds> h̄.

Integrating equation (25) from t to t + T , we find that

ln

(
Π(φ(t + Tt , z))

Π(φ(t, z))

)
> h̄Tt ,

which implies that

Π(φ(t + Tt , z)) > eh̄TtΠ(φ(t, z)). (30)

Sett0 = 0 andtk = tk−1 + Ttk−1 for k = 1, 2, . . .. Since eachTtk > τ > 0, it follows thattk → ∞.
Then, by (30) and sincetk > τ for all k, we have that

Π(φ(tk, z)) > eh̄Ttk−1Π(φ(tk−1, z)) > ekτΠ(z),

so thatΠ(φ(tk, z))→∞ ask→∞. This contradicts the boundedness ofΠ on the compact setK .
Step 6.Let

Ĩ p = I p ∪ K0.

We will show that there is someq ∈ (0, p) so that forward solutions starting outsideĨ p never reachIq,
that is,

∃q ∈ (0, p): z /∈ Ĩ p⇒ φ(t, z) /∈ Iq, ∀ t > 0.

Consider a forward solutionφ(t, z) with z /∈ Ĩ p. If φ(t, z) /∈ Ĩ p for all t > 0, then we are done since
Ĩq ⊂ Ĩ p, so let us assume that for sometz > 0⇒ φ(tz, z) ∈ Ĩ p. Denote the first time this happens by
t0:

t0 = min{t > 0|φ(t, z) ∈ Ĩ p}.

Setz∗ = φ(t0, z) and note thatΠ(z∗) = p. Denote infz∈K0 ψ(z) by m′. If m′ > 0, then (25) implies
thatΠ(φ(t, z∗)) > Π(z∗) = p for all t > 0, so that we are done. If on the the other handm′ < 0, we
first define

T̄ = max
z∈ Ĩ p

Th(z) (> τ > 0).
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Note that this maximum is indeed achieved on the compact setĨ p sinceTh is upper semi-continuous.
Now, we define

q = p em′T̄ ,

and note thatq is independent of the chosen solutionz(t). We will show that for this choice ofq, our
claim follows. Indeed, we have that

∀ t ∈ (0, T̄):
1

t

∫ t

0
ψ(φ(s, z∗))ds> m′,

and thus by (25) that

∀ t ∈ (0, T̄): Π(φ(t, z∗)) > Π(z∗)em′t > q, (31)

which implies that during the time interval(0, T̄), the solutionφ(t, z∗) has not reachedIq. On the other
hand, during that same time interval(0, T̄), the solutionφ(t, z∗) must have leftĨ p. If this were not the
case, then by the argument in Step 5, there would be someT∗ ∈ [τ, T̄) such that

Π(φ(T∗, z∗)) > Π(z∗)eh̄T > p

and thus thatφ(T∗, z∗) /∈ Ĩ p, a contradiction to our assumption. This process can be repeated iteratively
to show that the forward solutionφ(t, z) that did not start iñI p will never reachIq.

So far we have shown that for any solutionφ(t, x) /∈ K0, inequalityΠ(φ(t, x)) > q > 0
holds for all sufficiently larget . The setsK0 = Π−1({0}) andΠ−1([q,+∞)) ∩ K are compact and
disjoint. Therefore, there exists aδ > 0 such thatd(φ(t, x), K0) > δ for all x /∈ K0 and all sufficiently
larget . �

4.2 Global stability for smallµ > 0

The following lemmas will be used to prove the global stability of the positive equilibrium for small
µ > 0.

LEMMA 4 Leta: Rm→ Rn be continuous and letb ∈ int(Rn
+). Let f : Rm× (Rn

+\{0})→ R be defined
as

f (x, y) :=
a′(x)y

b′y
.

Then,

lim inf
x→x0,y→0+

f (x, y) = min
i∈{1,...,n}

ai (x0)

bi
; (32)

furthermore, if we definef (x, 0) = mini∈{1,...,n}
ai (x)

bi
, then f (x, y) becomes a lower semi-continuous

function onRm× Rn
+ whose restriction onRm× {0} is continuous.

Proof. Extending the functionf (x, y) by defining f (x0, 0) = lim inf x→x0,y→0+ f (x, y) clearly
produces a lower semi-continuous function. Furthermore, sincea(x) is continuous, the function
mini∈{1,...,n}

ai (x)
bi

is continuous as well. So it remains to show that (32) holds.
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Without loss of generality, we may assume that mini∈{1,...,n}
ai (x0)

bi
= a1(x0)

b1
. Settingx = x0 and

y2 = y3 = · · · = yn = 0 and lettingy1 → 0+, we find that f (x0, y1, 0, . . . , 0) →
a1(x0)

b1
. Hence,

lim inf x→x0,y→0+ f (x, y) 6 a1(x0)
b1

. We also observe that as long asy ∈ Rn
+\{0}, the value

a′(x)y

b′y
=

n∑

i=1

ai (x)

bi

bi yi

b1y1+ · · · + bnyn

is a convex linear combination of the valuesai (x)
bi
, i = 1, . . . , n. By continuity ofa(x), for anyε > 0,

there exists aδ > 0 such that∀ i ∈ {1, . . . , n} and∀ x ∈ Bδ(x0), we haveai (x) > ai (x0)− εbi . Hence,
for all x ∈ Bδ(x0) and for ally ∈ Rn

+\{0}, f (x, y) > a1(x0)
b1
− ε. We have established that

a1(x0)

b1
> lim inf

x→x0,y→0+
f (x, y) >

a1(x0)

b1
− ε.

Sinceε > 0 is arbitrary, (32) follows. �

LEMMA 5 Suppose that (8) holds. Then, there existη,µ0 > 0 such that

lim inf
t→∞

1′V(t) > η > 0

for anyµ ∈ [0, µ0] and for any solution of (10–12) and (13–15) with 1′V(t) > 0.

Proof. We will prove the claim for system (10–12) (the proof for (13–15) is similar). The proof consists
of two parts. We first show that there existη0, µ0 > 0 such that lim inft→∞ 1′(T∗(t)+ V(t)) > η0 > 0
for all solutions withT∗(t),V(t) 6= 0.

