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A B S T R A C T

Cooperating behaviors abound across all domains of life, but are vulnerable to invasion by cheaters. An important evolutionary question is to determine mechanisms
that stabilize and maintain cooperation levels and prevent population collapse. Policing is one strategy populations may employ to achieve this goal, and it has been
observed in many natural populations including microbes. Here we present and analyze a division of labor model to investigate if, when and how policing can be a
cooperation-stabilizing mediator. The model represents a chemostat where cooperators produce a public good that benefits all individuals, and where toxin-pro-
ducers produce a toxin that harms both cooperators and cheaters. We show that in many cases, the mere presence of toxin-producers is not enough to avoid a Tragedy
of the Commons in which all individuals go extinct. The main focus of our work is to identify conditions on various model parameters which ensure that a mixed
population of cooperators and toxin-producers can stably coexist and can avoid invasion by a cheater population. This happens when all of the following conditions
hold: (i) The cost of policing must exceed the cost of cooperation. (ii) There is enough “collateral damage” caused by policing, i.e. the toxicity rate experienced by
cooperators is sufficiently high, and (iii) The toxin affects cheaters even more than cooperators, and we provide a precise mathematical condition of how much
stronger this effect should be.

1. Introduction

Acts of cooperation are found in a wide variety of species, ranging
from bacteria to animals. Many bacteria cooperate by secreting extra-
cellular products, so-called “public goods”, such as biosurfactants for
swarming [32], extracellular proteases to access food sources [7], and
siderophores for the purpose of iron-scavenging [12]. Many higher
organisms, including our own, have developed diversely structured
societies where individuals take on specific roles to provide goods or
services to the benefit of the population.

Despite the ubiquity of cooperation across all domains of life, po-
pulations are vulnerable to invasion by non-cooperating cheaters, in-
cluding in several microbial systems [6,9,26]. Indeed, cheaters that do
not invest in cooperation do not incur a fitness cost, and are expected to
exhibit a growth advantage compared to cooperators, at least initially.
In the long run however, decreased cooperation levels can lead to the
collapse of the population, a phenomenon commonly known as the
Tragedy of the Commons [4,11,22]. This brings up the important but
difficult evolutionary problem to identify mechanisms that maintain
cooperative behaviors [10,20].

Various control mechanisms have been proposed that either coerce
individuals into cooperating or constrain them from cheating
[8,18,21,25]. One such mechanism is policing, which has been found

across biological scales in nature [2] such as in humans, rhesus mon-
keys, eusocial insects [19,29,30] like ants, bees and wasps (where egg-
laying workers are treated aggressively, or have their eggs eaten) and
even in symbiotic partnerships like cleaner and cleaning fish, and in
nitrogen-fixating rhizobium and plants. Policing strategies have also
developed in bacterial populations, as confirmed in experimental work
in [14,23,27]. In [27] for example, it is shown that cooperators in
Pseudomonas aeruginosa can secrete toxins such as cyanide, affecting
cheaters but not the toxin-producers because they also activate detox-
ification genes when producing toxins.

Many, if not most, modern models of cooperation rely on game
theoretical concepts such as a Prisoner’s Dilemma [13]. The Prisoner’s
Dilemma is a basic game where two players have a choice between two
strategies (cooperate or defect), and a 2 by 2 payoff matrix records the
payoffs of all possible pairwise interactions. Now consider a growing
bacterial population in a chemostat. Can this growth process really be
captured by repeated rounds of individuals playing this game, or even
by a multi-player public goods game [1]? Moreover, how are the pay-
offs defined? And can they be measured? These are essential questions,
but very hard -if not impossible- to answer. Unfortunately, they are also
rarely addressed in the literature. In contrast, following a mechanistic,
first-principles approach which we adopt here, it is very clear how to
model this process without having to postulate the existence of an
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underlying game. Experiments can and are routinely conducted by
microbiologists to accurately measure the population’s uptake and
growth rates, and the production rates of any public goods. Any bio-
chemical processes taking place inside or outside cells can be measured
and modeled in a similar vein. Writing down the mathematical model
then boils down to a straightforward exercise in book-keeping.

There are different types of game-theoretical models that have been
used in the context of the evolution of cooperation. One class of models
is based on the so-called replicator equation [13]. These models take
the form of a system of nonlinear ordinary differential equations for the
frequencies of players in a population that adopt the pure strategies of
the underlying game. One advantage of replicator equations is that they
can be analyzed in a mathematically rigorous fashion. The key in-
gredient for these models is the payoff matrix of the underlying game.
Although they are powerful phenomenological tools, they are not built
upon mechanistic principles. And as mentioned, defining, let alone
measuring the pay-offs is a highly non-trivial task. Another class of
models consists of agent-based models, see [15–17] for recent reviews,
and [28] for models that incorporate policing. In these types of models,
all individuals engaged in the underlying game are tracked over time.
Many additional aspects such as the movement of individuals in space,
the way in which they interact with each other and with the environ-
ment, as well as the impact of public goods are also incorporated in
these models. Agent-based models exhibit high degrees of complexity,
and this precludes a rigorous mathematical analysis of their behavior.
Instead, one has to resort to performing numerical simulations. These
can reveal interesting pattern changes in the solutions of the model.
However, simulations lack predictive power, and are usually in-
sufficient to explain why pattern changes occur. They can also fail to
pick up unexpected behavior. This happens when only limited para-
meter ranges, or a restricted range of initial conditions is explored,
which is often inevitable due to the enormous number of parameters
and variables in these models.

In contrast, mechanistic models based on first-principles can be
analyzed rigorously. The parameter space of these models can be sliced
up in regions where distinct patterns are observed. The boundaries
between these regions can be determined using powerful tools such as
bifurcation theory. Consequently, mechanistic models display very ac-
curate predictive power, and they provide a much clearer path to un-
derstanding why behavior changes occur.

