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A general three-stage discrete-time population model is studied. The inherent net reproductive number for
this model is derived. Global stability of the origin is established provided that the inherent net reproductive
number is less than one. If it is larger than one the existence of a unique positive fixed point is proved and
the persistence of the system is established. Finally, for certain parameter ranges global stability of the
positive fixed point is proved.
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1. Introduction

Linear and nonlinear matrix models have played a central role in understanding the dynamics of
many populations (see [5,11] and the reference therein) including endangered species [4], invasive
species [19], and such with rich dynamical behaviour. A recent well-known similar model is the
nonlinear discrete three-stage LPA model developed in [7] to describe the dynamics of a flour
beetle population. The nonlinearities in this model account for the cannibalism of eggs by both
larvae and adults and the cannibalism of pupae by adults and are of the Ricker type [3,5]. The
resulting deterministic model and its stochastic counterparts were very successful in predicting
experimentally observed dynamics of flour beetles including cyclic and chaotic behaviour [8–
10,13]. This work has enriched the literature with yet another example of the predictive power of
such models.

The purpose of this paper is to theoretically study a matrix model which describes the dynamics
of a general closed (no immigration or migration) population composed of individuals having one
of the following three stages: (1) juveniles, (2) sexually immature adults (non-breeders), and
(3) reproductive adults (breeders). In addition, it is assumed that juveniles depend on different
resources than adults. Thus, no competition for resources takes place between them. Such life
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416 A.S. Ackleh and P. De Leenheer

history is typical of amphibians where larvae which are called tadpoles metamorphose into adults,
where the adults are composed of sexually immature and mature individuals. Also, for many
amphibians tadpoles are herbivorous, while adults are carnivorous. Thus, juveniles and adults
depend on different resources. A particular amphibian example which motivated this theoretical
study is the green tree frog (Hyla cinerea), which we have been monitoring since 2004 [18].

Stage-structured models similar to the one presented here have been applied recently to describe
the dynamics of amphibian populations [23]. The model presented in [23] assumes that the popula-
tion is divided into two stages, namely juveniles and adults. In contrast with the three-dimensional
matrix model considered here, such a simplifying assumption results in a two-dimensional non-
linear matrix population model, which is related to a general class of juvenile-adult models
studied recently in [12]. The model in [23] was applied to two amphibian species Bufo boreas and
Ambystoma macrodactylum with different reproductive strategies (the former species has a clutch
size more than 100 times larger than the latter one). Local stability of the interior equilibrium was
established and elasticity analysis was used to determine the most influential stage-survival rate
on amphibian declines, a problem which was extensively discussed in [6,22].

In contrast with a two-dimensional counterpart, the (Beverton–Holt type) nonlinearities in the
three-dimensional model presented here – which are due to competition between sexually mature
and immature adults–generally lead to a non-monotone discrete dynamical system. For monotone
systems, global stability can often be established, thanks to the availability of a well-developed
theory, see [20] and cited references therein for a review. Non-monotone systems on the other hand
lack a similar theory, and their global stability analysis is therefore usually more complicated. Our
approach will be as follows. We first note that for a particular choice of some of the parameters
in the model, the system is monotone, and global stability can be established. Secondly, we
show that when the parameters are perturbed slightly away from their above critical values,
global stability is preserved despite the fact that the perturbation destroys the monotonicity of the
model.

This paper is organized as follows. In Section 2 we present the discrete model. In Section 3,
we prove persistence for the general model and provide an existence–uniqueness result for an
interior fixed point. In Sections 4 and 5 we establish global stability results for special cases of
the model. Finally, concluding remarks are provided in Section 6.

2. The discrete model

As mentioned above, the discrete model we consider describes the dynamics of a population
divided into three stages, where juveniles compete for one resource while non-breeders and
breeders compete for another. The model is given by the following system of difference equations:

J (t + 1) = bB(t) + (1 − γ1)s1(J (t))J (t)

N(t + 1) = γ1s1(J (t))J (t) + (1 − γ2)s2(N(t) + B(t))N(t) (1)

B(t + 1) = γ2s2(N(t) + B(t))N(t) + s2(N(t) + B(t))B(t).