We choosen positive numbersÑi so that γi
ki T0

< Ñi < Ni for all 1 6 i 6 n. This is possible since

we assumēTi =
γi

ki Ni
< T0. Let v = (Ñ, 1). It follows that

v′

(
−B K T0

N̂ B −Γ

)

= (b1(N1− Ñ1), . . . , bn(Nn − Ñn), k1T0Ñ1− γ1, . . . , knT0Ñn − γn)

is a positive vector. By continuity, there exists aµ0 > 0 such that

v′M(T0, µ), whereM(T, µ) :=

(
−B P(µ)K T0

N̂ B −Γ

)

is a positive vector for allµ ∈ [0, µ0].
Consider a system

Ṫ = f (T)− k′V T, T ∈ R+, (33)

Ṫ∗ = P(µ)K V T − BT∗, T∗ ∈ Rn
+, (34)

V̇ = N̂ BT∗ − Γ V, V ∈ Rn
+, (35)

µ̇ = 0, µ ∈ [0, µ0]. (36)



304 P. D. LEENHEER AND S. S. PILYUGIN

Let K ′ be the forward-invariant compact set for (10–12) established in Lemma1 and defineK =
K ′ × [0, µ0]. It is clear thatK is compact and forward invariant under (33–36). The set

K0 := ([0, T0] × {0} × {0} × [0, µ0]) ∩ K

is clearly a compact forward-invariant subset ofK .
Let Π(T∗,V) := v′(T∗,V). The functionΠ is clearly smooth and zero onK0 and positive on

K\K0. Furthermore,

Π̇

Π
= ψ :=

v′M(T, µ)(T∗,V)

v′(T∗,V)

is lower semi-continuous onK by Lemma4 once we define the value ofψ on K0 as

ψ(T, µ) = min
i=1,...,n

v′M(T, µ)i
vi

.

We note that the functionψ(T, µ) is continuous in(T, µ). Since all solutions of (33–36) in K0 have
the property that limt→∞ T(t) = T0, it follows thatψ(T(t), µ) > 0 for all sufficiently larget . Hence,
by Theorem3, the setK0 is a uniform strong repeller inK . If we use theL1-norm of (T∗,V) as the
distance function toK0, we find that there exists anη0 > 0 such that

lim inf
t→∞

1′(T∗ + V) > η0

for all solutions of (33–36) in K\K0.
To complete the proof, we need to show that there exists anη > 0 such that lim inft→∞ 1′V(t) >

η > 0 for all solutions with 1′V(t) > 0. Observe that 1′V(t) > 0 implies that 1′T∗(t) > 0. Hence, by
the result of part one, we have that lim inft→∞ 1′(T∗(t) + V(t)) > η0 > 0 or, equivalently, 1′T∗(t) >
η0/2− 1′V(t) for all sufficiently larget . We substitute this inequality into (12) and find that

1′V̇ > A0

(η0

2
− 1′V(t)

)
− A11′V(t), A0 := min

i
(Niβi ) > 0, A1 := max

i
(γi ) > 0

holds for larget . It follows immediately that

lim inf
t→∞

1′V(t) > η =
η0A0

2(A0+ A1)
> 0.

�

LEMMA 6 Let

σ(x, y, z) := x + y+
z

xy
− 3z

1
3 .

Then, for anyz0,M > 0, there exists aδ > 0 such thatσ(x, y, z) > M for all 0< x < δ, all y > 0 and
all z> z0.

Proof. Observe that the minimum of the functionσ(x, ·, z) on the sety ∈ (0,+∞) is achieved at
y =
√

z/x. Hence, for ally > 0, it holds that

f (x, y, z) > f

(
x,

√
z

x
, z

)
= x + 2

√
z

x
− 3z

1
3 .
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Let z0 > 0 and define

δ :=
4z0

(
M + 3z

1
3
0

)2
.

Then for all 0< x < δ, all y > 0, and allz> z0, it holds that

f (x, y, z) > 2

√
z

x
− 3z

1
3 = z

1
2

(
2

x
1
2

− 3z−
1
6

)
> z

1
2
0

(
2

δ
1
2

− 3z
− 1

6
0

)
= M.

�

THEOREM 4 Let K be the absorbing compact set established in Lemma1, and let

U = {(T, T∗,V) ∈ R2n+1
+ |T, T∗1 ,V1 > 0}.

Suppose that (C) holds with̄T1 instead ofT̄ . Then, there exist aµ1 > 0 and a compact setKδ ⊂ U
such that for anyµ ∈ [0, µ1] and for any solution of (10–12) or (13–15) in U , there exists at0 > 0 such
that(T(t), T∗(t),V(t)) ∈ Kδ for all t > t0.

Proof. Both for system (10–12) and (13–15), the proof will be based on the same Lyapunov function

W =
∫ T

T̄1

(

1−
T̄1

τ

)

dτ +
∫ T∗1

T̄∗1

(

1−
T̄∗1
τ

)

dτ +
1

N1

∫ V1

V̄1

(
1−

V̄1

τ

)
dτ +

∑

i>1

T∗i +
1

Ni
Vi

that we used to show competitive exclusion withµ = 0.
Case1. System (10–12).

ComputingẆ for system (10–12), we obtain after some simplifications

Ẇ= ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3

]

−
n∑

i=2

ki Vi (T̄
i − T̄1)+

T∗1 − T̄∗1
T∗1

µ

n∑

j=1

q1 j k j Vj T + µ
n∑

i=2

n∑

j=1

qi j k j Vj T.

Recombining the terms, we further obtain

Ẇ= ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3

]

−
n∑

i=2

ki Vi (T̄
i − T̄1)−

T̄∗1
T∗1
µ

n∑

j=1

q1 j k j Vj T + µ
n∑

i=1

n∑

j=1

qi j k j Vj T.

We note that
n∑

i=1

n∑

j=1

qi j k j Vj T =
n∑

j=1

(
n∑

i=1

qi j

)

kj Vj T = 0
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since all column sums ofQ are zero. Hence,

Ẇ= ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3

]

−
n∑

i=2

ki Vi (T̄
i − T̄1)−

T̄∗1
T∗1
µq11k1V1T −

T̄∗1
T∗1
µ

n∑

j=2

q1 j k j Vj T.

We rewriteẆ as

Ẇ= ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+ (1+ q11µ)

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

+3β1T̄∗1 (1− (1+ q11µ)
1/3)−

n∑

i=2

ki Vi (T̄
i − T̄1)−

T̄∗1
T∗1
µ

n∑

j=2

q1 j k j Vj T.

