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Abstract

Positive systems possessing %rst integrals are considered. These systems frequently occur in applications. This paper is devoted to two
stabilization problems. The %rst is concerned with the design of feedbacks to stabilize a given level set. Secondly, it is shown that the
same feedback allows to globally stabilize an equilibrium point if it is asymptotically stable with respect to initial conditions in its level
set. Two examples are provided and the results are compared with those in the literature. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Positive systems quite often exhibit %rst integrals (Sontag,
2001; Mierczy8nski, 1987). Consider for example a chemical
reactor. This is a vessel containing a number of chemical
components reacting with each other in a way dictated by
chemistry. When no chemicals are added to or withdrawn
from the reactor (such a reactor is closed ), the total mass of
the chemicals inside the reactor is conserved and is therefore
a %rst integral for this system.
A natural question is whether it is possible to control

the reactor by means of feedback such that the solutions of
the closed-loop system converge to the set where the total
mass equals a given constant. In other words, the goal is
to stabilize the total mass of the system. Feedback laws
achieving this goal will be provided.
If in addition the open-loop system possesses an equilib-

rium point, one may wonder whether it is possible to %nd
a stabilizing feedback. It will be shown that if the equi-
librium point is an asymptotically stable equilibrium point
of the open-loop system with respect to all initial condi-
tions belonging to the set of states of same total mass, the
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feedback solving the %rst stabilization problem also solves
the second stabilization problem.
Our results are valid for a more general class of positive

systems than the chemical reactor. The common property
for systems of this more general class is that they possess
%rst integrals.
We illustrate our results by two examples and compare

them with results from Bastin (1999) and Sontag (2001).

2. Notation

With R+ := [0;+∞) (R+
0 := (0;+∞)), de%ne Rn+

(int(Rn+)) as those n-tuples having all entries in R+ (R+
0 ).

We call x∈Rn+ (x∈ int(Rn+)) a nonnegative (positive)
vector and bd(Rn+) :=Rn+\int(Rn+) is the boundary of
Rn+. When x; y∈Rn we denote x6y (x¡y; x�y) if
y− x∈Rn+ (y− x∈Rn+\{0}; y− x∈ int(Rn+)). We denote
the index set {1; 2; : : : ; n} as Nn. If K is a nonempty sub-
set of Nn, then FK := {x∈Rn+ | xk = 0 for k ∈K} is called
a face of Rn+. The orthonormal standard basis of Rn is
denoted by {ei | i∈Nn}. Consider the following system:

ẋ = f(x); (1)

where x∈Rn and f(x) is a continuous vector %eld. Sup-
pose that solutions of system (1) are unique. The ( forward,
backward) solution of system (1) with initial condition
x0 ∈R is denoted as x(t; x0); t ∈Ix0 (t ∈I+

x0 ; t ∈I−
x0 ).

The ( forward, backward) orbit of x(t; x0) is the set
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{x(t; x0) | t ∈Ix0} ({x(t; x0) | t ∈I+
x0}; {x(t; x0) | t ∈I−

x0}).
We denote the ! limit set and � limit set of a solution as
!(x0) and �(x0).

De�nition 1. A set D ⊂ Rn is a forward invariant set
(invariant set) of system (1) if for all x0 ∈D holds
that x(t; x0)∈D for all t ∈I+

x0 (for all t ∈Ix0 ). Sys-
tem (1) is positive if Rn+ is a forward invariant set of
system (1).

3. Positive systems with �rst integrals

Consider the following system:

ẋ = f(x); (2)

where x∈D; D open and Rn+ ⊂ D and f is continuously
diGerentiable in D. Introduce the hypothesis
(H1) ∀x∈Rn+ : xi = 0 ⇒ fi(x)¿ 0.
Hypothesis H1 implies—without proof—that the follow-

ing holds.

Theorem 1. If H1 is true; then system (2) is positive.

Next we de%ne the concept of a %rst integral.

De�nition 2. A continuously diGerentiable function H :
Rn+ → R is a %rst integral of system (2) if
(@H=@x)(x)Tf(x) = 0 for all x∈Rn+.

