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1. Introduction

The main motivation for this paper comes from the following question. Consider a 
coupled linear system:

ẋ = Ax + D(y − x)
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ẏ = By + D(x− y),

where x and y are in Rn, A and B are real n ×n matrices, while D is an arbitrary diag-
onal matrix with non-negative diagonal entries. In mathematical biology, these systems 
frequently occur when linearizing diffusively coupled patched nonlinear systems at their 
steady states. The coupling terms D(y − x) and D(x − y) are referred to as diffusive 
coupling terms. This stems from their analogy to Fick’s law for diffusion which posits 
that the spatial flux of a species is proportional to the gradient of the density of the 
species, and oriented from regions of higher density to regions of lower density.

The aforementioned question is this: If the zero steady state of the uncoupled system 
(i.e. when D = 0) is asymptotically stable, does the steady state remain asymptotically 
stable for all possible matrices D? It has long been known that the answer to this question 
is negative. For instance, assume that A = B. If we define two new variables z1 and z2
in Rn:

z1 = 1
2(x + y)

ż2 = 1
2(x− y),

then the dynamics in these new variables is given by:

ż1 = Az1

ż2 = (A− 2D)z2

Suppose that

A = B =
(
−2 −3
1 1

)
, and D =

(
1 0
0 d

)
,

with d ≥ 0. Then the eigenvalues of A = B have negative real part (because the trace of 
A is negative, and its determinant is positive), but

A− 2D =
(
−4 −3
1 1 − 2d

)
,

whose determinant is negative when 0 < d < 1/8. Thus, although the zero steady state 
of the uncoupled system is asymptotically stable, it is unstable for the coupled system 
when d lies in this range.

Despite yielding a negative answer to the original question, this potential destabi-
lization phenomenon has spurred a lot of interesting subsequent work. It features in 
synchronization theory [6], and also underlies mechanisms that induce pattern forma-
tion, as noted by Turing in 1952 in [11]. At the time this was seen as a revolutionary 
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idea, especially in biology, because diffusion was believed to always have a stabilizing 
effect on biological systems. The example above shows that this is not always the case.

Instead of further exploring the consequences when destabilization occurs, one can 
try to restrict the classes of matrices to which A and B belong to guarantee that the 
question can be answered affirmatively. We shall identify particular classes of matrices 
for which this is indeed the case.

2. Preliminaries

Throughout this paper, C ⊆ Rn will represent a proper cone, i.e. a non-empty, closed, 
convex, solid and pointed cone. More precisely, C is a cone (αx ∈ C for all α ≥ 0 when 
x ∈ C) which is solid (i.e. its interior, int(C), is not empty) and pointed (i.e. if both 
x ∈ C and −x ∈ C, then x = 0), and it is a closed and convex subset of Rn.

Let K ⊆ Rn be a non-empty convex cone. We say that K is finitely generated if there 
exists vectors k1, k2, . . . , kp in Rn (called the generators of K) such that

K = {k ∈ Rn | k =
p∑

i=1
αiki for some αi ≥ 0}.

It is known, see e.g. [2], that a finitely generated cone in Rn is a polyhedral set, i.e. the 
intersection of finitely many closed half-spaces in Rn (A closed half-space in Rn is a set 
of the form {x ∈ Rn | < v, x >≥ a} for some nonzero vector v and real number a, where 
< ., . > denotes the standard inner product on Rn). Therefore, every finitely generated 
cone is necessarily closed, a statement which is not immediately clear from its definition.

Examples. The non-negative orthant cone Rn
+ is a proper, finitely generated cone in Rn

with the standard basis vectors e1, . . . , en of Rn serving as its generators. An example 
of a proper cone in Rn with n > 1 that is not finitely generated is the Lorenz cone:

{x ∈ Rn | (x2
1 + · · · + x2

n−1)1/2 ≤ xn},

also known as the ice cream cone. This terminology is obviously motivated by its appear-
ance when n = 3. As a final example, first consider Sn, the set of real, symmetric n × n

matrices, which can be identified with Rn(n+1)/2. Then the subset Pn of Sn consisting 
of all positive semi-definite matrices is a proper cone in Sn see e.g. [3]. The interior of 
Pn consists of the positive definite matrices, and Pn is not finitely generated.

To every convex cone K in Rn –finitely generated or not– is associated the dual cone 
K∗, defined as the set of linear functionals on Rn which are non-negative on K. Linear 
functionals on Rn are elements of the dual space of Rn, which is denoted as (Rn)∗, 
and assuming that Rn is equipped with the standard inner product < ., . >, the Riesz 
Representation Theorem implies that every linear functional λ ∈ (Rn)∗ can be identified 
with a unique vector v in Rn in the sense that λ(x) =< v, x >, for all x ∈ Rn. It follows 
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that K∗ = {λ ∈ (Rn)∗ | λ(x) ≥ 0 for all x ∈ K} ≡ {v ∈ Rn | < v, x >≥ 0 for all x ∈ K}
is a non-empty closed convex cone.

Examples. The three cones mentioned in the examples above, namely the orthant cone, 
the ice cream cone, and the cone of positive semi-definite matrices are self-dual, i.e. each 
coincides with its dual cone, see [3].