Note that the last term oḟW is non-positive, hence1

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+ (1+ q11µ)

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

+3β1T̄∗1 (1− (1+ q11µ)
1/3)−

n∑

i=2

ki Vi (T̄
i − T̄1).

By Lemma5, there existη,µa > 0 such that 1′V(t) > η for all µ ∈ [0, µa] and all sufficiently larget .
Let α = mini>2 ki (T̄ i − T̄1) > 0, then

n∑

i=2

ki Vi (T̄
i − T̄1) > α

n∑

i=2

Vi > α(η − V1).

Thus, by shifting time forward if necessary, we have the inequality

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+ (1+ q11µ)

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

+3β1T̄∗1 (1− (1+ q11µ)
1/3)− αη + αV1.

Letµb > 0 be such that for allµ ∈ [0, µb],

1+ q11µ ∈
[

1

2
, 1

]
, 3β1T̄∗1 (1− (1+ q11µ)

1/3)− αη 6 −
αη

2
.

1Incidentally, ifq11 = 0, we obtain global stability of the boundary equilibriumE1 for all µ > 0.



MULTISTRAIN VIRUS DYNAMICS WITH MUTATIONS 307

Letµ1 = min(µa, µb) and choose sufficiently largeL > 0 so that

3β1T̄∗1 (1− (1+ q11µ)
1/3)− αη + αV1 < L

for all solutions of (10–12) in K and allµ ∈ [0, µ1]. For anyµ ∈ [0, µ1], we have that

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+ (1+ q11µ)

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

−
αη

2
+ αV1,

where the first two terms are non-positive and 1+q11µ ∈
[1

2, 1
]
. Inspecting the first term iṅW, we find

that there exists aδ0 > 0 such that

( f (T)− f (T̄1))

(

1−
T̄1

T

)

< −(L + 1)

for all T < δ0 and allµ ∈ [0, µ1]. Now, we inspect the the second term inẆ. Using Lemma6 with

x =
V̄1T∗1
V1T̄∗1

, y =
T̄1

T
, z= 1+ q11µ, z0 =

1

2
,

we conclude that there exists aδ1 > 0 such that

−β1T̄∗1

[
T̄1

T
+ (1+ q11µ)

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

< −(L + 1)

for all
T∗1
V1
< δ1 and allµ ∈ [0, µ1]. Finally, there exists aδ2 > 0 such that−αη2 + αV1 < −

αη
4 for all

V1 < δ2 and allµ ∈ [0, µ1]. Let

K̂δ = {(T, T
∗,V) ∈ K ∩U |T > δ0,V1 > δ2, T

∗
1 > δ1V1}.

Consider(T, T∗,V) ∈ (K ∩U )\K̂δ and letµ ∈ [0, µ1], then at least one of the following holds:

• T < δ0, in which caseẆ 6 −(L + 1)+ L 6 −1;

• T∗1 /V1 < δ1, in which caseẆ 6 −(L + 1)+ L 6 −1;

• V1 < δ2, in which caseẆ 6 −αη4 .

Hence, for all(T, T∗,V) ∈ (K ∩U )\K̂δ and allµ ∈ [0, µ1], we have

Ẇ 6 −min
(
1,
αη

4

)
< 0.

We postpone the rest of the proof until we have showed that a similar inequality holds for system
(13–15).
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Case2. System (13–15).
ComputingẆ for system (13–15), we obtain after some simplifications

Ẇ= ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+

V̄1T∗1
V1T̄∗1

− 3

]

−
n∑

i=2

ki Vi (T̄
i − T̄1)+ µ

(
V1− V̄1

V1

) n∑

j=1

q1 j
Nj

N1
β j T

∗
j + µ

n∑

i=2

n∑

j=1

qi j
Nj

Ni
β j T

∗
j .

Note that theµ dependent terms can be rearranged as follows:

µ




n∑

i=1

qii βi T
∗
i −

V̄1

V1

n∑

j=2

q1 j
Nj

N1
β j T

∗
j



+µ




n∑

j=2

q1 j
Nj

N1
β j T

∗
j +

n∑

i=2

n∑

j 6=i

qi j
Nj

Ni
β j T

∗
j



−µ
V̄1

V1
q11β1T∗1 .

In the above, the first term is non-positive and the second term can be rewritten as follows:

µ

n∑

i=1

αi T
∗
i ,

for suitableαi > 0, and the third term will be absorbed in the square bracket [·] term in Ẇ. We find that

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+ (1+ q11µ)

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

+3β1T̄∗1 (1− (1+ q11µ)
1/3)+ µ

n∑

i=1

αi T
∗
i −

n∑

i=2

ki Vi (T̄
i − T̄1).

By Lemma5, there existη,µa > 0 such that 1′V(t) > η for all µ ∈ [0, µa] and all sufficiently larget .
Let α = mini>2 ki (T̄ i − T̄1) > 0, then

n∑

i=2

ki Vi (T̄
i − T̄1) > α

n∑

i=2

Vi > α(η − V1).

Thus, by shifting time forward if necessary, we have the inequality

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+ (1+ q11µ)

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

+3β1T̄∗1 (1− (1+ q11µ)
1/3)+ µ

n∑

i=1

αi T
∗
i − αη + αV1.

Since solutions are in the compact setK for sufficiently large times, there is someµ′a > 0 such that

µ

n∑

i=1

αi T
∗
i 6

αη

2
, ∀µ ∈ [0, µ′a],
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and therefore,

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+ (1+ q11µ)

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

+3β1T̄∗1 (1− (1+ q11µ)
1/3)−

αη

2
+ αV1.

Letµb > 0 be such that for allµ ∈ [0, µb],

1+ q11µ ∈
[

1

2
, 1

]
, 3β1T̄∗1 (1− (1+ q11µ)

1/3)−
αη

2
6 −

αη

4
.