We introduce the following hypothesis.
(H2) System (2) possesses k continuously diGerentiable

%rst integrals H1; : : : ; Hk in Rn+ of which at least one is radi-
ally unbounded. Moreover, (@Hj=@x)(x)T¿ 0, for all x∈Rn+
and we assume (w.l.g) that Hj(0) = 0 for all j = 1; : : : ; k.

Remark 1. We stress that; aside from these k known %rst
integrals; the system may possess diGerent unknown %rst
integrals.

Notice that the %rst integrals Hj are positive semidef-
inite functions. Indeed, this follows from Hj(x) − 0 =
(
∫ 1
0 (@Hj=@x)(tx)

T dt)x which implies that Hj(x)¿ 0 be-
cause (@Hj=@x)(x)T¿ 0.
Hypothesis (H2) is true in some applications. Systems

with constant mass for example possess the total mass
M (x) :=

∑n
i=1 xi as a %rst integral, for which (H2) is easily

veri%ed.
It will become clear in the subsequent analysis that our

main results remain valid if the part of (H2) where at least
one of the %rst integrals is required to be radially unbounded,
is replaced by the seemingly weaker condition:

k∑
i=1

|Hi(x)| → +∞ if |x| → +∞ with x∈Rn+: (3)

However, we show next that if (3) is satis%ed, we can al-
ways %nd a set of %rst integrals satisfying H2: Suppose that
k %rst integrals Hi(x) satisfying (3) are given. Since the %rst
integrals are positive semide%nite, it follows that the abso-
lute value signs in the sum of (3) can be left out. De%ne the
%rst integral H (x) :=

∑k
i=1 Hi(x) and replace H1(x) in the

original set of %rst integrals by H (x). The new set of %rst
integrals H (x); H2(x); : : : ; Hk(x) does satisfy all conditions
in (H2).

De�nition 3. WhenH2 is true; k real constantsC1; C2; : : : ; Ck
de%ne a corresponding level set HC as follows:

HC = {x∈Rn+ |H1(x) = C1;

H2(x) = C2; : : : ; Hk(x) = Ck}: (4)

An obvious but important property of a level set is that it is
a forward invariant set for system (2).
Next we propose to control system (2) by means of a

feedback in the following way:

ẋ = f(x) + Bu(x); (5)

where B∈Rn×k and u :Rn+ → Rk is a locally Lipschitz map,
to be determined later. Notice that this choice implies that
there are as many inputs available as there are known %rst
integrals. A natural requirement is that the controlled system
(5) is also positive and this leads to restrictions on B and u.
(H3) bj ∈Rn+; ∀j=1; : : : ; k (where bj denote the columns

of B) and for the map u holds that

∀x∈Rn+ : xi = 0 ⇒ [Bu(x)]i¿ 0: (6)

We have—without proof—that the following result holds.

Theorem 2. If (H1) and (H3) are true; then system (5) is
positive.

Finally, we introduce a rather technical hypothesis.

(H4) (@Hj=@x)(x)Tbj ¿ 0 for all x∈Rn+ and j= 1; : : : ; k.

The geometric interpretation is that bj and @Hj=@xT en-
close an acute angle. This is a mild hypothesis. Indeed both
vectors are nonnegative in view of (H3) and (H2) imply-
ing that (@Hj=@x)Tbj¿ 0. So hypothesis (H4) excludes the
situation where bj and @Hj=@xT are orthogonal.

4. Stabilization of a level set

Choose C1; : : : ; Ck and de%ne HC := {x∈Rn+ |Hj(x) =
Cj; j = 1; : : : ; k}. We assume that HC �= ∅.

First stabilization problem: If (H1)–(H4) are true,
does there exist a feedback u(x) :Rn+ → Rk such that
limt→+∞Hj(x(t; x0))=Cj for all j=1; : : : ; k and all x0 ∈Rn+,
where the solution of system (5) is denoted as x(t; x0).
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De�nition 4. A function h :R → R is a main sectors-
function if it is locally Lipschitz and

(1) h(0) = 0 and xh(x)¿ 0 for all x �=0.
(2) There exist real numbers m and M with m¡M such

that h(x)∈ [m;M ] for all x∈R.