We collect further well-known facts concerning cones [1,7,3]:

Lemma 1. Let K ⊆ Rn be a closed convex cone. Then:

1. K is pointed if and only if K∗ is solid.
2. int(K) = {x ∈ K | λ(x) > 0 for all λ ∈ K∗ \ {0}}.
3. int(K∗) = {λ ∈ K∗ | λ(x) > 0 for all x ∈ K \ {0}}.

We shall need a few more properties about cones. Let K1 ⊆ Rn and K2 ⊆ Rn be 
convex cones. The set K1 + K2 = {x ∈ Rn | x = x1 + x2, x1 ∈ K1, x2 ∈ K2} is a convex 
cone, containing both K1 and K2. For any X ⊆ Rn, its reflection with respect to the 
origin is defined as {−x | x ∈ X}, and will be denoted as −X.

Lemma 2. Let K1 and K2 be convex cones in Rn. Then

1. K1 + K2 is pointed if and only if K1 and K2 are pointed, and K1 ∩ (−K2) = {0}.
2. (K1 + K2)∗ = K∗

1 ∩K∗
2 .

Proof. 1. Assume that K1 + K2 is pointed. Then so are K1 and K2 since they are 
subsets of K1 + K2. Let x ∈ K1 ∩ (−K2). Then x ∈ K1 and −x ∈ K2, and thus 
x ∈ K1 + K2. But K1 + K2 is pointed, and thus x = 0.
Assume that K1 and K2 are pointed, and K1 ∩ (−K2) = {0}. Let x ∈ K1 +K2, such 
that −x ∈ K1 +K2 as well. Then there exist k1, ̃k1 in K1, and k2, ̃k2 in K2 such that:

x = k1 + k2 and − x = k̃1 + k̃2,

and thus that

k1 + k̃1 = −(k2 + k̃2)

But K1 ∩ (−K2) = {0}, and thus k1 + k̃1 = 0 = k2 + k̃2. Then k1 and −k1 belong 
to K1, and k2 and −k2 belong to K2. As K1 and K2 are pointed, this implies that 
k1 = k̃1 = k2 = k̃2 = 0, and then also x = 0, establishing that K1 + K2 is pointed.

2. If λ ∈ (K1 + K2)∗, then λ(x) ≥ 0 for all x ∈ K1 + K2. Then λ(x) ≥ 0 for all x
in K1, and for all x in K2, and therefore λ ∈ K∗

1 ∩ K∗
2 . Conversely, assume that 
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λ ∈ K∗
1 ∩K∗

2 , hence λ(x) ≥ 0 for all x ∈ K1 and for all x ∈ K2. This implies that 
λ(x) ≥ 0 for all x in K1 + K2, and thus λ ∈ (K1 + K2)∗. �

For vector spaces V and W we denote the set of linear maps from V to W as L(V, W ); 
but when V = W we denote L(V, V ) as L(V ). For any subset X ⊆ V , and T ∈ L(V, W ), 
we denote the image of X under T as T (X) = {w ∈ W | w = Tx for some x ∈ X}.

The image of a nonempty closed convex cone under a linear map is easily seen to be 
a nonempty convex cone, but it need not be closed:

Example. Let K1 be the ice cream cone in R3, K1 = {x ∈ R3 | (x2
1+x2

2)1/2 ≤ x3}, and K2

be the finitely generated cone in R3 with a single generator 
( 0

1
−1

)
. Then K1 ×K2 is a 

closed convex cone in R6 = R3×R3. Let T ∈ L(R6, R3) be defined by T (x1, x2) = x1+x2
for all (x1, x2) ∈ R3 ×R3. Note that for all ε > 0:

(1
0
ε

)
=

⎛
⎝ 1

−1
ε1

ε + ε

⎞
⎠+ 1

ε

( 0
1
−1

)
∈ T (K1 ×K2),

∈ K1 ∈ K2,

but
(1

0
0

)
/∈ T (K1 ×K2),

and thus T (K1 ×K2) = K1 + K2 is not closed. This example therefore also shows that 
the sum of two closed convex cones in Rn need not be closed. Notice that Ker(T ) ∩

(K1 ×K2) �= {0} because it contains the vector 
(( 0

−1
1

)
,

( 0
1
−1

))
.

Below is a sufficient condition guaranteeing that the image of a closed convex cone 
under a linear map is closed. This condition is clearly violated in the example above. 
Further results about this problem can be found in [2].

Lemma 3. Let K be a non-empty closed convex cone in Rn, and T ∈ L(Rn, Rm). If

Ker(T ) ∩K = {0}, (1)

then T (K) is a non-empty closed convex cone in Rm.

Proof. That T (K) is a non-empty convex cone is obvious. To see that it is closed, 
consider a sequence xj in T (K) such that xj → x for some x ∈ Rm. We need to show 
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that x ∈ T (K). If x = 0 the result is clear because then 0 = T0 belongs to T (K). So 
we assume that x �= 0, and therefore, for all sufficiently large j, holds that ||xj || �= 0. 
Moreover, there exists a sequence kj in K such that xj = Tkj for all j. Then for all 
sufficiently large j holds:

1
||xj ||

xj = 1
||Tkj ||

Tkj = 1
||T (kj/||kj ||)||

T (kj/||kj ||) → 1
||x||x (2)

As ej = kj/||kj || belongs to Sn−1 ∩K for all large j, where Sn−1 = {x ∈ Rn | ||x|| = 1}
denotes the unit sphere in Rn, and Sn−1 ∩K is compact, we can extract a converging 
subsequence also denoted by ej, with limit e in Sn−1 ∩K. By (1) follows that ||Te|| > 0, 
and by passing through the limit in (2), that

x = ||x||
||Te||Te ∈ T (K). �

The image of a finitely generated cone in Rn under a continuous linear map is also 
finitely generated, hence a polyhedral set, and thus closed:

Lemma 4. [2] Let K be a finitely generated nonempty convex cone in Rn, and T ∈
L(Rn, Rm). Then T (K) is a non-empty closed convex cone in Rm.