Letµ1 = min(µa, µ
′
a, µb) and choose sufficiently largeL > 0 so that

3β1T̄∗1 (1− (1+ q11µ)
1/3)− αη + αV1 < L

for all solutions of (13–15) in K and allµ ∈ [0, µ1]. For anyµ ∈ [0, µ1], we have that

Ẇ6 ( f (T)− f (T̄1))

(

1−
T̄1

T

)

− β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+ (1+ q11µ)

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

−
αη

4
+ αV1,

where the first two terms are non-positive and 1+q11µ ∈
[1

2, 1
]
. Inspecting the first term iṅW, we find

that there exists aδ0 > 0 such that

( f (T)− f (T̄1))

(

1−
T̄1

T

)

< −(L + 1)

for all T < δ0 and allµ ∈ [0, µ1]. Inspecting the second term iṅW, we use Lemma6 with

x = (1+ q11µ)
V̄1T∗1
V1T̄∗1

, y =
T̄1

T
, z= 1+ q11µ, z0 =

1

2

and conclude that there exists aδ1 > 0 such that

−β1T̄∗1

[
T̄1

T
+

T̄∗1 V1T

T∗1 V̄1T̄1
+ (1+ q11µ)

V̄1T∗1
V1T̄∗1

− 3(1+ q11µ)
1/3

]

< −(L + 1)

for all
T∗1
V1
< δ1 and allµ ∈ [0, µ1]. Finally, there exists aδ2 > 0 such that−αη4 + αV1 < −

αη
8 for all

V1 < δ2 and allµ ∈ [0, µ1]. Let

K̂δ = {(T, T
∗,V) ∈ K ∩U |T > δ0,V1 > δ2, T

∗
1 > δ1V1}.
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Consider(T, T∗,V) ∈ (K ∩U )\K̂δ and letµ ∈ [0, µ1], then at least one of the following holds:

• T < δ0, in which caseẆ 6 −(L + 1)+ L 6 −1;

• T∗1 /V1 < δ1, in which caseẆ 6 −(L + 1)+ L 6 −1;

• V1 < δ2, in which caseẆ 6 −αη8 .

Hence, for all(T, T∗,V) ∈ (K ∩U )\K̂δ and allµ ∈ [0, µ1], we have

Ẇ 6 −min
(
1,
αη

8

)
< 0.

The remainder of the proof is the same for both the above two cases and presented next.
The non-negative functionW(T, T∗,V, µ) is continuous and bounded from above on the setK̂δ ×

[0, µ1] becauseT , T∗1 , V1 are bounded away from zero. Hence, it attains a finite positive maximum

w := max
K̂δ×[0,µ1]

W(T, T∗,V, µ) > 0.

Define a new set

Kδ = {(T, T
∗,V) ∈ K ∩U |W(T, T∗,V, µ) 6 w, ∀µ ∈ [0, µ1]}.

By construction, we have that̂Kδ ⊂ Kδ ⊂ K ∩ U . The continuity ofW implies thatKδ is closed, and
therefore compact inU .

It remains to show that all the solutions of (10–12) in U enter and remain inKδ for all sufficiently
large times. SinceK ∩ U is an absorbing set for allµ > 0 (Lemma1), without loss of generality we
need to prove this for all solutions inK ∩U .

Let Φ(t) = (T(t), T∗(t),V(t)) ∈ K ∩ U be a solution of (10–12) for some fixedµ ∈ [0, µ1].
Observe that in the set(K ∩U )\K̂δ, the inequalityẆ 6 −min

(
1, αη8

)
< 0 holds. SinceW > 0, there

exists at0 > 0 such thatΦ(t0) ∈ K̂δ ⊂ Kδ. We will show thatΦ(t) ∈ Kδ for all t > t0. For the sake
of contradiction, let us suppose that there exists at1 > t0 such thatΦ(t1) /∈ Kδ. Then there exists a
t2 ∈ [t0, t1) such thatΦ(t2) ∈ Kδ andΦ(t) /∈ Kδ for all t ∈ (t2, t1]. On the one hand, we have that

W(Φ(t2), µ) 6 w < W(Φ(t1), µ)

by definition of Kδ. On the other hand, for allt ∈ (t2, t1], we haveΦ(t) /∈ Kδ and consequently
Φ(t) /∈ K̂δ so that d

dt W(Φ(t), µ) = Ẇ < 0. This contradiction shows thatΦ(t) ∈ Kδ for all t > t0 and
concludes the proof of the theorem. �

THEOREM 5 Let the assumptions of Lemma2 hold, letU be the set from Theorem4 and define

U ′ = {(T, T∗,V) ∈ R2n+1
+ |T∗1 + V1 > 0} ⊃ U.

Then, there exist aµ0 > 0 and a continuous mapE: [0, µ0] → U such that the following holds:

1. E(0) = E1 (whereE1 is the same as in Lemma2), andE(µ) is an equilibrium of (10–12) or of
(13–15) for all µ ∈ [0, µ0];

2. for eachµ ∈ [0, µ0], E(µ) is a globally asymptotically stable equilibrium of (10–12) or (13–15)
in U ′.
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Proof. To prove the first assertion, we begin by noting that forµ = 0, E1 is a stable hyperbolic
equilibrium of (10–12) or (13–15) by Lemma2. Since the vector field of (10–12) and (13–15) is linear
in µ, by the implicit function theorem there exist ah > 0 and a continuous mapE: (−h, h)→ R2n+1

such thatE(µ) is an equilibrium of (10–12) or (13–15) for all µ ∈ (−h, h). The fact thatE(µ) ∈ U for
all µ ∈ [0, h) follows from Proposition2 and the fact that̄T1 < T̄i , i > 2. Note that forµ > 0, E(µ)
may be positive (ifQ is irreducible) or non-negative (ifQ is reducible). Nevertheless, in both cases,
µ > 0 impliesE(µ) ∈ U .

The proof of the second assertion is based on the result ofSmith & Waltman(1999, Proposition 2.3).
We have already established the fact thatE(0) is a stable hyperbolic equilibrium of (10–12) or (13–15).
By Theorem2, E(0) is globally asymptotically stable inU ′ for µ = 0. In addition, by Theorem4,
there exist aµ0 > 0 and a compact setKδ ⊂ U such that for eachµ ∈ [0, µ0] and each solution
(T(t), T∗(t),V(t)) of (10–12) or (13–15) in U , there exists at0 > 0 such that(T(t), T∗(t),V(t)) ∈
Kδ for all t > t0. Hence, the condition (H1) of Proposition 2.3 inSmith & Waltman(1999) holds.
Proposition 2.3 itself then implies the global stability ofE(µ) in U for all sufficiently smallµ > 0.
Finally, solutions of (10–12) or (13–15) starting inU enterU ′ instantaneously, hence global stability of
E(µ) in U ′ follows as well. �
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Appendix A. Inclusion of loss of virus in the model

A.1 Single strain

If we explicitly account for the loss of the free virions upon infection, model (1) becomes