We have chosen not to use the term saturation function
because we do not require that the limits of the function as
x → +∞ or −∞ are the maximal or minimal saturation
values.
De%ne the function V :Rn+ → R as follows:

V (x) =
1
2

k∑
l=1

(Cl − Hl(x))2: (7)

Notice that V is continuously diGerentiable and positive
semide%nite with V (x)=0 if and only if x∈HC. Moreover,
V is radially unbounded in Rn+ by hypothesis (H2).
De%ne  as follows:  := {x∈Rn+ | 06Hj(x)¡Cj; j=

1; : : : ; k}. Observe that  is bounded and 0∈ .
Pick an arbitrary main sectors-function ! and de%ne the

feedback u(x) :Rn+ → Rk component-wise:

ui(x) =




−!( @V@x (x)Tbi) for x∈ ;
−!( @V@x (x)Tbi)

∏
l:(bi)l �=0

!(xl) for x �∈  : (8)

Notice that ui is locally Lipschitz and bounded for all i =
1; : : : ; k. Moreover, u(x) satis%es (6) from H3 as we show
next. From

@V T

@x
bi =−(Ci − Hi(x))

@Hi
@x

(x)Tbi

−
k∑

l=1;l �=i
(Cl − Hl(x))

@Hl
@x

(x)Tbi (9)

and (H2) we obtain that (@Hl=@x)(x)Tbi¿ 0 if l �= i, while
from H4 follows that (@Hi=@x)(x)Tbi ¿ 0. Consequently,
(@V=@x)Tbi ¡ 0 for all x∈ implying that (6) is satis%ed
for x∈ . For x �∈  the argument is simpler because of the
factor

∏
l:(bi)l �=0 !(xl) in (8).

Next we calculate the derivative of V along solutions of
system (5) with feedback (8):

V̇ =




−
k∑
j=1

( @V
T

@x bj)!(
@V T

@x bj) for x∈ ;

−
k∑
j=1

( @V
T

@x bj)!(
@V T

@x bj)
∏

l:(bj)l �=0

!(xl) for x �∈  

and thus V̇ 6 0 for all x∈Rn+ because ! is a main
sectors-function.

The forward solutions of system (5) with feedback (8)
are bounded since V̇ 6 0 and V is radially unbounded. From
Lasalle’s invariance principle follows that they converge to
the largest forward invariant set E0 in E := {x∈Rn+ | V̇ (x)=
0}. 1 The task is thus to determine the set E0.
Let us %rst determine the set E. For all x∈ we have

already proved that V̇ ¡ 0. This implies that E ∩  = ∅.
Next we determine which points of the set Rn+\ 

also belong to the set E. Notice %rst that the set HC =
{x∈Rn+ |V (x) = 0} (⊂ Rn+\ ) is a subset of the set E.
Indeed, since V is bounded below by zero and V = 0 on
HC, the inequality V̇ 6 0 implies that HC ⊂ E. Now for
x∈Rn+\ ,

V̇ = 0 ⇔
k∑
j=1

�j(x)#j(x) = 0; (10)

where for all j = 1; : : : ; k

�j(x) :=
(
@V T

@x
bj

)
!
(
@V T

@x
bj

)
and

#j(x) :=
∏

l:(bj)l �=0

!(xl): (11)

This implies that for all j = 1; : : : ; k

�j(x)
{
¿ 0 for x∈Rn+
=0 if and only if @V T

@x bj = 0
and

#j(x)
{
¿ 0 for x∈Rn+
=0 if and only if x∈Fsupp(bj);

(12)

where supp(bj) := {l∈Nn | (bj)l �=0} implying that Fsupp(bj)

is a face of Rn+ and therefore a subset of bd(Rn+).
From (10) follows that the points of Rn+\ which also

belong to E can be divided into two disjoint sets:

$1 := {x∈Rn+\ | �j(x) = 0 for all j = 1; : : : ; k} (13)

and

$2 := {x∈Rn+\ | there exists j∗ ∈Nn such that

�j∗(x) �=0 and #j∗(x) = 0}: (14)

There holds that E = $1 ∪ $2 and $1 ∩ $2 = ∅. Notice that
$2 ⊂ bd(Rn+) because of (12).
(H5) $1 = HC.