Despite recent calls for more mechanistic models based on first
principles to try to explain cooperation [3,5,31], little work has been
done in this direction. Quoting from the Review of West et al. [31]:
“What we do not need: (i) keep reinventing the wheel with more theoretical
models that incorrectly claim to provide a new mechanism for the evolution
of cooperation (ii) more convoluted theoretical analyses of games such as the
Prisoner’s Dilemma,..., which make a large number of extremely specific and
often unrealistic assumptions. .... allow the biology to lead the mathematics,
rather than contorting real systems into the form of an artificial game. What
we need: (i) greater integration between theoretical and empirical work...
greater emphasis on the development of models that can be applied to and
tested in specific systems. (ii) the possible advantages of less traditional study
systems need to be exploited... amazing opportunities offered by bacteria and
other microbes have only just been realised, let alone exploited. (iii) greater
unification. There is surprisingly little interaction between empirical workers
and theoreticians. (iv) emphasize both distinction and interplay between
mechanistic and evolutionary approaches ... which are complementary and
not competing.... this distinction has led to research on evolutionary ques-
tions tending to ignore mechanistic issues.”

This paper is an attempt to contribute to these calls for more me-
chanistic approaches to the theory of the evolution of cooperation. We
propose a conceptual division-of-labor model to investigate if, when,
and how policing strategies can stabilize cooperative behavior. The
model tracks 3 strains -cooperator, toxin-producer and cheater-, ex-
ternally supplied growth nutrient, the public good produced by the
cooperator that is required for growth, and the toxin that harms

cooperators and cheaters. We find that although the mere presence of
toxin producers often fails to stabilize cooperation, there are specific
circumstances when cooperation is successfully stabilized. We show
that when challenged by cheaters, cooperative behavior can indeed be
stabilized, provided that the following four conditions hold:

1. Toxin-producers must be present.
2. The cost of toxin production must exceed the cost of public good

production. In other words, policing is more expensive than co-
operation.

3. The harmful effects of the toxin on the cooperator must be suffi-
ciently high. This is a trade-off to offset that policing is more ex-
pensive than cooperation.

4. The effects of the toxin on the cheater must be even higher.

These 4 items will be made precise in terms of inequalities that
involve various parameters and functional forms in the model.

Although our model is developed primarily to capture policing in
bacterial populations, it provides a framework for modeling the evo-
lution of cooperation via policing strategies in many other populations.
In human populations for instance, law enforcement and police agen-
cies specialize to identify and remove criminals, whereas law-abiding
citizens contribute to the welfare of the society in various ways. Thus,
law-abiding citizens are the cooperators in our model, law enforcement
corresponds to the toxin-producers, and criminals represent the chea-
ters.

2. A division of labor chemostat model

We consider a general chemostat model with positive dilution rate D
and positive input nutrient concentration S0. There are 3 microbial
species, the cooperators, toxin producers, and the cheaters whose
concentrations are denoted as X1, X2 and X3, respectively. The nutrient
concentration in the chemostat has concentration S. The cooperator
produces a public good with concentration E, which is required for
growth of all 3 species. Public goods in microbial populations are ty-
pically enzymes that facilitate nutrient uptake. The toxin producers
produce a toxin with concentration T, and the positive toxicity rate
constant for cooperators and cheaters is K1 and K3, respectively. Toxin
producers are resistant to the toxin they produce. Thus, cooperators and
toxin producers have specialized tasks, leading to a division-of-labor
model below.

Nutrient is consumed by each of the species at per capita rate F(S,
E)/γi, for =i 1, 2, 3, where γi is the yield in the conversion of nutrient
into new biomass of species Xi. We assume that F(S, E) is non-negative
and twice continuously differentiable for all S≥0 and E≥0, and sa-
tisfies the following assumptions:

= =
> > >

> > > >

F E F S
F S E S E

F
S

S E F
E

S E S E

H1: (0, ) ( , 0) 0,
( , ) 0 when 0 and 0,

( , ) 0 and ( , ) 0 when 0 and 0

These assumptions mean that there is no nutrient uptake when nutrient
or public good is missing, that there is nutrient uptake when both are
available, and that the uptake rate increases with higher levels of nu-
trient or public good. Typical examples satisfying H1 are functions of
the form =F S E F S F E( , ) ( ) ( ),1 2 where F1(S) is a Michaelis–Menten
function (i.e. +mS a S/( ) where m>0 and a>0 are parameters) or a
linear function (i.e. αS where α>0 is a parameter), and where also
F2(E) is of Michaelis–Menten form, or simply linear.

The theoretically available growth rate for each species is F(S, E),
but cooperators and toxin producers divert a fraction q1 and q2 (both
are numbers in (0,1)) to produce the public good E and toxin T, re-
spectively, each with a respective positive conversion efficiency ηE and
ηT. The remaining fractions q1 1 and q1 2 are allocated to the
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growth of cooperators and toxin producers respectively. In contrast, the
cheater does not contribute to public good or toxin production and
allocates the entirety of the available growth rate F(S, E) to its own
growth. Mass-balance for all involved substances is then captured by
the following chemostat model:

= + +

=
=
=
=
=

S D S S X X X F S E

E q X F S E DE
T q X F S E DT
X X q F S E D K T
X X q F S E D
X X F S E D K T

nutrient

public good
toxin

cooperators
toxin producers

cheaters

( ) ( , )

( , )
( , )

((1 ) ( , ) )
((1 ) ( , ) )
( ( , ) )

E

T

0 1

1

2

2

3

3

1 1

2 2

1 1 1 1

2 2 2

3 3 3

It is possible to scale out several model parameters. By letting:

= = = = =
= = =

x X i s S e E t T
s S k K k k

/ for 1, 2, 3, , / , / ,
, , ,

i i i E T

T T

1 2
0 0

1 2 1 3 2 3

and setting =f s e F s e( , ) ( , )E 1 (note that f(s, e) also satisfies H1), we
get the scaled model:

= + +s D s s x x x f s e( ) ( ) ( , )0
1 2 3 (1)

=e q x f s e De( , )1 1 (2)

=t q x f s e Dt( , )2 2 (3)

=x x q f s e D k t((1 ) ( , ) )1 1 1 1 (4)

=x x q f s e D((1 ) ( , ) )2 2 2 (5)

=x x f s e D k t( ( , ) )3 3 3 (6)

Our main objective is to understand the behavior of this scaled
model, and our main focus lies on identifying conditions which lead to a
stable coexistence of cooperators and toxin producers which can resist
invasion by mutant cheaters.