Ṫ = f (T)− kV T,

Ṫ∗ = kV T− βT∗,

V̇ = NβT∗ − γV − kV T. (A.1)

We still assume that the growth rate of the healthy cell population is given by (2), henceE0 = (T0, 0, 0)
is still an equilibrium of (A.1). A positive equilibrium exists if the following quantities are positive:

T̄ =
γ

k(N − 1)
, T̄∗ =

f (T̄)

β
, V̄ =

f (T̄)

kT̄
. (A.2)

Note that this is the case whenN > 1 and f
( γ

k(N−1)

)
> 0 or (equivalently by (2)) whenT̄ = γ

k(N−1) <
T0. In terms of the basic reproduction number

R0 :=
k(N − 1)

γ
T0 =

T0

T̄
,

existence of a positive equilibrium is therefore equivalent toR0 > 1. Assuming thatR0 > 1, we will
still denote this disease steady state byE = (T̄, T̄∗, V̄). We introduce the following condition:

(C′) f ′(c)+
k

γ
f (T̄) 6 0, for all c ∈ [0, T0].

Note that this condition is satisfied whenf (T) is a decreasing function with a sufficiently large negative
derivative.

THEOREM A1 Let (C′) hold. Then, the positive equilibriumE is globally asymptotically stable for
(A.1) with respect to the initial conditions satisfyingT∗(0)+ V(0) > 0.
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Proof. Consider the following function on int(R3
+):

W = (N − 1)
∫ T

T̄

(
1−

T̄

τ

)
dτ + N

∫ T∗

T̄∗

(
1−

T̄∗

τ

)
dτ +

∫ V

V̄

(
1−

V̄

τ

)
dτ.

Then,

Ẇ= (N − 1)( f (T)− kV T)

(
1−

T̄

T

)
+ N(kV T− βT∗)

(
1−

T̄∗

T∗

)

+(NβT∗ − γV − kV T)

(
1−

V̄

V

)

= (N − 1) f (T)

(
1−

T̄

T

)
− NkV T

T̄∗

T∗
+ Nβ T̄∗ − NβT∗

V̄

V
+ γ V̄ + kV̄ T

= (N − 1)( f (T)− f (T̄))

(
1−

T̄

T

)
+ (N − 1) f (T̄)

(
1−

T̄

T

)

+Nβ T̄∗
[
2−

V TT̄∗

V̄ T̄ T∗
−

T∗V̄

T̄∗V

]
− β T̄∗ + β T̄∗

T

T̄

= (N − 1)( f (T)− f (T̄))

(
1−

T̄

T

)
+ (N − 1)β T̄∗

(
1−

T̄

T

)

+Nβ T̄∗
[
2−

V TT̄∗

V̄ T̄ T∗
−

T∗V̄

T̄∗V

]
− β T̄∗ + β T̄∗

T

T̄

= (N − 1)( f (T)− f (T̄))

(
1−

T̄

T

)
+ β T̄∗

(
−2+

T̄

T
+

T

T̄

)

+Nβ T̄∗
[
3−

V TT̄∗

V̄ T̄ T∗
−

T∗V̄

T̄∗V
−

T̄

T

]

= [(N − 1)( f (T)− f (T̄))T̄ + β T̄∗(T − T̄)]
(T − T̄)

TT̄
+ Nβ T̄∗

[
3−

V TT̄∗

V̄ T̄ T∗
−

T∗V̄

T̄∗V
−

T̄

T

]
,

where we used (A.2) repeatedly; in particular, in the second, third and fourth lines. By the mean value
theorem, there exists somec ∈ (T, T̄) or (T̄, T) such that

f (T)− f (T̄) = f ′(c)(T − T̄),

hence using (A.2) once more, we obtain

Ẇ = (N − 1)

[
f ′(c)+

k

γ
f (T̄)

]
(T − T̄)2

T
+ Nβ T̄∗

[
3−

V TT̄∗

V̄ T̄ T∗
−

T∗V̄

T̄∗V
−

T̄

T

]
.



314 P. D. LEENHEER AND S. S. PILYUGIN

The first term is non-positive by (C′) and because we can assume thatT 6 T0 by dissipativity (see
LemmaA1 later). The second term is non-positive as well since the geometric mean of three non-
negative numbers does not exceed the arithmetic mean of these numbers. We conclude thatẆ 6 0 in
int(R3

+), hence local stability ofE follows. Note thatẆ equals zero if and only if both the first term and
the second term are zero. This occurs at points where

T̄

T
= 1 and

T̄∗V

T∗V̄
= 1.

Then, LaSalle’s invariance principle implies that all bounded solutions (and as before, solutions are
easily shown to be bounded, see also LemmaA1 later) in int(R3

+) converge to the largest invariant set
in

M =
{
(T, T∗,V) ∈ int(R3

+)

∣
∣
∣
∣
T̄

T
= 1,

T̄∗V

T∗V̄
= 1

}
.

It is clear that the largest invariant set inM is the singleton{E}. Finally, note that forward solutions
starting on the boundary ofR3

+ with eitherT1(0) or V1(0) positive enter int(R3
+) instantaneously. This

concludes the proof. �

A.2 Competitive exclusion

Now, we modify the multistrain model (4–6) to

Ṫ = f (T)− kV T, T ∈ R+, (A.3)

Ṫ∗ = K V T − BT∗, T∗ ∈ Rn
+, (A.4)

V̇ = N̂ BT∗ − Γ V − K V T, V ∈ Rn
+, (A.5)

wherek = (k1, . . . , kn), K = diag(k1, . . . , kn), B = diag(β1, . . . , βn), N̂ = diag(N1, . . . , Nn), and
Γ = diag(γ1, . . . , γn). Suppose that each strain is capable to persist at steady state by itself, that is,
Ni > 1 andT̄i =

γi
ki (Ni−1) < T0, and denote the corresponding equilibria also byE1, . . . , En. Assume

that

0< T̄1 6 T̄2 6 · · · 6 T̄n < T0. (A.6)

In addition, suppose that (C′) holds withT̄ = T̄1. Then, we have the following theorem.

THEOREM A2 The single-strain equilibriumE1 is globally asymptotically stable for (A.3–A.5) with
respect to the initial conditions satisfyingT∗1 (0)+ V1(0) > 0.