Remark 2. For the important case where all %rst integrals
H1; : : : ; Hk are linear and linearly independent; H5 is true
when a generic condition holds which we shall determine
next. Assume that Hj(x) := hTj x for all j = 1; : : : ; k and that

1 Actually, Lasalle’s invariance principle states that the forward solu-
tions converge to the largest invariant set in E, but for our purpose it is
enough that solutions converge to the largest forward invariant set in E.
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rank(H) = k where H := (h1; : : : ; hk). There holds that

x∈$1 ⇔ �j(x) = 0 for all j = 1; : : : ; k ⇔ (BTHHT)

x = C∗;

where C∗
j :=

∑k
l=1 Clh

T
l bj; for all j = 1; : : : ; k. Hypothesis

H5 is true if and only if

rank(BTHHT) = k or rank(BTH) = k: (15)

Notice that in the case where k = 1 it follows from (H4)
that (15) holds and thus that (H5) is true. For example; for
systems for which the total mass is the only known %rst
integral; (H5) is true if (H4) is true.

When (H5) holds, we obtain that E =HC ∪$2. We already
pointed out that $2 ⊂ bd(Rn+). The following hypothesis
excludes the possibility that the set $2 is a subset of E0.
(H6) For all x∈$2, holds that x �∈ E0.
We show next that HC ⊂ E0. We already know that HC ⊂

E. Since ui(x) = 0 for all x∈HC and i = 1; : : : ; k; HC is
a forward invariant set of system (5) with feedback (8),
implying that HC ⊂ E0.
If (H5) and (H6) also hold, then E0 = HC.

Remark 3. The following condition is su>cient to obtain
that H6 is true:

∀x∈$2 : xi = 0 ⇒ fi(x)¿ 0: (16)

Indeed; if (16) holds; the forward solutions of (5) with feed-
back (8) starting in $2; leave the set E instantaneously. No-
tice that (16) can be interpreted as a stricter version of H1
for states on bd(Rn+) which also belong to $2.

Summarizing we obtain the following result.

Theorem 3. If H1–H6 hold then limt→+∞Hj(x(t; x0))=Cj
for all j = 1; : : : ; k and all x0 ∈Rn+ where x(t; x0) is the
solution of system (5) with feedback (8).

5. Stabilization of an equilibrium point

Again we choose a nonempty level set HC and we intro-
duce the following extra hypothesis.
(H)∗ There exists a x∗ ∈HC such that f(x∗)=0 and such

that x∗ is asymptotically stable for system (2) with respect
to initial conditions in the (forward invariant) set HC.

Second stabilization problem: If (H1)–(H∗) hold, does
there exist a feedback u(x) :Rn+ → Rk such that x∗ is a
globally asymptotically stable equilibrium point for system
(5) with respect to initial conditions in Rn+.

Before stating and proving our main result we need to re-
call a stability result from Iggidr, Kalitine and Outbib (1996)
and prove a lemma.

Theorem 4 (Iggidr, Kalitine and Outbib [2]). Suppose
that the system ẋ = g(x) with x∈U; U open in Rn and f
of class C1 on U; satis9es g(0) = 0. If there exists a func-
tion V :U → R; of class C1 on U such that V (x)¿ 0 and
V̇ := (@V=@x)(x)Tg(x) for x∈U; and if x=0 is an asymptot-
ically stable for ẋ=g(x) with respect to initial conditions in
the ( forward invariant) set M0 := {x∈U |V (x) = 0}; then
x = 0 is stable with respect to all initial conditions in U .

Lemma 1. Suppose that the system ẋ = F(x) with x∈G
for some subset G of Rn where F satis9es a local Lipschitz
condition onG; satis9es F(xe)=0.Assume that there exists
a compact and forward invariant set K for system ẋ=F(x)
with xe ∈K and that !(x0) ⊂ K for all x0 ∈G. If xe is
asymptotically stable with respect to initial conditions in K;
then every forward solution of system ẋ = F(x) converges
to xe.