The state variables J (t), N(t) and B(t) represent the number of juveniles, non-breeders, and
breeders, respectively, at time t . The parameter b > 0 is the birth rate, while γ1, γ2 ∈ (0, 1)

represent the fraction (in one time unit) of juveniles that become non-breeders and non-breeders
that become breeders, respectively. The functions s1 and s2 are the survivorship functions of
juveniles (tadpoles) and non-breeders/breeders (adults), respectively. We assume that si, i = 1, 2,
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satisfy the following assumption:

(�1) si ∈ C1[0, ∞), si(0) = ai, 0 < ai < 1,
d

dz
si(z) < 0,

d

dz
(si(z)z) > 0,

lim
z→∞ si(z) = 0, and lim

z→∞ si(z)z = âi < ∞ for i = 1, 2.

The assumption (�1) is satisfied, for example, by the following Beverton–Holt function:

si(z) = ai

1 + kiz
, i = 1, 2.

The above difference equation system (1) can be written in the following matrix form:

x(t + 1) = A(x(t))x(t), (2)

where x(t) = (J (t), N(t), B(t))T and the projection matrix A has the form

A(x) =
⎛
⎜⎝

(1 − γ1)s1(J ) 0 b

γ1s1(J ) (1 − γ2)s2(N + B) 0

0 γ2s2(N + B) s2(N + B)

⎞
⎟⎠.

Note that

x ≤ y, implies A(y) ≤ A(x). (3)

Here vector and matrix inequalities hold componentwise.

3. Existence–uniqueness of interior fixed point and persistence

In this section, we prove the existence of a unique interior fixed point for the model (1) and show
that the system is persistent. We begin by finding the inherent net reproductive number. To this
end, following [5,11] we let

G =
⎛
⎜⎝

(1 − γ1)a1 0 0

γ1a1 (1 − γ2)a2 0

0 γ2a2 a2

⎞
⎟⎠

and

F =
⎛
⎝0 0 b

0 0 0
0 0 0

⎞
⎠ .

Note that the inherent projection matrix of the nonlinear system

A(0) =
⎛
⎜⎝

(1 − γ1)a1 0 b

γ1a1 (1 − γ2)a2 0

0 γ2a2 a2

⎞
⎟⎠ = F + G.

Thus, the inherent net reproductive number R0 is the positive, simple, and strictly dominant
eigenvalue of F(I − G)−1. Simple calculations show that

R0 = bγ1γ2a1a2

(1 − (1 − γ1)a1)(1 − (1 − γ2)a2)(1 − a2)
. (4)

When necessary we will use the notation A(0, (γ1, γ2)) and R0(γ1, γ2) to indicate the
dependency of A(0) and R0 on γ1 and γ2. We now have the following result:
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418 A.S. Ackleh and P. De Leenheer

LEMMA 1 If R0(γ1, γ2) < 1, then the origin E0 = (0, 0, 0) is a globally asymptotically stable
fixed point of system (1).

Proof Since the inherent projection matrix, A(0), of system (2) is non-negative, irreducible,
and primitive, it has a positive, simple, and strictly dominant eigenvalue r . Furthermore, since
R0 < 1, it follows from [11] (Theorem 1.1.3, p. 10) that r < 1 and limt→∞ At(0) = 0. Now,
for any x(0) we have that 0 ≤ x(1) = A(x(0))x(0) ≤ A(0)x(0) by (3), and repeating this we
get that 0 ≤ x(t) ≤ At(0)x(0). Since At(x(0))x(0) converges to 0 as t → ∞, the conclusion
follows. �

We now establish the existence and uniqueness of an interior fixed point as follows:

THEOREM 1 If R0(γ1, γ2) > 1, then (1) has a unique interior fixed point E∗ = (J ∗, N∗, B∗).

Proof A positive fixed point of (1) is a point (J ∗, N∗, B∗) ∈ int(R3+) that satisfies

J = bB + (1 − γ1)s1(J )J

N = γ1s1(J )J + (1 − γ2)s2(N + B)N (5)

B = γ2s2(N + B)N + s2(N + B)B.

From the first equation in (5) we get

h(J ) := (1 − (1 − γ1)s1(J ))J = bB.

It is easy to see that h′(J ) > 0, h(0) = 0, and limJ→∞ h(J ) = ∞. Thus, h : [0, ∞) → [0, ∞) is
one to one and onto. Therefore, J (B) = h−1(bB). Furthermore, limB→∞ J (B) = ∞, J (0) = 0,
and J ′(B) > 0. Observe also that

J = bB

1 − (1 − γ1)s1(J )
. (6)

Now letting W = N + B and adding the second and the third equations of (5), we get

W = N + B = γ1s1(J )J + s2(N + B)(N + B) = γ1s1(J )J + s2(W)W.

Thus,

h̃(W) := (1 − s2(W))W = γ1s1(J )J.