We start by showing that this model is well-posed in the following
sense:

Lemma 1. Assume that H1 holds. All solutions of system (1)–(6) initiated
in +,6 exist and remain in +

6 for all τ>0, and are bounded. In fact, system
(1)–(6) is dissipative.

Proof. Clearly the non-negative orthant +
6 is forward invariant for

system (1)–(6). Consider the dynamics of = + + + + +m s e t x x x: 1 2 3.
Then

= +m D s m k x k x t D s m( ) ( ) ( ),0
1 1 3 3

0

and hence

+
m slim sup ( ) ,0

which implies that system (1)–(6) is dissipative. □

3. Persistence of cooperator-only populations

In this Section we shall establish the fate of the population when no
toxin producers (or their toxins), or cheaters are present initially. We
will show that a cooperator-only population can persist under reason-
able conditions.

To make these assertions more precise, we first note that the set
where = = =x t x 02 3 is a forward invariant set for system (1)–(6),
motivating an investigation of the restricted system:

=s D s s x f s e( ) ( , )0
1 (7)

=e q x f s e De( , )1 1 (8)

=x x q f s e D((1 ) ( , ) )1 1 1 (9)

To state our results more succinctly, we define an auxiliary function
on the interval q s[0, (1 ) ]1

0 :

=h x f s x q q x q( ) ( /(1 ), /(1 )),1 1
0

1 1 1 1 1 (10)

and note that = =h h q s(0) ((1 ) ) 0,1 1 1
0 but that h1(x1)> 0 for all x1 in

q s(0, (1 ) )1
0 when H1 holds. Furthermore, we introduce the following

assumption:

<
h x h x

x q s
H2: ( ) is strictly concave, i.e. ( )

0 for all in [0, (1 ) ].
1 1 1 1

1 1
0 (11)

First, it is easily verified that when =f s e f s f e( , ) ( ) ( ),1 2 where f1(s) and
f2(e) are either linear functions, or Monod functions, then H2 holds
because:

= +h x
q

f f q f f q f f( ) 1
(1 )

( 2 ),1 1
1

2 1 2 1 1 2 1
2

1 2

which is negative when f1 and f2 are either linear or Monod functions,
and more generally when they are both strictly increasing ( >f 01 and

>f 02 ) and concave functions ( f 01 and f 02 ).
Secondly, when H2 holds, then the equation

=h x D
q

( )
1

,1 1
1

generically either has no, or exactly two solutions x u
1 and x s

2 in
q s[0, (1 ) ]1

0 with <x xu s
1 1 . The reason for the choice of the super-

scripts u and s will become clear later, when the stability properties of
certain steady states will be investigated. Keeping all model parameters
fixed, except for D, no solutions of the equation above exist for all
sufficiently large D, and two solutions exist for all sufficiently small D.
There is also a non-generic case when there is a unique solution to this
equation, but we will never consider this case. This case happens when
the maximum of the function h1(x1) equals D q/(1 )1 .

We are now ready to show that a cooperator-only population can
persist.

Theorem 1. Assume that H1 and H2 hold, and suppose that the equation
=h x D q( ) /(1 )1 1 1 has two solutions x u

1 and x s
1 in q s(0, (1 ) ),1

0 with
<x xu s

1 1 .
Then system (7)–(9) has exactly 3 steady

states: =E s( , 0, 0),0
0 =E s x q q x q x( /(1 ), /(1 ), )u u u u

1
0

1 1 1 1 1 1 and
=E s

1 s x q q x q x( /(1 ), /(1 ), )s s s0
1 1 1 1 1 1 .

Every solution of system (7)–(9), converges to one of E0, E u
1 or E s

1 ; E0
and E s

1 are locally asymptotically stable, and E u
1 is unstable. System (7)–(9)

is therefore bi-stable.

Proof. Transforming the state (s, e, x1) of system (7)–(9) to (m, z1, x1),
where

= + + =m s e x z q e q x, and (1 ) ,1 1 1 1 1

we see that the system is transformed into:

=m D s m( )0 (12)

=z Dz1 1 (13)

= + +x x q f m z x q z q x q D((1 ) ( ( )/(1 ), ( )/(1 )) ),1 1 1 1 1 1 1 1 1 1

(14)

an example of an asymptotically autonomous system [24] because m
(τ)→ s0, and z1(τ)→ 0 as + . Recalling the definition of the
function h1(x1) in (10), we note that the resulting scalar limiting
system, obtained by setting =m s0 and =z 01 in (14), is given by:

=x x q h x D x q s((1 ) ( ) ), for 0 (1 ) .1 1 1 1 1 1 1
0 (15)

Thus, system (15) has 3 steady states in q s[0, (1 ) ],1
0 namely at 0, at

x u
1 and at x s

2 . It is easily verified that 0 and x s
1 are asymptotically stable,

whereas x u
1 is unstable steady states of system (15), which therefore is

an example of a bi-stable system. From the theory of asymptotically
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autonomous systems [24], follows that system (12)–(14) also has 3
steady states (s0, 0, 0), s x( , 0, )u0

1 and s x( , 0, ),s0
1 of which the former and

latter are asymptotically stable, and the middle one is unstable. All
solutions of system (12)–(14) converge to one of these steady states.