Proof. The proof proceeds by contradiction. Suppose that
there is a point p∈K; p �= xe; which belongs to !(x0). By
invariance of ! limit sets; the orbit of the backward solu-
tion through p is also contained in !(x0). Notice that the
backward solution through p remains in K; for if it would
leave K this would contradict with !(x0) ⊂ K . Therefore;
it makes sense to introduce the � limit set �(p) ⊂ K . Next
we show that xe ∈ �(p). Since �(p) �= ∅; there exists a q∈K
with q∈ �(p). By forward invariance of � limit sets; the
orbit of the forward solution through q is also contained
in �(p). By assumption; this forward solution converges to
xe and since � limit sets are closed; �(p) must contain xe

as claimed. Summarizing; there exists p∈K; p �= xe; with
xe ∈ �(p). This contradicts that xe is asymptotically stable
with respect to initial conditions in K . Indeed; choose *¿ 0
such that *¡d(xe; p) (d(x; y) is the Euclidean distance be-
tween x and y). Then the classical de%nition of stability
implies that there exists a ,¿ 0 such that for every ini-
tial condition y0 ∈K satisfying d(xe; y0)¡,; we have that
d(xe; x(t; y0))¡*; ∀t¿ 0. Since xe ∈ �(p); one can %nd a
z ∈K satisfying d(xe; z)¡, belonging to the orbit of the
backward solution through p. But this implies that there ex-
ists a (possibly large) T ¿ 0 with x(T; z)=p; contradicting
stability since d(xe; p)¿*.

Theorem 5. If (H1)–(H∗) hold; then x∗ is a globally
asymptotically stable equilibrium point of system (5) with
feedback (8) with respect to initial conditions in Rn+.

Proof. Again the behavior of V ; de%ned in (7); along solu-
tions of system (5) with feedback (8) is examined. All for-
ward solutions are bounded because V is radially unbounded
and V̇ 6 0. By Theorem 3; the forward solutions converge
to the compact level set HC. Classical Lyapunov theorems
are not su>cient to conclude that x∗ is asymptotically stable
or even that x∗ is stable for the closed-loop system because
V is only positive semi-de9nite. We claim that stability of
x∗ follows from Theorem 4. Indeed; V de%ned satis%es the
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two conditions of Theorem 4 and the set M0 is the level set
HC. By H∗; x∗ is asymptotically stable for the closed-loop
system with respect to initial conditions in HC =M0; prov-
ing the claim. Next we claim that convergence follows from
Lemma 1. Indeed; we know from Theorem 3 that !(x0) is
a subset of the compact set HC for all x0 ∈Rn+. Moreover;
by H∗; x∗ is asymptotically stable for the closed-loop sys-
tem with respect to all initial conditions in HC; proving the
claim.

6. Examples

Academic example: Consider the following system:

ẋ1 =−x1x2 + x22 + u;

ẋ2 =−x1x2 + x21 + u: (17)

It is easily veri%ed that the uncontrolled system (u=0) satis-
%es (H1) and possesses a %rst integral H (x)=x21+x

2
2, which

satis%es (H2). Since (@H=@x)T(1; 1)T¿ 0; (H4) is readily
veri%ed. The set of equilibrium points of system (17) is
{x∈R2

+ | x1=x2} and every level setHC := {x∈R2
+ |H (x)=

C} for some C¿ 0 contains a unique equilibrium point
which is shown to be asymptotically stable with respect to
initial conditions in HC (and thus that (H∗) holds): Indeed,
the dynamics of (17) restricted to a %xed level set HC are
ẋ1 =−x1

√
C − x21 +C− x21 where x1 ∈ [0;

√
(C)]. It is eas-

ily veri%ed that the equilibrium point x =
√
C=2 is asymp-

totically stable with respect to initial conditions in [0;
√
C).

Next we check (H5): the function V = 1
2(H (x)−C)2 satis-

%es (@V=@x)(x)Tb=2(x1 + x2)(x21 + x
2
2 −C) which equals 0

if x∈HC or if x=0. But since x=0∈ we obtain that (H5)
holds. Finally, (H6) holds because (16) holds. Therefore the
feedback law (8) satis%es (H3) and Theorem 5 holds.
Chemical engineering: Consider a reversible chemical re-

action X1 ↔ X2 and denote the concentrations of the in-
volved chemicals by x1 and x2. Assuming that the reactor is
isothermal and well-stirred and postulating the mass action
principle, we arrive at the following equations:

ẋ1 =−k1x�1 + k2x
#
2 ;

ẋ2 = +k1x�1 − k2x
#
2 ; (18)

where ki; i = 1; 2, is the rate constant of the ith reaction
and �¿ 1 and #¿ 1 are the orders of the respective re-
actions, not necessarily integers. For simplicity we assume
henceforth that k1 = k2 = 1. Clearly (H1) is satis%ed and
M (x) = x1 + x2 is a %rst integral. Obviously (H2) is also
true. Choosing b = (1; 0)T; (H4) is immediately veri%ed.
Pick a level set HC := {x∈R2