Therefore, noticing that h̃′(W) > 0 by (�1) and arguing as above, we get that W

can be solved as a function of B. In particular, W(B) = h̃−1(γ1s1(J (B))J (B)) and
W(0) = 0. Furthermore, using (�1) once again it follows by implicit differentiation that
W ′(B) > 0.
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Using the notation s1(J ) = s1 and s2(W) = s2 we get from adding the second and third
equations of (5)

N(1 − s2) = γ1s1J + (s2 − 1)B.

Solving for N yields

N = γ1s1J + (s2 − 1)B

1 − s2
. (7)

Plugging the equations (6) and (7) for J and N into the B equation of (5) results in

B = γ1γ2s1s2bB

(1 − s2)(1 − (1 − γ1)s1)
+ (1 − γ2)s2B

Since we are interested in the existence and uniqueness of a positive equilibrium dividing by
B we obtain

1 = γ1γ2s1s2b

(1 − s2)(1 − (1 − γ1)s1)
+ (1 − γ2)s2.

This is equivalent to

1 = γ1γ2s1s2b + (1 − γ1)s1(1 − s2) + s2 + (1 − γ2)s2(1 − s2)(1 − (1 − γ1)s1)

= Ĥ (J (B), W(B)) := H(B). (8)

Clearly, any interior equilibrium must satisfy (8).
Now differentiating H(B) with respect to B we see that

H ′ = γ1γ2s
′
1J

′s2b + γ1γ2s1s
′
2W

′b + s ′
1J

′(1 − s2)(1 − γ1) − s ′
2W

′(1 − γ1)s1 + s ′
2W

′

+ (1 − γ2)s
′
2W

′(1 − s2)(1 − (1 − γ1)s1)) − (1 − γ2)s2s
′
2W

′(1 − (1 − γ1)s1))

− (1 − γ2)s2(1 − s2)(1 − γ1)s
′
1J

′

= γ1γ2s
′
1J

′s2b + γ1γ2s1s
′
2W

′b + s ′
1J

′(1 − γ1)(1 − s2)(1 − (1 − γ2)s2)

+ s ′
2W

′(1 − (1 − γ1)s1) − (1 − γ2)s
′
2W

′s2(1 − (1 − γ1)s1)

+ (1 − γ2)s
′
2W

′(1 − s2)(1 − (1 − γ1)s1)

= γ1γ2s
′
1J

′s2b + γ1γ2s1s
′
2W

′b + s ′
1J

′(1 − γ1)(1 − s2)(1 − (1 − γ2)s2)

+ s ′
2W

′(1 − (1 − γ1)s1)(1 − (1 − γ2)s2) + (1 − γ2)s
′
2W

′(1 − s2)(1 − (1 − γ1)s1) < 0,

since J ′ > 0, W ′ > 0 and s ′
i < 0, i = 1, 2. Therefore, H is a decreasing function. Also note that

limB→∞ H(B) = 0. Thus, it follows that if H(0) > 1 then there exists a unique B∗ such that
1 = H(B∗). (Clearly, H(0) > 1 is equivalent to R0(γ1, γ2) > 1). From this and the above estab-
lished relations between W , J , and B it follows that there exists a unique interior equilibrium
E∗ = (J ∗, N∗, B∗). �

The next result establishes boundedness of solutions, uniformly in the parameters.

LEMMA 2 There is a compact set K ⊂ R
3+ such that every forward solution sequence of (1)

enters K in at most two time steps, and remains in K forever after.
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420 A.S. Ackleh and P. De Leenheer

Proof It is clear that R
3+ is forward invariant. Consider now the dynamics of

W(t + 1) = N(t + 1) + B(t + 1),

then from (�1) we have

W(t + 1) = γ1s1(J (t))J (t) + s2(W(t))W(t) ≤ γ1â1 + â2 ≤ â1 + â2, ∀t = 0, 1, . . . ,

so that in particular

N(t), B(t) ≤ â1 + â2, ∀t = 1, 2, . . .

Therefore

J (t + 1) ≤ b(â1 + â2) + (1 − γ1)â1, ∀t = 1, 2, . . . ,

hence

J (t) ≤ (b + 1)â1 + bâ2, ∀t = 2, 3, . . .

The conclusion of the lemma follows by defining

K = {(J, N, B) ∈ R
3
+|J ∈ [0, (b + 1)â1 + bâ2], N, B ∈ [0, â1 + â2]}.

�

Next, we show that if the net reproductive number is greater than one, then the origin is unstable
and system (1) is uniformly persistent.