Consequently, system (7)–(9) has 3 steady states, namely
=E s( , 0, 0),0

0 =E s x q q x q x( /(1 ), /(1 ), )u u u u
1

0
1 1 1 1 1 1 and

=E s x q q x q x( /(1 ), /(1 ), )s s s s
1

0
1 1 1 1 1 1 ; E0 and E s

1 are asymptotically
stable, whereas E u

1 is unstable. Moreover, every solution converges to
one of these 3 steady states, and therefore this system is bi-stable.

□

4. Tragedy of the Commons

We shall now show that if cheaters are present, but toxin-producing
microbes are absent, then the entire population is doomed. This is a
manifestation of the famous Tragedy of the Commons (ToC) phenom-
enon [4,11,22]:

Theorem 2. Assume that H1 holds. Then every solution of system (1)–(6)
with an initial condition such that x3(0)> 0 and =x (0) 0,2 converges to the
washout steady state (s0, 0, 0, 0, 0, 0).

Proof. When =x (0) 0,2 then clearly =x ( ) 02 for all τ≥0, and then
=t t e( ) (0) ,D whence t(τ)→ 0 as + . Next we explicitly solve

the model’s differential equations for x1(τ) and x3(τ):

=

=

x x e

x x e

( ) (0)

( ) (0)

q f s u e u D k t u du

f s u e u D k t u du

1 1
(1 ) ( ( ), ( )) ( )

3 3
( ( ), ( )) ( )

0 1 1

0 3

We distinguish two possible scenarios, depending on the integrability
-or lack thereof- of the function f(s(u), e(u)) for u in +(0, ).

• Suppose that < +f s u e u du( ( ), ( ))0 . Then it is immediately clear
from the above expressions for x1(τ) and x3(τ) that x1(τ)→ 0 and
x3(τ)→ 0 as + . As all solutions are bounded (by Lemma 1),
and exploiting continuity of f(s, e), we obtain from a comparison
argument that for any ϵ>0, e De( ) ( ) for all sufficiently
large τ. As ϵ>0 is arbitrary, this implies that e(τ)→ 0 as + .
Finally, a similar comparison argument implies that s(τ)→ s0 as

+ .
• Suppose that = +f s u e u du( ( ), ( ))0 . As x3(0)> 0, the ratio
x1(τ)/x3(τ) is well-defined for all τ>0, and

=

=

+

x
x

x
x

e

x
x

e e

( )
( )

(0)
(0)
(0)
(0)

0,

as .

q f s u e u du k k t u du

k k e t D q f s u e u du

1

3

1

3

( ( ), ( )) ( ) ( )

1

3

( )(1 ) (0)/ ( ( ), ( ))D

1 0 1 3 0

1 3 1 0

But as x3(τ) remains bounded by Lemma 1, this implies that x1(τ)→
0 as + . Similar comparison arguments as above then show
that e(τ)→ 0, and s(τ)→ s0 as + .

□

Theorem 2 reveals how important toxin producers are: Without
them, a ToC cannot be avoided. However, as our next result shows, the
mere presence of toxin producers is not sufficient: To avoid a ToC, the
toxin must also harm the cheaters at least as much as it harms the co-
operators.

Theorem 3. Assume that H1 holds, and that

>k k .1 3 (16)

Then every solution of system (1)–(6) with an initial condition such that
x3(0)> 0, converges to the washout steady state (s0, 0, 0, 0, 0, 0).

Proof. Again we explicitly solve the model’s differential equations for
x1(τ) and x3(τ):

=

=

x x e

x x e

( ) (0)

( ) (0) ,

q f s u e u D k t u du

f s u e u D k t u du

1 1
(1 ) ( ( ), ( )) ( )

3 3
( ( ), ( )) ( )

0 1 1

0 3

and distinguish two possible scenarios, depending on the (non-)
integrability of the function f(s(u), e(u)) for u in +(0, ).

• Suppose that < +f s u e u du( ( ), ( ))0 . Then it is immediately clear
that x1(τ)→ 0 and x3(τ)→ 0 as + from the above expressions
for x1(τ) and x3(τ). From a comparison argument similar to the one
used in the proof of Theorem 2 then follows that for any ϵ>0,
e De( ) ( ) for all sufficiently large τ. As ϵ>0 is arbitrary, this
implies that e(τ)→ 0 as + . Finally, similar comparison argu-
ments then imply that x2(τ)→ 0, t(τ)→ 0, x3(τ)→ 0 and s(τ)→ s0 as

+ .
• Suppose that = +f s u e u du( ( ), ( ))0 . As x3(0)> 0, the ratio
x1(τ)/x3(τ) is well-defined for all τ>0, and since (16) holds, we
obtain that:

=

+

x
x

x
x

e( )
( )

(0)
(0)

0,

as .

q f s u e u du k k t u du1

3

1

3

( ( ), ( )) ( ) ( )1 0 1 3 0

But as x3(τ) remains bounded by Lemma 1, this implies that x1(τ)→
0 as + . Similar comparison arguments as above then show
that e(τ)→ 0, x2(τ)→ 0, t(τ)→ 0, x3(τ)→ 0 and s(τ)→ s0 as + .

□

Theorem 3 is not very surprising, because when the toxin affects the
cooperators more strongly than the cheaters (i.e. k1> k3), then the net
per capita growth rate of the cheaters is always higher than that of the
cooperators (i.e. >f s e D k t q f s e D k t( , ) (1 ) ( , ) ,3 1 1 when s
and e are positive), which provides cheaters with a net growth ad-
vantage. But once cheaters become too abundant, there is no longer a
sufficient production of the public good e that is required for growth,
and this in turn leads to the demise of the population. Since Theorem 3
clearly indicates that in order to avoid a ToC, the toxin should affect the
cheater at least as much as the cooperator, one of the main goals of this
paper is to quantify precisely how much more this should be.