+ |M (x)=C} for some C¿ 0.
Then (15) and therefore also (H5) holds. Moreover (16)
holds and thus (H6) is satis%ed. Summarizing, all hypothe-
ses of Theorem 3 are satis%ed and HC can be stabilized.
Finally, consider the dynamics of system (18), restricted to
HC : ẋ1 = −x�1 + (C − x1)# where x1 ∈ [0; C]. Since C �=0,
this system has a unique equilibrium point x∗ ∈ (0; C) which

is asymptotically stable. This implies that (H∗) is satis%ed
and Theorem 5 holds.

7. Discussion of the results

7.1. Systems with constant mass

In Bastin (1999) the following positive systems are stud-
ied:

ẋ = f(x)− diag(a)x + bu; (19)

where f(0) = 0 and (H1) is true. Moreover, the total mass
M (x) satis%es (@MT=@x)(x)Tf(x) = 0, for all x∈Rn+, im-
plying that the total mass is a %rst integral for the system
ẋ = f(x). Finally a; b∈Rn+\{0} and a detectability condi-
tion holds for the uncontrolled system ẋ=f(x)− diag(a)x.
Notice that there is a fundamental diGerence between sys-

tems (5) and (19): The vector %eld of the latter contains a
dissipative term—diag(a)x. Together with the detectability
condition this implies global asymptotic stability of the zero
solution of the uncontrolled system ẋ=f(x)−diag(a)x with
respect to initial conditions in Rn+. Let us call this feature the
wash-out property for future reference. An obvious prob-
lem for system (19) is to look for a feedback u(x) such that
for any given M∗ �=0; limt→+∞M (x(t; x0)) = M∗ for all
x0 ∈Rn+, where x(t; x0) is the solution of system (19) with
feedback u(x) starting in x0. Of course a natural requirement
is that the closed-loop system is positive. A su>cient con-
dition is that u(x)∈R+ for all x∈Rn+ (although this con-
dition is not necessary) and in Bastin (1999) feedbacks are
restricted to this class of maps. A bounded feedback satis-
fying all these constraints is given in Bastin (1999).
Our stabilization problems are formulated for diGerent

classes of systems since no dissipative term—diag(a)x is
present in the vector %eld of the uncontrolled system (in
our model a= 0) and the uncontrolled system does not ex-
hibit the wash-out property. Despite this lack of wash-out,
every level set associated to M (x) contains an equilibrium
point by Brouwer’s %xed point theorem and one may won-
der whether these can be globally stabilized. If it can be
shown that an equilibrium point is asymptotically stable with
respect to initial conditions in its associated level set, then
our results imply that global stabilization is achievable. This
might be possible for low-dimensional systems or for par-
ticular classes of systems as we will discuss in the next sub-
section. Finally, observe that stabilization of a level set but
not of an equilibrium point was considered in Bastin (1999),
while both problems are dealt with in this paper.
Although both our feedback and the feedback in Bastin

(1999) are bounded, the latter is nonnegative in Rn+, while
our feedback (8) takes both positive and negative values
which would have been an undesirable feature in Bastin
(1999). It is intuitively clear why level set stabilization is
achievable in Bastin (1999) with a feedback taking only
nonnegative values: when the total mass is large, control of
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the system is redundant because the total mass will decrease,
thanks to the wash-out property. When the total mass is too
small, a positive control signal should be given to increase
the total mass. This is diGerent from our situation. Instead of
a wash-out property, a conservation law holds and the un-
controlled solutions evolve on level sets but do not converge
to the zero solution. This necessitates the use of feedbacks
taking both positive and negative values to achieve level set
stabilization: For states with total mass higher than the de-
sired value its mass should be removed from the system,
while for states with lower total mass, its mass should be
added. The level set stabilization problem for our systems
would not be solvable with nonnegative control inputs.