THEOREM 2 If R0(γ1, γ2) > 1, then (1) has an unstable fixed point at the origin. Moreover, (1)
is uniformly persistent.

Proof Since R0(γ1, γ2) > 1 it follows from Theorem 1.1.3 in [11] that A(0) has a positive strictly
dominant eigenvalue r > 1. This shows that the origin is unstable. Uniform persistence will follow
from an application of Theorem 4.1 in [16]. Using the notation of that paper, we let H = R

3+,
Y = bd(R3+), and f denote the map on the right hand side of (1). Then clearly f (H\Y) ⊂ H\Y
since int(R3+) is positively invariant for system (1). By Theorem 2.1 in [15] and using Lemma 2,
it follows that there exists a global attractor X in H. Let M be the maximal compact invariant set
in Y . Here, M = {(0, 0, 0)}. Uniform persistence follows if we can prove that

1. M is isolated in X.
2. Ws(M) ⊂ Y ,

where Ws(M), the stable set of M , denotes the set of points whose solution sequence for (1)
converges to M . In fact, we will prove the stronger result that M is a repeller which by Theorem
2.1 in [16] is equivalent to showing

1. M is isolated in H.
2. Ws(M) ⊂ M .

To prove that M is a repeller, we will construct a continuous function P : R
3+ → R+ which is 0 on

M . Furthermore, there is a neighbourhood U/M such that for all x ∈ U/M , there exists a t > 0,
where P(f t (x)) > P (x). Let us now construct P . Since A(0) is non-negative and irreducible, its
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dominant eigenvalue r (which is larger than 1) has a corresponding left eigenvector p > 0, i.e.,

p′A(0) = rp′.

Pick r∗ ∈ (1, r) such that p′A(0) − r∗p′ > 0. Then by continuity of A(x), there exists a
neighbourhood U of M in H such that

p′A(x) − r∗p′ > 0.

Define P : R
3+ → R+ as follows:

P(x) = p′x.

Then P(x) = 0 for x ∈ U iff x ∈ M , and positive elsewhere in U . Moreover,

P(f (x)) = p′A(x)x > r∗p′x > P(x), ∀x ∈ U\M.

This establishes that system (1) is uniformly persistent, i.e., there is some η > 0 such that lim

inf
t→∞ J (t), N(t), B(t) ≥ η

for all non-zero orbits in R
3+. �

4. Global stability for the case γ1 = γ2 = 1

Throughout this section we assume that γ1 = γ2 = 1. We begin by establishing a convergence
result for monotone maps. Consider a map T : R

n → R
n. We say that T is monotone if x ≤ y

implies that T (x) ≤ T (y).

LEMMA 3 Let T : R
n → R

n be a continuous, monotone map and a ≤ b be points in R
n.

If a ≤ T (a) and T (b) ≤ b, and if T has a unique fixed point x∗ in the order interval [a, b] :=
{x ∈ R

n|a ≤ x ≤ b}, then every solution sequence of the discrete system

x(t + 1) = T (x(t)), (9)

starting in [a, b], converges to x.

Proof Note that the assumptions on T imply that

a ≤ T (a) ≤ T (b) ≤ b,

so by induction the solutions sequences starting in a and b are non-decreasing and non-increasing,
respectively. Since they also remain in the compact set [a, b], they must converge, and since T is
continuous, the limits must be fixed points ofT in [a, b].As there is only one fixed pointx∗ in [a, b],
both limits are the same and equal to x∗. Now for an arbitrary x ∈ [a, b], we have that a ≤ x ≤ b,
hence monotonicity of T implies that T k(a) ≤ T k(x) ≤ T k(b) for all k = 1, 2, . . .. This, and the
fact that T k(a), T k(b) → x∗ as k → ∞, implies that T k(x) → x∗, concluding the proof. �

The inherent net reproductive number for the case γ1 = γ2 = 1 is given by

R0(1, 1) = ba1a2

1 − a2
. (10)
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422 A.S. Ackleh and P. De Leenheer

If R0 > 1 then by Theorem 1 there exists a unique positive equilibrium E∗ = (J ∗, N∗, B∗),
where B∗ solves (8) (see proof of Theorem 1), which here simplifies to

1 = bs2(s1(bB)bB + B)s1(bB) + s2(s1(bB)bB + B), (11)

J ∗ = bB∗, and N∗ = s1(J
∗)J ∗. We sometimes write E∗(1, 1) to denote the unique positive fixed

point for the case γ1 = γ2 = 1.