Proof. T (K) is obviously a non-empty convex cone. If k1, . . . , kp are the generators of 
K, then every element in T (K) is a linear combination of the vectors T (k1), . . . , T (kn)
with non-negative coefficients. Hence T (k1), . . . , T (kn) are generators for T (K). Thus, 
T (K) is a finitely generated cone and therefore it is closed. �
3. Linear Lyapunov functions

Consider the linear system

ẋ = Ax, (3)

where x ∈ Rn and A ∈ L(Rn). Suppose that C is a proper cone in Rn. A natural question 
is under what conditions on A, the cone C is a forward invariant set for (3), i.e. when is 
etA x0 ∈ C for all t > 0, whenever x0 ∈ C. The answer to this question is known, see for 
instance [1,7] and references therein. We say that A is quasi-monotone for C (QM for 
short) if

Whenever (x, λ) ∈ ∂C × C∗ is such that λ(x) = 0, then λ(Ax) ≥ 0. (4)

Here, ∂C denotes the boundary of C. There holds that

Theorem 1. [1,7] Let C be a proper cone in Rn, and A ∈ L(Rn). Then C is a forward 
invariant set for (3) if and only if A is QM for C.
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Examples. It is well-known, see [7], that when C = Rn
+, an n × n matrix A is QM on C

if and only if Aij ≥ 0 for all i �= j.
It was shown in [12] that when C is the ice cream cone in Rn, then A ∈ Rn×n is QM 

on C if and only if there exists α ∈ R such that:

QA + ATQ + αQ

is a negative semi-definite matrix. Here, Q is the diagonal matrix with Qii = 1 for all 
i = 1, . . . , n − 1, and Qnn = −1.

Suppose that n = 3, and let C be the ice cream cone {x ∈ R3 | (x2
1 + x2

2)1/2 ≤ x3} in 
R3. Suppose that ε1 and ε2 are parameters, and let:

A =
(−ε1 −1 0

1 −ε1 0
0 0 −ε2

)
.

Then A is QM on C if and only if

ε2 ≤ ε1.

To see this, note that:

QA + ATQ + αQ =
(−2ε1 + α 0 0

0 −2ε1 + α 0
0 0 2ε2 − α

)

which is negative semi-definite for some α ∈ R, provided that 2ε2 ≤ α ≤ 2ε1, for some 
α ∈ R. But this is equivalent to ε2 ≤ ε1, as claimed.

Definition. Let C be a proper cone in Rn, and suppose that A ∈ L(Rn) is QM for C. 
Then λ ∈ C∗ is said to be a linear Lyapunov function for (3) on C if:

1. λ(c) > 0 for all c ∈ C \ {0}.
2. λ(Ac) < 0 for all c ∈ C \ {0}.

It follows readily from Lyapunov’s stability Theorem, that if λ is a linear Lyapunov 
function on C, then the zero steady state of (3) is asymptotically stable with respect 
to initial conditions in C. In fact, below we will show that a stronger conclusion holds. 
We say that A ∈ L(Rn) is Hurwitz if all the eigenvalues of A have negative real part. 
It is well-known that A is Hurwitz if and only if the zero steady state of system (3) is 
asymptotically stable with respect to initial conditions in Rn.

Theorem 2. Let C be a proper cone in Rn, and suppose that A ∈ L(Rn) is QM for C. 
There exists a linear Lyapunov function for (3) on C if and only if the zero steady state 
of (3) is asymptotically stable with respect to all initial conditions in Rn.
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Proof. Necessity: Suppose that there exists a linear Lyapunov function for (3) on C. We 
need to prove that every solution x(t) of (3) in Rn converges to 0 as t → ∞.

Since C is solid, we can pick x0 ∈ int(C). Set U = span{x0}. Pick a basis for U⊥, 
say x1, . . . , xn−1, and note that x0, x1, . . . , xn−1 is a basis for Rn because Rn = U ⊕U⊥. 
Since x0 ∈ int(C), we can pick ε > 0 sufficiently small, such that x0 + εxi ∈ int(C) for 
all i = 1, . . . , n − 1. We claim that x0, x0 + εx1, . . . , x0 + εxn−1 is a basis of Rn which 
is clearly contained in int(C). To prove the claim, let α0, . . . , αn−1 be real scalars such 
that:

α0x0 + α1(x0 + εx1) + . . . αn−1(x0 + εxn−1) = 0,

or equivalently:
(

n−1∑
i=0

αi

)
x0 + α1εx1 + · · · + αn−1εxn−1 = 0.

Then as ε > 0, α0 = α1 = · · · = αn−1 = 0 because x0, x1, . . . , xn−1 is a basis for Rn. 
This proves the claim. We can now define a fundamental matrix solution for (3) (i.e. an 
n × n matrix whose columns are solutions of (3) that are linearly independent for all t), 
namely:

X(t) = [x0(t) x1(t) . . . xn−1(t)] .