Proof. Consider the functionW defined onU := {(T, T∗,V) ∈ R2n+1|T, T∗1 ,V1 > 0} as

W= (N1− 1)
∫ T

T̄1

(
1−

T̄1

τ

)
dτ + N1

∫ T∗1

T̄∗1

(

1−
T̄∗1
τ

)

dτ +
∫ V1

V̄1

(
1−

V̄1

τ

)
dτ

+
n∑

i=2

N1− 1

Ni − 1
(Ni T

∗
i + Vi ).
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ComputingẆ, we find that

Ẇ= (N1− 1)

[
f ′(c)+

k

γ
f (T̄1)

]
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

+
n∑

i=2

(
−ki Vi (T − T̄1)+

(N1− 1)

Ni − 1
(Ni ki Vi T − Niβi T

∗
i + Niβi T

∗
i − γi − ki Vi T)

)
.

After simplifications, we have

Ẇ= (N1− 1)

[
f ′(c)+

k

γ
f (T̄1)

]
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−(N1− 1)
n∑

i=2

ki Vi (T̄i − T̄1).

The first term is non-positive since (C′) with T̄ = T̄1 holds and becauseT 6 T0 by dissipativity (see
LemmaA1 later). The second term is non-positive as well and so is the third by (A.6). Thus,Ẇ 6 0
which already implies thatE1 is stable. An application of LaSalle’s invariance principle shows that all
the bounded solutions inU (boundedness follows from LemmaA1 which is proved later) converge to
the largest invariant set in

{

(T, T∗1 , . . . , T∗n ,V1, . . . , Vn) ∈ U

∣
∣
∣
∣
∣
T̄1

T
= 1,

T̄∗1 V1

T∗1 V̄1
= 1,Vi = 0, i > 2

}

,

which is easily shown to be the singleton{E1}. Finally, solutions on the boundary ofU with T∗1 (0) +
V1(0) > 0 enterU instantaneously, which concludes the proof. �

A.3 Adding mutations

We modify the model (A.3–A.5) to account for mutations. Again, we consider two alternative models:

Ṫ = f (T)− kV T, T ∈ R+,

Ṫ∗ = P(µ)K V T − BT∗, T∗ ∈ Rn
+,

V̇ = N̂ BT∗ − Γ V − K V T, V ∈ Rn
+, (A.7)

and

Ṫ = f (T)− kV T, T ∈ R+,

Ṫ∗ = K V T − BT∗, T∗ ∈ Rn
+,

V̇ = P(µ)N̂ BT∗ − Γ V − K V T, V ∈ Rn
+, (A.8)

wherek, K , B, N̂ andΓ are the same as before,P(µ) = I + µQ and Q is a stochastic matrix with
non-negative off-diagonal entries.
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LEMMA A1 Both systems (A.7) and (A.8) are dissipative, i.e. there is some compact setK such that
every solution eventually entersK and remains inK forever after.

Proof. The proof is similar to the proof of Lemma1 and will be omitted. �

LEMMA A2 Forµ = 0, let all the single-strain equilibriaE1, E2, . . . , En exist for either (A.7) or (A.8),
and assume that

T̄1 < T̄2 < · · · < T̄n < T̄n+1 := T0 (A.9)

and

f ′(T̄ j ) 6 0, for all j = 1, . . . , n+ 1. (A.10)

Then, the Jacobian matrices of (A.7) or (A.8), evaluated at any of theEi s, i = 1, . . . , n + 1 (where
En+1 := E0) have the following properties:J(Ei ) hasi − 1 eigenvalues (counting multiplicities) in the
open right half-plane and 2(n + 1) − i eigenvalues in the open left half-plane. In particular,J(E1) is
Hurwitz.

Proof. The proof is similar to that of Lemma2. The only difference is that the entries of the Jacobian
matrices change. In particular, the(3, 1)- and(3, 3)-entry of Ai

1 now become−ki V̄i and−γi − kT̄ i ,
respectively, but by (A.9) and Lemma 3.4 in De Leenheer & Smith(2003), Ai

1 is still Hurwitz. �
To study the equilibria of systems (A.7) and (A.8), we introduce the matrix

A(µ) = Γ −1(N̂ P(µ)− I )K , (A.11)

which has non-negative off-diagonal entries forµ > 0 and

A(0) = diag

(
k1(N1− 1)

γ1
, . . . ,

kn(Nn − 1)

γn

)
= diag

(
1

T̄1
, . . . ,

1

T̄n

)
.

Clearly, Proposition1 holds withA(µ) given by (A.11). Hence, we have the following proposition.

PROPOSITIONA1 Let the assumptions of LemmaA2 hold and suppose that the strains are renumbered
so thatA(µ) has the form (23). Let Ej (µ) = (T̂j (µ), T̂∗j (µ), V̂j (µ)) denote the non-trivial equilibria of
both (A.7) and (A.8) for smallµ > 0. Then,

1. Ej (µ) is positive if and only if 1
T̂j (µ)

is an eigenvalue ofA(µ) with a positive eigenvectorVj ;

2. Ej (µ) is non-negative if and only if 1
T̂j (µ)

is an eigenvalue ofA(µ) with a non-negative eigenvec-

tor Vj ;

3. Ej (µ) /∈ R
2n+1
+ if and only if 1

T̂j (µ)
is an eigenvalue ofA(µ) with eigenvectorVj which is not

sign definite.

Proof. We will prove the proposition only for system (A.7) (the proof for (A.8) is similar). Observe
that at equilibrium,T̂∗j (µ) = (N̂ B)−1(Γ + K T̂j (µ))V̂j (µ). Hence, the signs of the corresponding

components ofT̂∗j (µ) and V̂j (µ) are the same. Substituting the above expression into (A.7), we find

that V̂j (µ) must satisfy
[

Γ −1(N̂ P(µ)− I )K −
1

T̂j (µ)
I

]

V̂j (µ) =

[

A(µ)−
1

T̂j (µ)
I

]

V̂j (µ) = 0.
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Thus, for each non-trivial equilibriumEj (µ), the quantity 1
T̂j (µ)

must be an eigenvalue ofA(µ) and

V̂j (µ) must be a multiple of the corresponding eigenvectorVj . If Vj is not sign definite, it follows that
Ej (µ) /∈ R

2n+1
+ . For allVj > 0, the components ofEj (µ) are uniquely determined via

V̂j (µ) =
f (T̂j (µ))

T̂j (µ)k′Vj
Vj , T̂∗j (µ) = (N̂ B)−1(Γ + K T̂j (µ))V̂j (µ).