5. Persistence of cooperators and toxin producers

In this Section we consider the dynamics of a mixed population that
consists of cooperators and toxin producers, but remains unchallenged
by cheaters:

= +s D s s x x f s e( ) ( ) ( , )0
1 2 (17)

=e q x f s e De( , )1 1 (18)

=t q x f s e Dt( , )2 2 (19)

=x x q f s e D k t((1 ) ( , ) )1 1 1 1 (20)

=x x q f s e D((1 ) ( , ) )2 2 2 (21)

We first show that when the cost of cooperation, as measured by q1,
exceeds the cost of toxin-production, measured by q2, then this mixed
population is doomed:

Theorem 4. Assume that H1 holds, and that:
>q q .1 2

Then every solution of system (17)–(21) with an initial condition such that
x2(0)> 0, converges to the washout steady state =E s( , 0, 0, 0, 0)0

0 .

Proof. Integrating the x1 and x2 equation yields:

=

=

x x e

x x e

( ) (0)

( ) (0)

q f s u e u D k t u du

q f s u e u Ddu

1 1
(1 ) ( ( ), ( )) ( )

2 2
(1 ) ( ( ), ( ))

0 1 1

0 2
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We distinguish two scenarios, depending on the (non-)integrability of
the function f(s(u), e(u)) for u in +(0, ):

• Suppose that < +f s u e u du( ( ), ( ))0 . Then the above expressions
immediately show that x1(τ)→ 0 and x2(τ)→ 0 as + . Three
comparison arguments then imply that e(τ)→ 0, t(τ)→ 0 and s(τ)→
s0 as + as well.
• Suppose that = +f s u e u du( ( ), ( ))0 . Since x2(0)> 0, the fol-
lowing ratio is well-defined:

=

+

x
x

x
x

e( )
( )

(0)
(0)

0,

as .

q q f s u e e du k t u du1

2

1

2

( ) ( ( ), ( )) ( )1 2 0 1 0

Since x2(τ) remains bounded by Lemma 1, there follows that
x1(τ)→ 0 as +t . Standard comparison arguments then imply
that e(τ)→ 0, x2(τ)→ 0, t(τ)→ 0 and s(τ)→ s0 as + .

□

We have just identified a necessary condition for a possible coex-
istence of cooperators and toxin producers, namely that q1≤ q2. We
shall see that if q1< q2 -which means that the cost of toxin production
exceeds the cost of cooperation- and if certain additional conditions
hold, then a stable coexistence of these 2 species is indeed possible.

We first determine the steady states of system (17)–(21). When H1
and H2 hold, and assuming that Eq. (11) has two solutions x u

1 and x s
1 in

the interval q s[0, (1 ) ]1
0 with <x x ,u s

1 1 then by the analysis performed
in the previous Section, system (17)–(21) has exactly 3 steady states in
the part of the boundary of the system where =x 02 . By a slight abuse of
notation we also denote these respective steady states by

=E s( , 0, 0, 0, 0),0
0 =E s x q q x q x( /(1 ), /(1 ), 0, , 0)u u u u

1
0

1 1 1 1 1 1 and
=E s x q q x q x( /(1 ), /(1 ), 0, , 0)s s s s

1
0

1 1 1 1 1 1 .
We now turn to the question of the existence of steady states where

x2> 0, i.e. where toxin producers are present. It is easy to see that
whenever x2> 0 at a steady state, then necessarily x1> 0 as well.
Indeed, if x2> 0 but x1 were zero, then e would have to be zero, but
then the steady state equation corresponding to (21) cannot hold. Thus,
we focus on finding steady states where both x1> 0 and x2> 0. First,
we note that we can transform system (17)–(21) using the transfor-
mation (s, e, t, x1, x2) to (s, e, z2, x1, x2), where

=z q t q x(1 ) ,2 2 2 2

into the asymptotically autonomous system:

= +
=
=
= +
=

s D s s x x f s e
e q x f s e De

z Dz
x x q f s e D k z q x q
x x q f s e D

( ) ( ) ( , )
( , )

((1 ) ( , ) ( )/(1 ))
((1 ) ( , ) )

0
1 2

1 1

2 2

1 1 1 1 2 2 2 2

2 2 2

Observing that z2(τ)→ 0 as + , we can consider the limiting
system:

= +s D s s x x f s e( ) ( ) ( , )0
1 2 (22)

=e q x f s e De( , )1 1 (23)

=x x q f s e D k q x q((1 ) ( , ) /(1 ))1 1 1 1 2 2 2 (24)

=x x q f s e D((1 ) ( , ) )2 2 2 (25)

The steady states of this limiting system for which x1> 0 and x2> 0,
can be found by finding solutions to the following algebraic equations:

=

=

=

=

f s e D
q

x
q q

q
D
k

e
q

q
x

s s
q q

q q
D
k q

x

( , )
1

1

(1 )
1

1

2

2
2 1

2 1

1

2
1

0 2 1

2 2 1 2
1

We note that the existence of a solution with x1> 0 and x2> 0 requires
that:

> = >q q c s
q q

q q
D
k

, and :
(1 )

0.2 1
0 2 1

2 2 1 (26)

The first inequality is not surprising in view of Theorem 4. The second
inequality is new, and can be re-written as:

>k
q q

q q
D
s(1 )

,1
2 1

2 2
0 (27)

and expresses that the existence of a steady state with x1> 0 and
x2> 0 requires the toxicity rate k1 to be sufficiently large.

Assuming that (26) holds, we now introduce a second auxiliary
function h2(x1), defined on the interval q c[0, (1 ) ]2 :

=h x f c x q q x q( ) ( /(1 ), /(1 )),2 1 1 2 1 1 2 (28)

which is positive in q c(0, (1 ) ),2 but zero in the endpoints of this in-
terval. By inserting the last two expressions for e and s of the above
steady state equations into the first steady state equation, we see that x1
at a steady state must satisfy:

=h x D
q

( )
12 1

2

Just like we introduced a concavity assumption for the function h1(x1)
in H2, we now introduce:

<
h x h x

x q c
H3: ( ) is strictly concave, i.e. ( )

0 for all in [0, (1 ) ].
2 1 2 1

1 2 (29)

As explained for the auxiliary function h1(x1) in Section 3, H3 auto-
matically holds when f(s, e) is a product of strictly increasing and
concave functions of s and of e, such as linear and/or Monod functions
which are commonly used in microbial growth models.