LEMMA 4 Let R0(1, 1) = ba1a2/(1 − a2) > 1. Then, the unique positive fixed point E∗(1, 1) =
(J ∗(1, 1), N∗(1, 1), B∗(1, 1)) of system (1) is locally asymptotically stable.

Proof Let W ∗ = N∗ + B∗. The linearized system at (J ∗, N∗, B∗) has the following coefficient
matrix:

A∗ =
⎛
⎜⎝

0 0 b

A∗
21 0 0

0 A∗
32 A∗

33

⎞
⎟⎠ ,

where A∗
21 = s ′

1(J
∗)J ∗ + s1(J

∗), and A∗
32 = A∗

33 = s ′
2(W

∗)W ∗ + s2(W
∗). The characteristic

polynomial associated with this matrix is given by Q(s) = s3 − A∗
33s

2 − bA∗
21A

∗
32 = 0. In the

following, we shall verify that the following three Jury conditions [3] hold and conclude that the
roots of this polynomial have magnitude less then 1:

(1)Q(1) > 0, (2)Q(−1) < 0, and (3)1 − b2(A∗
21)

2(A∗
32)

2 − |bA∗
33A

∗
21A

∗
32| > 0.

To this end, observe that A∗
21 > 0, A∗

32 > 0, and A∗
33 > 0 by our assumption (�1). Since B∗

satisfies (11), J ∗ = bB∗, and N∗ = s1(J
∗)J ∗, we have by (11) that

1 = bs2(W
∗)s1(J

∗) + s2(W
∗). (12)

Substituting the above expression of 1 in Q(1) = 1 − A∗
33 − bA∗

21A
∗
32 yields

Q(1) = −s ′
2(W

∗)W ∗ − bs ′
1(J

∗)J ∗s2(W
∗) − bs ′

2(W
∗)W ∗[s ′

1(J
∗)J ∗ + s1(J

∗)] > 0.

It is also clear that

Q(−1) = −1 − A∗
33 − bA∗

21A
∗
32 < 0

as A∗
21 > 0, A∗

32 > 0, and A∗
33 > 0. We proceed to verify the last inequality 1 − b2(A∗

21)
2 (A∗

32)
2 −

|bA∗
33A

∗
21A

∗
32| > 0, which is equivalent to ξ := 1 − b2(A∗

21)
2(A∗

32)
2 − bA∗

21A
∗
32A

∗
33 > 0. For

notational convenience, we replace s1(J
∗) by s1 and s2(W

∗) by s2. Replacing 1 by the square of
the right hand side of (11), i.e.

1 = b2s2
1s2

2 + 2bs1s
2
2 + s2

2 ,

then

ξ = b2s2
1s2

2 + 2bs1s
2
2 + s2

2 − b2(A∗
21)

2(A∗
32)

2 − bA∗
21A

∗
32A

∗
33. (13)

Notice b2s2
1s2

2 − b2(A∗
21)

2(A∗
32)

2 = [bs1s2 + bA∗
21A

∗
32][bs1s2 − bA∗

21A
∗
32], where bs1s2 +

bA∗
21A

∗
32 > 0, and bs1s2 − bA∗

21A
∗
32 = −bs ′

1J
∗(s ′

2W
∗ + s2) − bs1s

′
2W

∗ > 0. Furthermore,

2bs1s
2
2 + s2

2 − bA∗
21A

∗
32A

∗
33 = 2bs1s

2
2 + s2

2 − bA∗
21A

∗
32s

′
2W

∗ − bA∗
21A

∗
32s2

> 2bs1s
2
2 + s2

2 − bA∗
21A

∗
32s2 = 2bs1s

2
2 + s2

2 − b(s ′
1J

∗ + s1)(s
′
2W

∗ + s2)s2

= 2bs1s
2
2 + s2

2 − bs ′
1s

′
2J

∗W ∗s2 − bs ′
1J

∗s2
2 − bs1s

′
2W

∗s2 − bs1s
2
2

> bs1s
2
2 + s2

2 − bs ′
1s

′
2J

∗W ∗s2 − bs ′
1J

∗s2
2

= bs1s
2
2 + s2

2 − bs ′
1s2J

∗[s ′
2W

∗ + s2] > 0.
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Thus, ξ > 0. This completes the proof that E∗ is locally asymptotically stable. �

Next, we prove that if the net reproductive number is larger than 1, then the unique positive
fixed point is globally attractive.

THEOREM 3 Suppose that R0(1, 1) = ba1a2/(1 − a2) > 1. Then every solution of (1) starting in
R

3+\{(0, 0, 0)} converges to E∗(1, 1) = (J ∗(1, 1), N∗(1, 1), B∗(1, 1)).