Here, the columns x0(t), x1(t), . . . , xn−1(t) are the unique solutions of (3) with respective 
initial conditions x0, x0+εx1, . . . , x0+εxn−1. By Theorem 1, every solution xi(t) belongs 
to C for all t ≥ 0. And since there is a linear Lyapunov function for (3) on C, it follows 
that limt→∞ xi(t) = 0 for all i = 0, . . . , n − 1. But every solution of (3) on Rn is a linear 
combination of the columns of X(t), and therefore every solution of Rn converges to 0
as well. This concludes the proof of this part of the Theorem.

Sufficiency: If A is Hurwitz, it follows upon integration from t = 0 to ∞ of the identity: 
d/dt(etA) = A etA for all t, that

−I = A

∞∫
0

etA dt,

and thus that

−A−1 =
∞∫
0

etA dt.

Since A is QM on C, Theorem 1 implies that −A−1 ∈ L(Rn) satisfies:

−A−1(C) ⊆ C.
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Then the dual of −A−1, denoted by (−A−1)∗ ∈ L((Rn)∗), and equal to (−A∗)−1, satis-
fies:

(−A∗)−1(C∗) ⊆ C∗.

We claim that:

(−A∗)−1(int(C∗)) ∩ int(C∗) �= ∅. (5)

From (5) follows that there exist λ ∈ int(C∗) and λ̃ ∈ int(C∗) such that (−A∗)−1λ̃ = λ. 
Therefore, using Theorem 1, there holds that:

1. λ(c) > 0 for all c ∈ C \ {0}.
2. λ(Ac) = (A∗λ)(c) = −λ̃(c) < 0 for all c ∈ C \ {0}.

Thus, λ is a linear Lyapunov function for (3) on C.
To prove (5), first note that C∗ is solid by Lemma 1 (because C is a proper cone, 

hence pointed). Pick c∗ ∈ int(C∗), and let U ⊆ int(C∗) be an open set such that c∗ ∈ U . 
By the Open Mapping Theorem, (−A∗)−1(U) is open in (Rn)∗, and it is contained in C∗

because (−A∗)−1(C∗) ⊆ C∗. If (−A∗)−1(c∗) ∈ int(C∗), then (5) is immediate because 
then (−A∗)−1(c∗) belongs to the intersection. If (−A∗)−1(c∗) ∈ ∂C∗, then (−A∗)−1(U) ∩
int(C∗) �= ∅, and (5) follows as well. This establishes (5), and concludes the proof. �
Example. Suppose that n = 3, and let C be the ice cream cone {x ∈ R3 | (x2

1 + x2
2)1/2 ≤

x3} in R3. We have seen in an example above that if

A =
(−ε1 −1 0

1 −ε1 0
0 0 −ε2

)
,

where ε1 and ε2 are real parameters, then A is QM on C if and only if

ε2 ≤ ε1.

Note that A is QM on C and Hurwitz if and only if:

0 < ε2 ≤ ε1,

and that in this case, choosing

λ(x) = x3,

yields that λ(Ax) = −ε2x3. Thus, λ is a linear Lyapunov function for (3) on C.
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Remark. It is possible to provide an alternative proof of the necessity part of Theorem 2
based on Perron-Frobenius theory. To see this, let λ be a linear Lyapunov function for (3)
on C. Since A is QM for C (equivalently, A is a so-called cross-positive matrix, adopting 
the terminology of [9], in view of Lemma 1), it follows from Theorem 6 in [9] that the 
spectral abscissa s = max{Re(μ) | μ is an eigenvalue of A} of A, is in fact an eigenvalue 
of A with a corresponding eigenvector x in C. From Ax = sx, and applying the linear 
functional λ follows that λ(Ax) = sλ(x). As x �= 0 belongs to C, and λ is a linear 
Lyapunov function, there follows that λ(Ax) < 0, and λ(x) > 0, and hence s < 0. This 
implies that A is a Hurwitz matrix.

4. Common linear Lyapunov functions

Consider a linear time-varying system

ẋ = A(t)x, (6)

where x ∈ Rn and A(t) : R+ → L(Rn) is a piecewise continuous map. We shall denote 
the unique solution at any time t ≥ t0, starting in x0 at time t0 ≥ 0 by x(t, t0, x0).

Suppose that C is a proper cone in Rn. We say that A(t) is quasi-monotone for C
(QM for short) if:

For all t ∈ R+,whenever (x, λ) ∈ ∂C × C∗ is such that λ(x) = 0, then λ(A(t)x) ≥ 0.
(7)

There holds that:

Theorem 3. [7] Let C be a proper cone in Rn, and A(t) : R+ → L(Rn) a piecewise 
continuous map. Then for all x0 ∈ C, the solution x(t, t0, x0) of (6) belongs to C for all 
t ≥ t0, and for all t0 ≥ 0, if and only if A(t) is QM for C.

We shall be mainly interested in the behavior of solutions of the system (6) in the 
case where A(t) : R+ → {A1, . . . , Am} is an arbitrary piecewise constant map, and 
{A1, . . . , Am} is a fixed, finite collection of linear operators on Rn. In the engineering 
literature, a system of this form is referred to as a switched system [5,4], although strictly 
speaking we are dealing with a collection of systems, one for each choice of A(t).