When H3 holds, the equation =h x D q( ) /(1 )2 1 2 generically either
has no, or exactly two solutions x s

1,2 and x u
1,2 in the interval q c[0, (1 ) ]2

with <x xs u
1,2 1,2. Once again, the choice of the superscripts s and u will

become clear later when the stability of certain steady states is dis-
cussed. When there are two solutions to the equation, it follows that the
limiting system (22)–(25) has two steady states with x1> 0 and x2> 0.
Consequently, system (17)–(21) has the following coexistence steady
states:

=E c
x

q
q x

q
q q D

q k
x

q q D
q k1

,
1

,
( )
(1 )

, ,
( )s

s s
s

1,2
1,2

2

1 1,2

2

2 1

2 1
1,2

2 1

2 1 (30)

=E c
x

q
q x

q
q q D

q k
x

q q D
q k1

,
1

,
( )
(1 )

, ,
( )u

u u
u

1,2
1,2

2

1 1,2

2

2 1

2 1
1,2

2 1

2 1 (31)

Note in particular that both steady states have the same x2 and t-values.
Our next result implies that a stable coexistence of cooperators and

toxin producers is possible in the absence of cheaters.

Theorem 5. Assume that H1, H2, (26) and H3 hold. Suppose that the
equation =h x D q( ) /(1 )1 1 1 has two solutions x u

1 and x s
1 in the interval

q s(0, (1 ) ),1
0 with <x xu s

1 1 . Suppose also that the equation
=h x D q( ) /(1 )2 1 2 has two solutions x s

1,2 and x u
1,2 in the interval

q c(0, (1 ) ),2 with <x xs u
1,2 1,2.

Then system (17)–(21) has exactly 5 steady states: =E s( , 0, 0, 0, 0),0
0
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=E s x q q x q x( /(1 ), /(1 ), 0, , 0),u u u u
1

0
1 1 1 1 1 1

=E s x q q x q x( /(1 ), /(1 ), 0, , 0),s s s s
1

0
1 1 1 1 1 1 and E s

1,2 and E ,u
1,2 defined

in (30)and (31).
Moreover, E0 and E s

1 are locally asymptotically stable, whereas E u
1 and

E u
1,2 are unstable.
If h x( )s

2 1,2 is sufficiently small, then E s
1,2 is locally asymptotically stable,

and in this case system (17)–(21) is tri-stable.

Proof. Because system (17)–(21) is an asymptotically autonomous
system, it suffices to prove that the corresponding steady states of the
limiting system (22)–(25) -which by a slight abuse of notation, we shall
denote with the same notation- have the same stability properties.
Linearizing the vector field of the limiting system yields the Jacobian
matrix:

+ +D x x x x f f

q x q x D q f

q x q x q f D x x

q x q x q f D

( ) ( )

0

(1 ) (1 ) (1 )

(1 ) (1 ) 0 (1 )

f
s

f
e

f
s

f
e

f
s

f
e

k q
q

k q
q

f
s

f
e

1 2 1 2

1 1 1 1 1

1 1 1 1 1 1 2 1 1

2 2 2 2 2

1 2
2

1 2
2

At E0, this Jacobian matrix is diagonal with the 4 diagonal entries equal
to D. Thus, E0 is locally asymptotically stable. At E *,1 where * is either
u or s, the Jacobian is

D x x f f

q x q x D q f

q x q x x

q f D

* *

* * 0

(1 ) * (1 ) * 0 *

0 0 0 (1 )

f
s

f
e

f
s

f
e

f
s

f
e

k q
q

1 1

1 1 1 1 1

1 1 1 1 1 1

2

1 2
2

Note that one of the eigenvalues is

= <q f D q D
q

D
q

(1 ) (1 )
1 1

0,2 2
1 2

because q1< q2. This means that both cooperator-only steady states E u
1

and E s
1 are resistant to invasion by toxin producers.The remaining

eigenvalues are those of the upper-left 3× 3 sub-matrix of the
Jacobian. Suppressing a tedious calculation, the characteristic
polynomial of this submatrix is given by:

+ + +a a a , where3
2

2
1 0

= + =

= + =

= =

a D x f
s

q f
e

D q x h x

a D D x f
s

q f
e

D D q x h x

a x D f
s

q f
e

q h x x D

2 * 2 (1 ) * ( *)

2 * [ 2(1 ) * ( *)]

* (1 ) ( *) *

2 1 1 1 1 1 1

1 1 1 1 1 1 1

0 1
2

1 1 1 1 1
2

and where we have used the fact that

=h x
q

f
s

q f
e

( *) 1
1

,1 1
1

1

which follows when taking the derivative in the definition of h1(x1) in
(10). Since <x xu s

1 1 are the two roots of the equation
=h x D q( ) /(1 ),1 1 1 and since h1(x1) is strictly concave by H2, there

follows that:

> <h x h x( ) 0, and ( ) 0.u s
1 1 1 1

The Routh–Hurwitz test implies that E u
1 is unstable because in this case

a0< 0. For E ,s
1 it is clear that a2> 0 and a0> 0. Furthermore,

=

+

= +

>

a a
a D D q x h x D q x h x

q h x x D

D D D q x h x q x h x

[( 2(1 ) ( ))(2 (1 ) ( ))

(1 ) ( ) ]

[2 4 (1 ) ( ) 2(1 ) ( ) ( ( )) ]

0,

s s s s

s s

s s s s

1 2

0 1 1 1 1 1 1 1 1

1 1 1 1
2

1 1 1 1 1
2

1
2

1 1
2

and the Routh–Hurwitz test implies that E s
1 is asymptotically stable.