Proof Notice that every solution starting on the boundary of R
3+, but not in (0, 0, 0) enters the

positively invariant set int(R3+) in at most 2 time steps, so it is enough to establish the lemma for
solutions in int(R3+). Pick x(0) = (J (0), N(0), B(0)) ∈ int(R3+). In fact, by Lemma 2 it suffices to
consider x(0) ∈ int(R3+) ∩ K . The unique positive fixed point E∗ = (J ∗, N∗, B∗) clearly belongs
to K . Define b := sup K (this is the maximal element in K). Then again by Lemma 2 we have
that T (b) ≤ b (where T (x) denotes the right hand side of (1), which is clearly monotone since
DT (x) is a non-negative matrix for all x). Since A(0) is an irreducible non-negative matrix, its
spectral radius r (which we know is larger than 1) is an eigenvalue with a corresponding positive
eigenvector v:

A(0)v = rv.

In addition, for all ε > 0 sufficiently small, there holds that

T (εv) = rεv + o(ε) ≥ εv,

since r > 1. Now for a given x(0) in int(R3+) ∩ K , we can pick a sufficiently small ε > 0 such that

a := εv ≤ x(0) and a ≤ T (a).

The conclusion now follows from an application of Lemma 3. �

The global asymptotic stability of the unique interior fixed point (J ∗, N∗, B∗) follows from
Theorem 3 and Lemma 4 (local asymptotic stability and global attractivity).

5. Global stability results for a perturbation around γ1 = γ2 = 1

We start with an auxiliary result that establishes that the origin is a repeller for (1), uniform in the
parameters.

LEMMA 5 Let R0(1, 1) = ba1a2/(1 − a2) > 1. Then the fixed point at the origin for system (1)

is a repeller, uniform in the parameter γ = (γ1, γ2), near (1, 1). More precisely, there is an open
neighbourhood N0 of 0 in R

3+, and constants gi ∈ (0, 1), i = 1, 2, such that for every x(0) �= 0
and every γ ∈ [g1, 1] × [g2, 1], there is some t̄ = t̄ (x(0), γ ) ≥ 0 such that

T t
γ (x(0)) /∈ N0, ∀t ≥ t̄ ,

where x(t) = (J (t), N(t), B(t)), and Tγ (x(t)) denotes the right hand side of system (1).
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Proof The proof will follow from an application of a result due to Fonda – see Corollary 2.2 in
[16] – applied to the following extended system:

J (t + 1) = bB(t) + (1 − γ1(t))s1(J (t))J (t)

N(t + 1) = γ1(t)s1(J (t))J (t) + (1 − γ2(t))s2(N(t) + B(t))N(t)

B(t + 1) = γ2(t)s2(N(t) + B(t))N(t) + s2(N(t) + B(t))B(t)

γ (t + 1) = γ (t).

(14)

Obviously all solution sequences of (1) can be embedded in solution sequences of (14). Notice
that the right hand side of this sytem can be rewritten in pseudo-linear form:(

A(x(t), γ (t)) 0

0 I2

) (
x(t)

γ (t)

)

with

A(x, γ ) =
⎛
⎜⎝

(1 − γ1)s1(J ) 0 b

γ1s1(J ) (1 − γ2)s2(N + B) 0

0 γ2s2(N + B) s2(N + B)

⎞
⎟⎠ .

Let us reconsider A(0, (1, 1)) (which is equal to the matrix A(0) above), which has a spectral
radius r > 1 by our assumption. Since this matrix is non-negative and irreducible, there is a
vector p > 0 such that p′A(0, (1, 1)) = rp′. Consequently, there is some r∗ ∈ (1, r) such that
p′A(0, (1, 1)) − r∗p′ > 0. In fact, by continuity of A(x, γ ), there are ∈ > 0 and fi ε (0, 1) such
that

p′A(x, γ ) − r∗p′ > 0, ∀x ∈ B+
ε (0), ∀γ ∈ (f1, 1] × (f2, 1],

where B+
ε (0) := {x ∈ R

3+||x| < ε}. Let gi = (fi + 1)/2 for i = 1, 2, set z = (x, γ ), and let
Z := R

3+ × [g1, 1] × [g2, 1]. Then Z is invariant for system (14), and we restrict the dynamics to
Z henceforth. Define the continuous function P : Z → R+ as follows

P(z) = p′x.