7.2. Particular chemical networks

In Sontag (2001), the following class of polynomial sys-
tems 2 modeling particular chemical networks, is studied:

ẋ = g(x) :=
m∑
i=1

m∑
j=1

aij

(
n∏
k=1

xckjk

)
(ci − cj); (20)

where A is a nonnegative, irreducible m × m matrix with
m6 n and C is a full rank, nonnegative n×mmatrix having
all entries equal to 0 or not less than 1 with nonzero rows.
The most important results of Sontag (2001) are:

(1) System (20) is positive and possesses n−m+ 1 linear
%rst integrals. The solutions of system (20) belong to
hyper planes HC which are parallel to the linear space
spanned by {c1 − c2; c1 − c3; : : : ; c1 − cm}.

(2) • Every level set HC ⊂ Rn+ contains at least one equi-
librium point. Moreover, every level set HC contains
an equilibrium point that belongs to int(Rn+) and that
is unique in HC ∩ int(Rn+). But a level set may also
contain equilibria in bd(Rn+).

• If an equilibrium point belongs to HC∩ int(Rn+), then
it is asymptotically stable with respect to initial con-
ditions in HC ∩ int(Rn+).

• An equilibrium point is asymptotically stable with re-
spect to all initial conditions in its level set if and only
if there are no equilibria in that level set belonging to
bd(Rn+).

(3) Consider an equilibrium point x∗ ∈HC∩int(Rn+) of sys-
tem (20). Then this equilibrium point is asymptotically
stable with respect to initial conditions in HC∩ int(Rn+).
If in addition there are no equilibria in HC belonging to
bd(Rn+), then x∗ is asymptotically stable with respect
to initial conditions in HC.

2 In fact, a more general class of systems is studied, but here we restrict
ourselves to the polynomial case. This restriction simpli%es notation.
Moreover, the results are the same in both cases.

In Sontag (2001) the following controlled version of sys-
tem (20) is proposed:

ẋ = g(x) +
n−m+1∑
l=1

ulekl ; (21)

where ekl are pairwise distinct vectors of the standards ba-
sis of Rn. An obvious question is whether there exists a
feedback for system (21) such that the closed-loop system
is positive and x∗ is a globally asymptotically equilibrium
point with respect to all initial conditions in Rn+? It is shown
in Sontag (2001) that with an appropriate choice of standard
basis vectors, the a>ne feedback ul(x)=3l(x∗kl−xkl) for l=
1; : : : ; n−m+1 where 3l are arbitrary, strictly positive real
numbers, solves this stabilization problem.
Let us discuss the most important diGerences and similar-

ities between our systems and the systems of Sontag (2001):
Although a common assumption for the uncontrolled sys-
tems (2) and (20) is that they exhibit %rst integrals, the prop-
erties of these %rst integrals are diGerent. The %rst integrals
of (20) are linear, while they can be nonlinear for (2). On
the other hand, our hypothesis (H2) imposes certain restric-
tions for the %rst integrals. In particular the gradients of the
%rst integrals are nonnegative vectors and the level sets are
compact. Neither of these properties are required in Sontag
(2001). In fact, examples are given of systems with %rst in-
tegrals having gradients which are not nonnegative and of
systems with noncompact level sets.
In our second stabilization problem we assume that an

equilibrium point is asymptotically stable with respect to
initial conditions in this level set. One could wonder whether
it is a feasible task to check this for a given system. For the
class of systems given by Eq. (20) this is indeed the case by
the availability of a simple criterion: The hypothesis holds
if and only if no equilibrium point of the level set belongs
to bd(Rn+).
An important diGerence between (5) and (21) is that the

control vector %elds in our system may be arbitrary 3 while
they have to be standard basis vectors of Rn for (21).
Also, our feedback (8) is bounded in Rn+, while the feed-

back in Sontag (2001) is unbounded.
Another important diGerence is that our feedback for the

second stabilization problem leaves the level set, associ-
ated with the equilibrium point that is stabilized, invariant
for the closed-loop system and this is not the case for the
closed-loop system in Sontag (2001).
Finally, we point out that the hypotheses (H5) and (H6)

are technical and may sometimes be hard to check although
we have provided some su>cient conditions for them to
hold. In Sontag (2001) a similar role is played by the condi-
tion that the control vector %elds are non arbitrary standard
basis vectors of Rn.

3 Provided that they are nonnegative vectors to guarantee that the
closed-loop system is positive of course.
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