Theorem 3 then implies:

Corollary 1. Let C be a proper cone in Rn, and let A = {A1, . . . , Am} be a finite collection 
of linear operators on Rn. Then every solution of every system (6), where A(t) : R+ → A
is an arbitrary piecewise constant map, remains in C for all t ≥ t0, for all t0 ≥ 0, and 
for all x0 ∈ C, if and only if Ai is QM for C for all i = 1, . . . , m.
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Definition. Let A1, A2, . . . , Am ∈ L(Rn). Let C be a proper cone in Rn, and suppose 
that Ai is QM for C for all i = 1, . . . , m. Then λ ∈ C∗ is said to be a common linear 
Lyapunov function for {A1, . . . , Am} on C, if:

1. λ(c) > 0 for all c ∈ C \ {0}.
2. λ(Aic) < 0 for all c ∈ C \ {0}, and all i = 1, . . . , m.

It follows from Lyapunov’s stability Theorem that if A1, . . . , Am have a common linear 
Lyapunov function on C, then the zero steady state of system (6) where A(t) : R+ →
{A1, . . . , Am} is an arbitrary piecewise constant map, is uniformly asymptotically stable 
with respect to initial conditions in C. A stronger conclusion is as follows:

Theorem 4. Let A = {A1, A2, . . . , Am} ⊂ L(Rn), let C be a proper cone in Rn, and 
suppose that Ai is QM for C for all i = 1, . . . , m. If there exists a common linear 
Lyapunov function for A on C, then the zero steady state of system (6) where A(t) :
R+ → A is an arbitrary piecewise constant map, is uniformly asymptotically stable with 
respect to all initial conditions in Rn.

Proof. The proof is similar to the Necessity part of the proof of Theorem 2. �
The converse statement in Theorem 4 does not hold, as the following example shows:

Example. Let C = R2
+, and

A1 =
(
−1 0
1 −1

)
, and A2 =

(
−1 1
0 −1

)
.

Note that A1 and A2 are QM on C, and both are Hurwitz. Therefore, Theorem 3.2 in 
[5] establishes that the zero steady state of system (6) where A(t) : R+ → {A1, A2} is 
an arbitrary piecewise constant map, is uniformly asymptotically stable with respect to 
all initial conditions in R2 if and only if A1A

−1
2 has no negative eigenvalues. Here,

A1A
−1
2 =

(
−1 0
1 −1

)(
−1 −1
0 −1

)
=

(
1 1
−1 0

)

and this matrix has no negative eigenvalues (in fact, it has no real eigenvalues). But 
there is no common linear Lyapunov function for {A1, A2} on C. Indeed, suppose that 
(v1, v2) ∈ int(C∗) = int(R2

+) (recall that C = R2
+ is self-dual), is such that

(v1, v2)A1 = (−v1 + v2,−v2) ∈ − int(R2
+), and

(v1, v2)A2 = (−v1, v1 − v2) ∈ − int(R2
+).

In particular, v1 −v2 < 0 and v2 −v1 < 0 must hold simultaneously, which is impossible.
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5. When does a common Lyapunov function exist?

Theorems 2 and 4 motivate the search for conditions that characterize when a finite 
collection of linear operators that are QM on a cone, share a common Lyapunov function.

We shall consider the (m +1)-fold Cartesian product of Rn with itself, Rn×· · ·×Rn, 
and denote it as (Rn)m+1. For any subset X of Rn, the notation Xm+1 is defined 
similarly. For a given collection of linear operators A1, A2, . . . , Am in L(Rn), we consider 
the map T ∈ L((Rn)m+1, Rn) defined by

T (x0, x1, x2, . . . , xm) = x0 −A1x1 −A2x2 − · · · −Amxm,

for each (x0, x1, . . . , xm) ∈ (Rn)m+1. Then we have that:

Theorem 5. Let C be a proper cone in Rn, and A1, A2, . . . , Am ∈ L(Rn) be QM on C. If

Ker(T ) ∩ Cm+1 = {0}, (8)

then A1, A2, . . . , Am have a common linear Lyapunov function on C.

Proof. If (8) holds then we claim that:

1. −(A1(C) + A2(C) + · · · + Am(C)) is a closed convex cone.
2. C ∩ (A1(C) + A2(C) + · · · + Am(C)) = {0}.
3. −(A1(C) + A2(C) + · · · + Am(C)) is pointed.

1. follows from Lemma 3: Let T̃ ∈ L((Rn)m, Rn) be defined as T̃ (x1, . . . , xm) =
T (0, x1, . . . , xm). Then Lemma 3 implies that T̃ (Cm) = −A1(C) − · · · − Am(C) is a 
closed convex cone, provided that Ker(T̃ ) ∩Cm = {0}. Note that the latter holds, for if 
it would not, then (8) would be violated.

To prove 2., pick c0 ∈ C ∩ (A1(C) + A2(C) + · · · + Am(C)). Then for all i = 1, . . . , m, 
there exist ci ∈ C such that c0 = A1c1 + . . . Amcm, and thus (c0, c1, . . . , cm) ∈ Ker(T ) ∩
Cm+1 = {0}, which implies that c0 = 0.