Hence,Ej (µ) is positive (non-negative) if and only ifVj is positive (non-negative). �

A.4 Lower bounds

LEMMA A3 Suppose that (A.9) holds. Then, there existη,µ0 > 0 such that

lim inf
t→∞

1′V(t) > η > 0

for anyµ ∈ [0, µ0] and for any solution of (A.7) and (A.8) with 1′V(t) > 0.

Proof. We will prove the claim for system (A.7) (the proof for (A.8) is similar). The proof consists of
two parts. We first show that there existη0, µ0 > 0 such that lim inft→∞ 1′(T∗(t)+V(t)) > η0 > 0 for
all solutions withT∗(t),V(t) 6= 0. We choosen positive numbers̃Ni so thatγi+ki T0

ki T0
< Ñi < Ni for all

1 6 i 6 n. This is possible since we assumeT̄i =
γi

ki (Ni−1) < T0 which is equivalent toNi >
γi+ki T0

ki T0
.

Let v = (Ñ, 1). It follows that

v′

(
−B K T0

N̂ B −Γ − K T0

)

= (b1(N1− Ñ1), . . . , bn(Nn − Ñn), k1T0Ñ1

−(γ1+ k1T0), . . . , knT0Ñn − (γn + knT0))

is a positive vector. By continuity, there exists aµ0 > 0 such that

v′M(T0, µ), whereM(T, µ) :=

(
−B P(µ)K T

N̂ B −Γ − K T

)

,

is a positive vector for allµ ∈ [0, µ0].
Consider a system

Ṫ = f (T)− k′V T, T ∈ R+, (A.12)

Ṫ∗ = P(µ)K V T − BT∗, T∗ ∈ Rn
+, (A.13)

V̇ = N̂ BT∗ − Γ V − K V T, V ∈ Rn
+, (A.14)

µ̇ = 0, µ ∈ [0, µ0]. (A.15)

Let K ′ be the forward-invariant compact set for (A.7) established in LemmaA1 and defineK = K ′ ×
[0, µ0]. It is clear thatK is compact and forward invariant under (A.12–A.15). The setK0 = ([0, T0] ×
0× 0× [0, µ0]) ∩ K is clearly a compact forward-invariant subset ofK .
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Let Π(T∗,V) := v′(T∗,V). The functionΠ is clearly smooth and zero onK0 and positive on
K\K0. Furthermore,

Π̇

Π
= ψ :=

v′M(T, µ)(T∗,V)

v′(T∗,V)

is lower semi-continuous onK by Lemma4 once we define the value ofψ on K0 as

ψ(T, µ) = min
i=1,...,n

v′M(T, µ)i
vi

.

We note that the functionψ(T, µ) is continuous in(T, µ). Since all solutions of (A.12–A.15) in K0
have the property that limt→∞ T(t) = T0, it implies thatψ(T(t), µ) > 0 for all sufficiently larget .
Hence, by Theorem3, the setK0 is a uniform strong repellor inK . If we use theL1-norm of (T∗,V)
as the distance function toK0, we find that there exists anη0 > 0 such that

lim inf
t→∞

1′(T∗ + V) > η0

for all solutions of (A.12–A.15) in K\K0.
To complete the proof, we need to show that there exists anη > 0 such that lim inft→∞ 1′V(t) >

η > 0 for all solutions with 1′V(t) > 0. Observe that 1′V(t) > 0 implies that 1′T∗(t) > 0. Hence, by
the result of part one, we have that lim inft→∞ 1′(T∗(t) + V(t)) > η0 > 0 or, equivalently, 1′T∗(t) >
η0/2− 1′V(t) for all sufficiently larget . From (A.14), we have that

1′V̇ >
n∑

i=1

Niβi T
∗
i −

n∑

i=1

(γi + ki T)Vi >
n∑

i=1

Niβi T
∗
i −

n∑

i=1

(γi + ki T0)Vi .

Hence,

1′V̇ > A0

(η0

2
− 1′V(t)

)
− A11′V(t), A0 := min

i
(Niβi ) > 0, A1 := max

i
(γi + ki T0) > 0,

holds for larget . It follows immediately that

lim inf
t→∞

1′V(t) > η =
η0A0

2(A0+ A1)
> 0.

�

A.5 Existence of an absorbing compact set for smallµ > 0

THEOREM A3 Let K be the absorbing compact set established in LemmaA1, and let

U = {(T, T∗,V) ∈ R2n+1
+ |T, T∗1 ,V1 > 0}.

Suppose that there exists anε > 0 such that

(Cε) f ′(c)+
k1

γ1
f (T̄1) 6 −ε < 0, for all c ∈ [0, T0].

Then, there exist aµ1 > 0 and a compact setKδ ⊂ U such that for anyµ ∈ [0, µ1] and for any solution
of system (A.7) in U , there exists at0 > 0 such that(T(t), T∗(t),V(t)) ∈ Kδ for all t > t0.
An identical statement holds for system (A.8).
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Proof.

(a) We first prove the statement for system (A.7). Consider the function

W= (N1− 1)
∫ T

T̄1

(
1−

T̄1

τ

)
dτ + N1

∫ T∗1

T̄∗1

(

1−
T̄∗1
τ

)

dτ +
∫ V1

V̄1

(
1−

V̄1

τ

)
dτ

+
n∑

i=2

N1− 1

Ni − 1
(Ni T

∗
i + Vi ).

ComputingẆ for the system (A.7), we obtain

Ẇ= (N1− 1)

[
f ′(c)+

k

γ
f (T̄1)

]
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−(N1− 1)
n∑

i=2

ki Vi (T̄i − T̄1)+ µN1
T∗1 − T̄∗1

T∗1

×
n∑

j=1

q1 j k j Vj T + µ(N1− 1)
n∑

i=2

Ni

Ni − 1

n∑

j=1

qi j k j Vj T .

Recombining the terms, we find that

Ẇ= (N1− 1)

[
f ′(c)+

k

γ
f (T̄1)

]
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−(N1− 1)
n∑

i=2

ki Vi (T̄i − T̄1)+ µ(N1− 1)
n∑

i=1

Ni

Ni − 1

n∑

j=1

qi j k j Vj T

−µN1q11
T̄∗1 V1T

T∗1
− µN1

T̄∗1
T∗1

n∑

j=1

q1 j k j Vj T,

where the last term is clearly non-positive. Let

α = (N1− 1)min
i>2

ki (T̄i − T̄1) > 0,

L = sup
K
(N1− 1)

n∑

i=1

Ni

Ni − 1

n∑

j=1

qi j k j Vj T > 0.