We conclude by determining the stability of E * ,1,2 where * is either u
or s. The Jacobian is:

+ +D x x x x f f

q x q x D q f

q x q x x

q x q x

( * *) ( * *)

* * 0

(1 ) * (1 ) * 0 *

(1 ) * (1 ) * 0 0

,

f
s

f
e

f
s

f
e

f
s

f
e

k q
q

f
s

f
e

1,2 2 1,2 2

1 1,2 1 1,2 1

1 1,2 1 1,2 1 1,2

2 2 2 2

1 2
2

where =x q q D q k* ( ) /((1 ) ),2 2 1 2 1 which is independent of whether *
equals u or s, as pointed out earlier. Skipping a very long calculation,
the characteristic polynomial of this Jacobian is:

+ + + +b b b b , where4
3

3
2

2
1 0

= + +

= +

= + +
+

= + +

= +

=

=

=

b D x f
s

x f
s

q f
e

D x f
s

q x h x

b D D x f
s

q q
q

x f
s

q f
e

D D x f
s

q q x h x

b D x f
s

x f
s

q f
e

D x f
s

q x h x

b
q

q
x x k D f

s
q f

e
q x x k D h x

2 * *

2 * (1 ) * ( * )

2 * 2 ( )
1

*

2 * (2 ( )) * ( * )

* *

* (1 ) * ( * )

1
* *

* * ( * )

3 2 1,2 1

2 2 1,2 2 1,2

2 2
1 2

2
1,2 1

2 1 2 1,2 2 1,2

1
2

2 1,2 1

2
2 2 1,2 2 1,2

0
2

2
1,2 2 1

2
1

2 1,2 2 1
2

2 1,2

where we have used the fact that

=h x
q

f
s

q f
e

( * ) 1
1

,2 1,2
2

1

which follows when taking the derivative in the definition of h2(x1) in
(28). Since <x xs u

1,2 1,2 are the two roots of the equation
=h x D q( ) /(1 ),2 1 2 and since h2(x1) is strictly concave by H3, there

follows that:

> <h x h x( ) 0, and ( ) 0.s u
2 1,2 2 1,2

The Routh–Hurwitz test implies that E u
1,2 is unstable because in this case

b0< 0.
To finish the proof, we shall apply the Routh–Hurwitz test once

again and show that if h x( )s
2 1,2 is sufficiently small (which happens

when x s
1,2 is sufficiently close to the critical point of the function h2(x1)),

then E s
1,2 is locally asymptotically stable. First, recall that according to

the Routh–Hurwitz test, this steady state is locally asymptotically stable
if

> > > >b b b b b b b b b b b0, 0, 0, and ( ) 0.0 3 2 3 1 1 2 3 1 0 3
2

When >h x( ) 0,s
2 1,2 it is clear that b0> 0. Also, when h x( )s

2 1,2 is positive
and sufficiently small, then b3> 0. This follows from a continuity ar-
gument by noticing that if =h x( ) 0,s

2 1,2 then b3 is positive. Similar
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continuity arguments show that >b b b 02 3 1 and
>b b b b b b( ) 01 2 3 1 0 3

2 when h x( )s
2 1,2 is sufficiently small. Indeed, if

=h x( ) 0,s
2 1,2 then:

= + +

= +

>

= +

>

b b b D D x f
s

D x f
s

D x f
s

D D x f
S

b b b b b b D x f
s

D D x f
S

2 * ) 2 * *

2 *

0

( ) * 2 * 0

0

2 3 1 2 2
2

2

2

2

1 2 3 1 0 3
2 2

2 2

2

□

6. Resisting invasion by cheaters

In Theorem 5 we have identified conditions under which a (locally)
stable coexistence of cooperators and toxin producers is possible. This
stable coexistence comes in the form of the steady state E s

1,2 of system
(17)–(21). Here we will show that this steady state is resistant to in-
vasion by cheaters when the rate constant of the toxin acting on the
cheater is sufficiently large.

Theorem 6. Assume that all the assumptions and conditions of Theorem 5
hold, and that

k
q

q q
k .3

2

2 1
1

(32)

Then system (1)–(6) has exactly 5 steady states = E( , 0),0 0 = E( , 0),u u
1 1

= E( , 0),s s
1 1 = E( , 0)u u

1,2 1,2 and = E( , 0)s s
1,2 1,2 . Moreover,

• 0 is locally asymptotically stable, but ,u
1

s
1 and u

1,2 are unstable.
• If

>k
q

q q
k ,3

2

2 1
1

(33)

then = E( , 0)s s
1,2 1,2 is locally asymptotically stable, and system (1)–(6)

is bi-stable. If the inequality (33) is reversed, then = E( , 0)s s
1,2 1,2 is

unstable.

Proof. That ,0 ,u
1 ,s

1
u
1,2 and s

1,2 are steady states of system (1)–(6)
follows from Theorem 5, and the fact that the part of the boundary of
the state space where =x 0,3 is an invariant set for the system.
Moreover, these 5 steady states are the only steady states in this part
of the boundary of the state space. To see that these are the only steady
states of the system, it therefore suffices to show that the system cannot
have steady states with x3> 0. By contradiction, suppose there is a
steady state with x3> 0. Then x1> 0 as well, for if this were not the
case, then e would have to be zero, contradicting the steady state
equation associated to (6). Thus, if x3> 0 then x1> 0 as well. We claim
that then x2> 0 too, for if this were not the case, then t would have to
be zero. But then the steady state equations associated to (5) and (6)
yield that simultaneously =f s e D q( , ) /(1 )2 and =f s e D( , ) for some
pair (s, e), which is impossible. Thus, if a steady state with x3> 0 exists,
then x1> 0 and x2> 0 as well. But then also t>0. However, the
generic condition (32) rules out the existence of such steady states: If
such a steady state were to exist, then the steady state equations
associated to (4), (5) and (6) imply that =k q k q q/( ),3 2 1 2 1
contradicting (32).