To prove 3., it suffices to prove that A1(C) +A2(C) + · · ·+Am(C) is pointed. Suppose 
that x ∈ A1(C) +A2(C) + · · ·+Am(C), such that −x ∈ A1(C) +A2(C) + · · ·+Am(C). 
Then for all i = 1, . . . , m there exist ci ∈ C and c̃i ∈ C such that:

x = A1c1 + . . . Amcm

−x = A1c̃1 + . . . Amc̃m

and therefore

0 + A1(c1 + c̃1) + . . . Am(cm + c̃m) = 0.
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Since C is a convex cone, this implies that (0, c1+c̃1, . . . , cm+c̃m) ∈ Ker(T ) ∩Cm+1 = {0}, 
and thus both ci ∈ C and −ci ∈ C for all i = 1, . . . , m. Since C is pointed, it follows 
that ci = c̃i = 0 for all i = 1, . . . , m, and therefore that x = 0.

From 1., 2., and 3. and Lemma 2 follows that

C − (A1(C) + A2(C) + · · · + Am(C))

is a closed, pointed convex cone, hence its dual cone, which by Lemma 2 equals

C∗ ∩ (−A1(C))∗ ∩ . . . (−Am(C))∗

is solid, or equivalently that

int(C∗) ∩ int((−A1(C))∗) ∩ · · · ∩ int((−Am(C))∗) �= ∅. (9)

Notice that (8) implies that

Ker(−Ai) ∩ C = {0} for all i = 1, . . . ,m,

and thus −Ai(C) is a closed convex cone for all i = 1, . . . , m by Lemma 3. Then from 
Lemma 1 follows that for all i = 1, . . . , m:

int((−Ai(C))∗) = {λ ∈ (Rn)∗ |λ(x) > 0 for all x ∈ −Ai(C) \ {0}}

= {λ ∈ (Rn)∗ |λ(−Aic) > 0 for all c ∈ C \ {0}}

which together with (9) implies that A1, . . . , Am have a common Lyapunov function on 
C. �

When C is a finitely generated proper cone in Rn, we have a necessary and sufficient 
condition for the existence of a linear common Lyapunov function on C:

Theorem 6. Let C be a finitely generated proper cone in Rn, and A1, A2, . . . , Am ∈ L(Rn)
be QM on C.

Then A1, A2, . . . , Am have a common linear Lyapunov function on C if and only if 
the following conditions hold:

1. Ker(Ai) ∩ C = {0} for all i = 1, . . . , m.
2. A1(C) + A2(C) + · · · + Am(C) is pointed.
3. C ∩ (A1(C) + A2(C) + · · · + Am(C)) = {0}.

Proof. Sufficiency: We will verify that (8) holds. Let (c0, c1, . . . , cm) ∈ Ker(T ) ∩ Cm+1. 
Then
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c0 −A1c1 −A2c2 − · · · −Amcm = 0, and ci ∈ C for all i = 0, 1, . . . ,m.

Then c0 = 0 by 3., and thus:

0 = A1c1 + A2c2 + · · · + Amcm. (10)

If ci �= 0 for some i ∈ {1, . . . , m}, then Aici �= 0 by 1. Moreover, by (10):

−Aici =
m∑
j �=i

Ajcj ∈ A1(C) + A2(C) + · · · + Am(C).

Thus, Aici and −Aici are non-zero and belong to A1(C) +A2(C) + · · ·+Am(C), contra-
dicting 2. Thus ci = 0 for all i = 1, . . . , m, and then this part of the proof is concluded 
by applying Theorem 5.

Necessity: Suppose that λ ∈ C∗ is a common linear Lyapunov function for 
A1, A2, . . . , Am on C. Then

λ(c) > 0 and λ(−Aic) > 0 for all c ∈ C \ {0} and all i = 1, . . . ,m. (11)

Then 1. must hold, for if it did not, there would exist some i ∈ {1, . . . , m} and some 
c ∈ C \ {0} such that Aic = 0, whence λ(−Aic) = 0, a contradiction. Note that since 1. 
holds, (11) is equivalent to the statement that:

λ ∈ int(C∗) ∩ (∩m
i=1{λ ∈ (Rn)∗ |λ(−Aic) > 0 for all c ∈ C \ {0} : −Aic �= 0})

Since −Ai(C) is a non-empty closed (by Lemma 4) convex cone for all i = 1, . . . , m, 
Lemma 1 implies that the latter is equivalent to:

λ ∈ int(C∗) ∩ int((−A1(C))∗) ∩ · · · ∩ int((−Am(C))∗)

= int (C∗ ∩ (−A1(C))∗ ∩ · · · ∩ (−Am(C))∗) ,

and thus C∗ ∩ (−A1(C))∗ ∩ · · · ∩ (−Am(C))∗ = (C − (A1(C) + · · · + Am(C)))∗ (by 
Lemma 2) is a closed solid cone. Note that it is the dual of the closed cone C −
(A1(C) + · · · + Am(C)) (closedness follows from Lemma 4), which in turn must be 
pointed (by Lemma 1). Lemma 2 then implies that 2. and 3. hold, concluding this part 
of the proof. �

In the special case where C = Rn
+, and A1, . . . , Am are QM on Rn

+, different charac-
terizations for the existence of a common linear Lyapunov function for A1, . . . , Am on 
Rn

+ can be found in [8] when m = 2, and in [4] for arbitrary m. The notion of a common 
linear Lyapunov function on Rn

+ for a class of matrices, is related to the notion of a class 
of matrices having a uniform S-property, see Corollary 10 in [10].
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Examples. We shall first provide some examples that show that no pair of the three 
conditions in Theorem 6 implies the third, indicating that these conditions are sharp for 
the existence of a common linear Lyapunov function when the cone is finitely generated.