Let M := {(0, 0, 0)} × [g1, 1] × [g2, 1]. Then clearly M is compact and invariant, and Z\M
is positively invariant for (14). Moreover P(z) = 0 iff z ∈ M . Finally, observe that (we slightly
abuse notation by also denoting the right hand side of (14) by T ),

P(T (z)) = p′A(z)x > r∗p′x > P(z), ∀z ∈ U\M.

where

U := B+
ε (0) × [g1, 1] × [g2, 1]

is a neighbourhood of M in Z. Therefore, all conditions of Corollary 2.2 in [16] hold, and hence
M is a repellor for (14). This concludes the proof of this Lemma. �

THEOREM 4 Let R0(1, 1) = ba1a2/(1 − a2) > 1. Then there is a continuous map E∗ :
� → int(R3+) with � = (γ l

1, 1] × (γ l
2, 1] for some γ l

i ∈ (0, 1), i = 1, 2 and E∗(γ1, γ2) =
(J ∗(γ1, γ2), N

∗(γ1, γ2), B
∗(γ1, γ2)) is locally asymptotically stable and globally attractive fixed

point of (1) with respect to non-zero initial conditions.

Proof The proof follows from an application of Theorem 2.1 in [21]. Using the notation from that
theorem, we let X = R

3+, U = R
3+\{(0, 0, 0)}, � = [g1, 1] × [g2, 1] (see Lemma 5), λ0 = (1, 1)
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and x0 = (J ∗, N∗, B∗). Clearly, all the needed smoothness requirements hold. The conditions on
the unperturbed map follow from Lemma 4 (localy asymptotically stable positive fixed point) and
Lemma 3 (globally attractive positive fixed point). Condition (H1) in that paper holds by setting
for all λ ∈ �, Bλ = K ∩ (R3+\N0), where K follows from Lemma 2 and N0 from Lemma 5.
Condition (H2) holds by the compactness of Bλ and by Lemma 5. This concludes the proof. �

6. Concluding remarks

In this paper, we have studied a three-stage structured population model. We have established
persistence results for the full model and global stability of the positive fixed point only for γ1

and γ2 in an interval near one. The global attractivity result given in Theorem 3 can be extended
to the case where γ1 ∈ (0, 1] and γ2 = 1, since in this case the map defined by the right hand side
of (1) is still monotone. The main difficulty in studying the global attractivity of the positive fixed
point for the full model (1) is that the nonlinear map governing the system is not monotone when
0 < γ2 < 1. Thus, the theory developed for monotone systems (see for example, [14,20]) and
used to study global attractivity of other stage-structured models (e.g., [1,2,17]) does not apply.
Currently, no proof of global convergence to the unique positive fixed point is known in case
γ1, γ2 ∈ (0, 1] when the inherent net reproductive number R0(γ1, γ2) is larger than one, although
a large number of simulations we performed suggest that this might be the case.

We remark that the results in Sections 3–5 can be extended to the following system of difference
equations:

J (t + 1) = bB(t) + (1 − γ1)s1(J (t))J (t)

N(t + 1) = γ1s1(J (t))J (t) + (1 − γ2)s2(N(t) + B(t))N(t) (15)

B(t + 1) = γ2s2(N(t) + B(t))N(t) + s3(N(t) + B(t))B(t),

where si, i = 1, 2, 3 satisfy (�1), provided that the following assumption holds:

(�2) 0 < s2(0) ≤ s3(0) < 1 and s ′
2(x) ≤ s ′

3(x) for x ∈ (0, ∞).

Clearly assumption (�2) implies that s2(x) ≤ s3(x) for x ∈ [0, ∞), which states that the
survivorship of an individual in the non-breeding stage is at most as high as that of an indi-
vidual in the breeding stage. This may happen, for instance, if the older reproductive individuals
(in comparison with newly metamorphosed juveniles) are better at avoiding predators (perhaps
due to their larger size and stronger muscles, ability to move faster, or knowledge of predator loca-
tions), hence, increasing their chance of survival. Furthermore, individuals in the non-breeding
stage may suffer more severe density effects than individuals in the breeding state, due to breeders
being better competitors for food/resources than non-breeders.

Similarly, the results in Sections 3–5 can also be extended to the case where non-breeders
are better competitors than breeders, and instead of (�2) the following condition is satisfied by
si, i = 2, 3:

(�3) 0 < s3(0) ≤ s2(0) < 1 and s ′
3(x) ≤ s ′

2(x) for x ∈ (0, ∞),

which implies that s3(x) ≤ s2(x) for x ∈ [0, ∞). Such a scenario may occur because reproduction
requires the expenditure of immense amounts of energy leaving reproductive individuals more
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vulnerable to environmental conditions in comparison with non-reproductive adults and hence
reducing their survival chances.