We now investigate the linearization of the system at these 5 steady
states. The Jacobian matrix at each of the steady states has the fol-
lowing block-triangular structure:

J *
0 ,5

6

where the value of * is irrelevant, where J5 is a 5× 5 matrix, and λ6 is
the real, transversal eigenvalue in the x3-direction. We now determine
the location of the eigenvalues of the Jacobian matrices associated to
each of the 5 steady states, from which their stability properties will
follow:

1. For ,0 we have that J5 has 5 real and negative eigenvalues by
Theorem 5, and it is easily checked that = D6 is negative. Thus,
E0 is asymptotically stable.

2. For ,u
1 Theorem 5 implies that J5 has an eigenvalue with positive

real part, hence u
1 is unstable. Note moreover that here

= Dq q/(1 )6 1 1 is positive, implying that this steady state can be
invaded by the cheater.

3. For ,s
1 we see that = Dq q/(1 )6 1 1 is positive too. This steady state

can be invaded by the cheater, hence it is unstable.
4. For ,u

1,2 Theorem 5 implies that J5 has an eigenvalue with positive
real part, and therefore this steady state is unstable.

5. For ,s
1,2 it follows from Theorem 5 that all the eigenvalues of J5

have negative real part. Moreover, the transversal eigenvalue in the
x3-direction equals:

= =D
q

D k
q q

q
D
k

D
q

q q q k
k1 1 1

( ) ,6
2

3
2 1

2 1 2
2 2 1

3

1

If (33) holds then λ6< 0, and then s
1,2 is locally asymptotically

stable. But if the inequality in (33) is reversed, then s
1,2 is unstable,

and in this case the cheater can successfully invade this steady state.

□

7. Simulations

In this Section we present some numerical results to illustrate the
main results obtained earlier.

In all of the following simulations =f s e ase( , ) is a linear function,
with =a 1.0. Additionally, for all simulations we use the parameter
values =s 1.0,0 =D 0.0346, =k 0.015,1 =q 0.24,1 and =q 0.252 .

In Fig. 1 we illustrate that a cooperator-only population can persist
according to Theorem 1, provided that the system’s initial condition is
contained in the region of attraction of E s

1 . But notice that washout may
also occur, if the initial condition is contained in the region of attraction
of E0.

Fig. 2 illustrates that the Tragedy of the Commons occurs when
there are cheaters, but no toxin producers or toxins, as proved in
Theorem 2.

In Fig. 3 we show that a stable coexistence of cooperators and toxin
producers is possible in the absence of cheaters, as proved in
Theorem 5.

Fig. 4 shows two possible outcomes of the full model (1)–(6) when
cooperators, toxin producers and cheaters are present, as discussed in
Theorem 6. There is resistance to invasion by cheaters when (33) holds,
and then the steady state s

1,2 is locally asymptotically stable. But a
Tragedy occurs when the inequality in (33) is reversed.

8. Conclusions

The purpose of this paper was to investigate a division of labor
model in a population consisting of cooperators who produce a public
good required for growth, and toxin producers who produce a toxin that
harms invading cheaters who do not contribute to public good or toxin
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production. We first established that a cooperator-only population can
persist (Theorem 1), but that it is always doomed when it is invaded by
mutant cheaters (Theorem 2), a phenomenon known as the Tragedy of
the Commons (ToC). Our main goal was therefore to determine if the
ToC can be avoided in the presence of toxin-producers. We first showed
that the mere presence of toxin producers is not necessarily enough to
achieve this. Indeed, when the toxicity rate for cooperators k1 exceeds
the toxicity rate for cheaters k3, then the entire population will still go
extinct, and thus a ToC cannot be avoided (Theorem 3). In the absences
of cheaters, a mixture of cooperators and toxin producers will go extinct
if the cost of cooperation q1 exceeds the cost of toxin production q2
(Theorem 4). But a mixture of cooperators and toxin producers can
coexist at a stable steady state in the absence of cheaters (Theorem 5),
provided that:

1. The cost of toxin production q2 exceeds the cost of cooperation q1,
and

2. The toxicity rate for the cooperators k1 is sufficiently large, made
precise in (27).

Theorem 5 was established under additional assumptions H1, H2
and H3 imposed on the growth rate function f(s, e), but these are
naturally satisfied for commonly used growth rate functions found in
the literature. We also had to make the technical assumption that
h x( )s

1 1,2 was sufficiently small to prove Theorem 5.
Our final result (Theorem 6) showed that the above mixed stable

steady state of cooperators and toxin producers is resistant to invasion
by cheaters, provided that the toxicity rate for the cheaters is suffi-
ciently large; more precisely, cheaters cannot invade if

>k
q

q q
k .3

2

2 1
1

(34)

We have already mentioned above that to avoid a ToC, the toxicity rate
for the cheaters k3 should exceed the toxicity rate for cooperators k1.
Condition (34) shows exactly how much larger k3 should be; namely, k3
should be larger than q q q/( )2 2 1 (a number that is strictly larger than
1) times k1.

Our results contribute support to the idea that policing strategies
may have evolved to stabilize and maintain cooperation in populations.
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Fig. 1. Time series for system (7)–(9) illustrating the two locally asymptotically stable steady states for that system: The washout steady state E0 (right panel) and the
cooperator persistence steady state E s

1 (left panel). The initial conditions used for the right panel are = = =s e x0.70, 0.04, 0.261 ; the initial conditions for the left
panel are = = =s e x0.65, 0.05, 0.3.1 For both figures = = =x t x 0.2 3

Fig. 2. Time series illustrating the Tragedy that occurs when cheaters are
present and toxin-producing microbes are absent. The initial conditions are as
follows: = = = =s e x x0.15, 0.06, 0.77, 0.02,1 3 and = =x t 02 .

Fig. 3. Time series for the system (22)–(25) illustrating convergence to the
locally stable steady state E s

1,2. Here the initial conditions are
= = = = = =s e t x x x0.49, 0.11, 0, 0.33, 0.0923, 01 2 3 .
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Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.mbs.2019.108257
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