When C = R2
+, the matrices

A1 =
(
−1 0
2 1

)
and A2 =

(
1 2
0 −1

)
.

are QM for C and invertible. Thus, 1. holds. Since

A1(C) + A2(C) is finitely generated by
(
−1
2

)
and

(
2
−1

)
,

it is a pointed cone, so 2. holds as well. However, 3. fails because 
(

1
1

)
is contained in 

the intersection of A1(C) +A2(C) and C. Thus A1 and A2 do not share a common linear 
Lyapunov function on C.

The matrices

B1 = B2 =
(
−1 1
1 −1

)

are QM for C. Here 1., fails because 
(

1
1

)
is contained in Ker(B1) and in C, although

B1(C) + B2(C) = span
{(

−1
1

)}
,

is a pointed cone which intersects C only in 0, hence 2. and 3. hold. B1 and B2 do not 
share a common linear Lyapunov function on C.

When C = R2
+, the matrices

E1 =
(
−1 0
1 −1

)
and E2 =

(
−1 1
0 −1

)

are QM for C, and they are invertible. Thus 1. holds. Note that

E1(C) + E2(C) = {x ∈ R2 |x1 + x2 ≤ 0}.

Although E1(C) +E2(C) only intersects C in 0 (so that 3. holds), this cone is not pointed, 
so 2. fails.

To end on a positive note, we give an example where a common linear Lyapunov 
function does exist on C = R2

+. Let

F1 =
(
−2 0
1 −1

)
and F2 =

(
−1 1
0 −2

)
,



P. De Leenheer / Linear Algebra and its Applications 580 (2019) 396–416 411
which are QM for C, and invertible. Thus 1. holds. Moreover,

F1(C) + F2(C) is finitely generated by
(
−2
1

)
and

(
1
−2

)
,

and it is a pointed cone, which only intersects C in 0. Thus, 2. and 3. hold as well, and 
therefore F1 and F2 share a common linear Lyapunov function. For instance, λ(x) =
x1 + x2 is easily seen to be a common linear Lyapunov function on C.

6. Diffusively coupled systems

Here we return to the motivating question raised in the Introduction.
Let C be a proper cone in Rn, and suppose that A1, . . . , Am in L(Rn) are all QM for 

C. For all i, j in {1, . . . , m} with i �= j, assume that Dij ∈ L(Rn) and Dij = Dji.
We now define the coupled system on (Rn)m:

ẋ1 = A1x1 +
∑
j �=1

D1j(xj − x1) (12)

ẋ2 = A2x2 +
∑
j �=2

D2j(xj − x2) (13)

...

ẋm = Amxm +
∑
j �=m

Dmj(xj − xm) (14)

Note that Cm is a proper cone in (Rn)m, and that its dual (Cm)∗ can be identified with 
(C∗)m thanks to the Riesz Representation Theorem. It is natural to ask when the proper 
cone Cm in (Rn)m is a forward invariant set for (12)–(14). To answer this question, we 
introduce the following concept:

Definition. Let C be a proper cone in Rn, and suppose that for all i, j in {1, . . . , m} with 
i �= j, Dij ∈ L(Rn) and Dij = Dji. We say that the collection {Dij} acts diffusively on 
C, provided that for all i �= j:

1. Dij(C) ⊆ C.
2. Whenever (x, λ) ∈ (∂C, C∗) is such that λ(x) = 0, then λ(Dijx) = 0.

Note that for a given cone C, and fixed m, there always exist nontrivial families {Dij}
that act diffusively on C. Indeed, if Dij = αijI for some arbitrary αij = αji ≥ 0, then 
the family {Dij} acts diffusively on C. When C = Rn

+, any family {Dij} consisting of 
diagonal matrices with non-negative entries, also acts diffusively on C. In fact, it is not 
difficult to see that in this case, diagonal matrices with only non-negative entries are the 
only matrices that can belong to any family {Dij} that acts diffusively on Rn

+.
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Notation. For future reference, we let Dm be the (nonempty) set whose elements are all 
possible families {Dij} of linear operators on Rn with i, j in {1, . . . , m} and i �= j such 
that Dij = Dji, that act diffusively on a given proper cone C in Rn.

For example, when C = Rn
+, the set Dm is the set of diagonal matrices having only 

non-negative entries.
The following result remains valid even when the symmetry assumption Dij = Dji is 

dropped, as it is never used in the proof.

Theorem 7. Let C be a proper cone in Rn, and suppose that A1, . . . , Am in L(Rn) are 
all QM for C, and that {Dij} ∈ Dm. Then Cm is a forward invariant set for (12)–(14).

Proof. We need to verify that the following linear operator on (Rn)m:

AD =

⎛
⎜⎜⎜⎝
A1 −

∑
j �=1 D1j D12 . . . D1m

D21 A2 −
∑

j �=2 D2j . . . D2m
...

...
. . .

...
Dm1 Dm2 . . . Am −

∑
j �=m Dmj

⎞
⎟⎟⎟⎠ (15)

is QM for Cm. Let X = (x1, . . . , xm) ∈ ∂Cm and Λ = (λ1, . . . , λm) ∈ (Cm)∗ be such 
that Λ(X) = 0. We are left with showing that Λ(ADX) ≥ 0.