The proof of Theorem 1 changes slightly and only requires that(�1) holds ((�2) or (�3)

are not needed here). But (�1) together with either (�2) or (�3) are required to establish
monotonicity of system (15), for the case γ1 ∈ (0, 1] and γ2 = 1. We defer the details to the
Appendix.

We conclude this paper by pointing out that frogs reproduce seasonally. Thus, the birth rate
is generally described by a periodic function which is positive during the reproduction season
and zero otherwise. This results in a non-autonomous version of (1), where b is replaced with
b(t). Our future efforts will focus on studying the long term behaviour of solutions to (1) with a
periodic birth rate of this form.
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Appendix

First notice that for (15) the inherent net reproductive number changes to

R0(γ1, γ2) := bγ1γ2a1a2

(1 − (1 − γ1)a1)(1 − (1 − γ2)a2)(1 − a3)
. (A1)

THEOREM 5 Let (�1) hold for i = 1, 2, 3. If R0(γ1, γ2) > 1, then (15) has a unique interior fixed point
E∗ = (J ∗, N∗, B∗).

Proof A positive fixed point of (1) is a point (J ∗, N∗, B∗) ∈ int(R3+) that satisfies

J = bB + (1 − γ1)s1(J )J

N = γ1s1(J )J + (1 − γ2)s2(N + B)N (A2)

B = γ2s2(N + B)N + s3(N + B)B.

From the first equation in (A2) we get:

h(J ) := (1 − (1 − γ1)s1(J ))J = bB.

Arguing as in the proof of Theorem 1, we have J (B) = h−1(bB) where limB→∞ J (B) = ∞, J (0) = 0 and J ′(B) > 0.
Observe also that

J (B) = bB

1 − (1 − γ1)s1(J (B))
. (A3)

Define W = N + B and solve the second equation of (A2) for N :

N(W, B) = γ1s1(J (B))J (B)

1 − (1 − γ2)s2(W)
. (A4)

Thus, adding the second and the third equations of (A2) we get

W = γ1s1(J )J + s2(W)N + s3B.

Then
h̃(W, B) := W − s2(W)N(W, B) − s3(W)B − γ1s1(J (B))J (B) = 0,

and notice that h̃(0, 0) = 0. Now

h̃W = 1 − s′
2(W)N(W, B) − s2(W)NW (W, B) − s′

3(W)B

and
h̃B = −s2(W)NB(W, B) − s3(W) − γ1s

′
1(J (B))J ′(B)J (B) − γ1s1(J (B))J ′(B).

From (A4) it follows that NW (W, B) < 0 and NB(W, B) > 0 for any (W, B) > 0. Thus hW > 0 and h̃B < 0. Now,
applying the Implicit Function Theorem we get that there is a smooth W(B) with W(0) = 0, h̃(W(B), B) = 0 and
W ′(B) > 0 for all B > 0.

Plugging the Equations (A3) and (A4) for J and N into the B equation of (A2) results in

B = γ1γ2s1s2bB

(1 − (1 − γ1)s1)(1 − (1 − γ2)s2)
+ s3B.

As we are interested in a positive fixed point, dividing by B we obtain:

1 = γ1γ2s1s2b

(1 − (1 − γ1)s1)(1 − (1 − γ2)s2)
+ s3.

This is equivalent to

1 = γ1γ2s1s2b + (1 − γ1)s1 + (1 − γ2)s2(1 − (1 − γ1)s1) + s3(1 − (1 − γ1)s1)(1 − (1 − γ2)s2) (A5)

= Ĥ (J (B), W(B)) := H(B).

It is clear that any interior equilibrium must satisfy (A5).
Now differentiating H(B) with respect to B and using the positivity of W ′ and J ′ together with a similar calculation as

in the proof of Theorem 1, we get H ′ < 0. Also note that limB→∞ H(B) = 0. Thus, it follows that if H(0) > 1 then there
exists a unique B∗ such that 1 = H(B∗). (Clearly, H(0) > 1 is equivalent to R0(γ1, γ2) > 1). From this and the above
established relations between W, J , andB it follows that there exists a unique interior equilibrium E∗ = (J ∗, N∗, B∗). �

Finally, it is not difficult to show that if γ1 ∈ (0, 1] and γ2 = 1, then system (15) is monotone provided that (�2) or
(�3) holds.
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