By LemmaA3, there existη,µa > 0 such that 1′V(t) > η for all µ ∈ [0, µa] and all sufficiently
larget . Hence, by shifting time forward if necessary, we have the inequality
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Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−α(η − V1)+ µL − µN1q11
T̄∗1 V1T

T∗1
,

which holds inK for all µ ∈ [0, µa]. We combine the second and the last terms to obtain

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3− (1+ q11µ)
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−α(η − V1)+ µL .

Further, we rewrite the above inequality as

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3(1+ q11µ)
1/3− (1+ q11µ)

V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−α(η − V1)+ µL + 3N1β1T̄∗1 [1− (1+ q11µ)
1/3].

Letµb > 0 be such that for allµ ∈ [0, µb],

(1+ q11µ) ∈
[

1

2
, 1

]
, −αη + µL + 3N1β1T̄∗1 [1− (1+ q11µ)

1/3] 6 −
αη

2
.

Now, we letµ1 = min[µa, µb], so that for allµ ∈ [0, µ1] and all points inK ,

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3(1+ q11µ)
1/3− (1+ q11µ)

V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−
αη

2
+ αV1.

Let L1 = α supK V1. Inspecting the first term iṅW, we find that there exists aδ0 > 0 such that

−ε(N1− 1)
(T − T̄1)

2

T
< −L1

for all T < δ0. Similarly, inspecting the second term iṅW and using Lemma6, we find that there
exists aδ1 > 0 such that

N1β1T̄∗1

[

3(1+ q11µ)
1/3− (1+ q11µ)

V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

< −L1

for all
T∗1
V1
< δ1 and allµ ∈ [0, µ1]. Finally, there exists aδ2 > 0 such that−αη2 + αV1 < −

αη
4

for all V1 < δ2. Let

K̂δ = {(T, T
∗,V) ∈ K ∩U |T > δ0,V1 > δ2, T

∗
1 > δ1V1}.

Consider(T, T∗,V) ∈ (K ∩U )\K̂δ and letµ ∈ [0, µ1], then at least one of the following holds:

• T < δ0, in which caseẆ 6 −L1−
αη
2 + L1 6 −

αη
2 ;
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• T∗1 /V1 < δ1, in which caseẆ 6 −L1−
αη
2 + L1 6 −

αη
2 ;

• V1 < δ2, in which caseẆ 6 −αη4 ;

Hence, for all(T, T∗,V) ∈ (K ∩U )\K̂δ and allµ ∈ [0, µ1], we haveẆ 6 −αη4 < 0. From this
point forward, the proof is identical to the proof of Theorem4, so it will be omitted.

(b) Now, we consider system (A.8). Let W be the same as in part (a). ComputingẆ for the system
(A.8), we obtain

Ẇ= (N1− 1)

[
f ′(c)+

k

γ
f (T̄1)

]
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−(N1− 1)
n∑

i=2

ki Vi (T̄i − T̄1)+ µ
V1− V̄1

V1

n∑

j=1

q1 j Njβ j T
∗
j + µ

n∑

i=2

N1− 1

Ni − 1

n∑

j=1

qi j Njβ j T
∗
j .

Recombining the terms, we find that

Ẇ= (N1− 1)

[
f ′(c)+

k

γ
f (T̄1)

]
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−(N1− 1)
n∑

i=2

ki Vi (T̄i − T̄1)+ µ
n∑

i=1

N1− 1

Ni − 1

n∑

j=1

qi j Njβ j T
∗
j

−µq11
V̄1N1β1T∗1

V1
− µ

V̄1

V1

n∑

j=2

q1 j Njβ j T
∗
j ,

where the last term is clearly non-positive. Let

α = (N1− 1)min
i>2

ki (T̄i − T̄1) > 0,

L = sup
K

n∑

i=1

N1− 1

Ni − 1

n∑

j=1

qi j Njβ j T
∗
j > 0.

By LemmaA3, there existη,µa > 0 such that 1′V(t) > η for all µ ∈ [0, µa] and all sufficiently
larget . Hence, by shifting time forward if necessary, we have the inequality

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

−
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−α(η − V1)+ µL − µq11
V̄1N1β1T∗1

V1
,
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which holds inK for all µ ∈ [0, µa]. We combine the second and the last terms to obtain

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3−
V1TT̄∗1
V̄1T̄1T∗1

− (1+ q11µ)
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−α(η − V1)+ µL .

Further, we rewrite the above inequality as

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3(1+ q11µ)
1/3−

V1TT̄∗1
V̄1T̄1T∗1

− (1+ q11µ)
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−α(η − V1)+ µL + 3N1β1T̄∗1 [1− (1+ q11µ)
1/3].

Letµb > 0 be such that for allµ ∈ [0, µb],

(1+ q11µ) ∈
[

1

2
, 1

]
, −αη + µL + 3N1β1T̄∗1 [1− (1+ q11µ)

1/3] 6 −
αη

2
.

Now, we letµ1 = min[µa, µb], so that for allµ ∈ [0, µ1] and all points inK ,

Ẇ6−ε(N1− 1)
(T − T̄1)

2

T
+ N1β1T̄∗1

[

3(1+ q11µ)
1/3−

V1TT̄∗1
V̄1T̄1T∗1

− (1+ q11µ)
T∗1 V̄1

T̄∗1 V1
−

T̄1

T

]

−
αη

2
+ αV1.

From this point forward, the proof is identical to the proof of part (a), so it will be omitted.

�

THEOREM A4 Let the assumptions of LemmaA2 hold, letU be the set from TheoremA3 and define

U ′ = {(T, T∗,V) ∈ R2n+1
+ |T∗1 + V1 > 0} ⊃ U.

Then, there exist aµ0 > 0 and a continuous mapE: [0, µ0] → U such that the following holds:

1. E(0) = E1 (whereE1 is the same as in LemmaA2), andE(µ) is an equilibrium of (A.7) or (A.8)
for all µ ∈ [0, µ0];

2. For eachµ ∈ [0, µ0], E(µ) is a globally asymptotically stable equilibrium of (A.7) or (A.8)
in U ′.

Proof. The proof is similar to that of Theorem5. �
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