Since (Cm)∗ = (C∗)m, it follows that λi ∈ C∗ for all i = 1, . . . , m. Thus, λi(xi) ≥ 0
for all i = 1, . . . , m, but since Λ(X) = λ1(x1) + · · · + λm(xm) = 0, there follows that:

λi(xi) = 0 for all i = 1, . . . ,m, (16)

and then Lemma 1 implies that:

For all i = 1, . . . ,m : either xi ∈ ∂C, or if xi /∈ ∂C then λi = 0. (17)

But Ai is QM for C for all i = 1, . . . , m, hence:

λi(Aixi) ≥ 0 for all i = 1, . . . ,m. (18)

Then, as {Dij} acts diffusively on C, and using (16), (17) and (18):

Λ(ADX) = λ1

⎛
⎝(A1 −

∑
j �=1

D1j)x1 + D12x2 + · · · + D1mxm

⎞
⎠ + · · · +

λm

⎛
⎝Dm1x1 + Dm2x2 + · · · + (Am −

∑
j �=m

Dmj)xm

⎞
⎠
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=
(

m∑
i=1

λi(Aixi)
)

+

⎛
⎝ m∑

i=1

m∑
j �=i

λi(Dijxj)

⎞
⎠− 0

≥ 0,

which concludes the proof. �
Theorem 8. Let C be a proper cone in Rn, and suppose that A1, . . . , Am in L(Rn) are 
all QM for C. If A1, . . . , Am have a common linear Lyapunov function on C, then for 
all {Dij} ∈ Dm the zero steady state of (12)–(14) is asymptotically stable with respect 
to all initial conditions in (Rn)m.

Proof. Fix {Dij} ∈ D. Let λ ∈ C∗ be a common linear Lyapunov function for A1, . . . , Am

on C, and define Λ ∈ (Cm)∗ = (C∗)m as follows:

Λ(X) = λ(x1) + · · · + λ(xm), for all X = (x1, . . . , xm) ∈ Cm.

We claim that Λ is a linear Lyapunov function for system (12)–(14) on Cm. Indeed,

Λ(X) > 0 for all X ∈ Cm \ {0},

because when X ∈ Cm \ {0}, there exists at least one xi ∈ C \ {0} and for which 
λ(xi) > 0. Moreover, using the notation in (15), we have that:

Λ(ADX) = λ

⎛
⎝(A1 −

∑
j �=1

D1j)x1 + D12x2 + · · · + D1mxm

⎞
⎠ + · · · +

λ

⎛
⎝Dm1x1 + Dm2x2 + · · · + (Am −

∑
j �=m

Dmj)xm

⎞
⎠

=
m∑
i=1

λ(Aixi) < 0, for all X ∈ Cm \ {0},

where we used the symmetry Dij = Dji, and the fact that λ is a common linear Lyapunov 
function on C for A1, . . . , Am. This establishes the claim, and the conclusion now follows 
from Theorem 2. �
Example. Let C = {x ∈ R3 | (x2

1 + x2
2)1/2 ≤ x3} be the ice cream cone in R3. Pick two 

distinct matrices A1 and A2 from the following family:

{(−ε1 −1 0
1 −ε1 0

)
, where 0 < ε2 ≤ ε1

}
.

0 0 −ε2
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We have seen that A1 and A2 are QM on C, and that they share a common Lyapunov 
function λ(x) = x3 on C. Let D12 = D21 = dI, where d ≥ 0 is arbitrary. We have seen 
that the family {D12} acts diffusively on C. Thus, by Theorem 8, every solution of the 
system:

ẋ1 = A1x1 + D12(x2 − x1)

ẋ2 = A2x2 + D21(x2 − x1)

in R6 converges to the zero steady state.
We can think of two ice cream cones filled with water which are being emptied via their 

vertex in the origin. When there is no water exchange between the cones (d = 0), the 
exponential rates at which the height of the water columns decrease is given by the two 
respective parameters ε2 of the matrices A1 and A2. The two parameters ε1 control the 
rate at which water particles spiral towards the symmetry axes of the cones. This happens 
with the same frequency 1 in both cones. When a coupling term is present, (d > 0) water 
is exchanged between the two cones at rate d, making them communicating vessels. The 
stability result above confirms among other things the intuition that the two cones will 
still be emptied eventually, independently of the rate of exchange of water between the 
cones. In fact, the total height of the two water columns is decreasing, and serves as a 
Lyapunov function for the coupled system.

Example. We show that the converse of Theorem 8 is not true.
Let C = R2

+, and

A1 =
(
−1 0
1 −1

)
, A2 =

(
−1 1
0 −1

)
, D =

(
d1 0
0 d2

)
where d1, d2 ≥ 0 are arbitrary.

We have seen that A1 and A2 are QM on C, but that they don’t share a common linear 
Lyapunov function on C. We will show that the zero solution of

ẋ1 = A1x1 + D(x2 − x1) (19)

ẋ2 = A2x2 + D(x1 − x2) (20)

is asymptotically stable in (R2)2 = R4 for all matrices D.
Note first that for every D, the matrix:

A(D) =
(
A1 −D D

D A2 −D

)

is QM on (R2
+)2 = R4

+ by Theorem 7. By the Perron-Frobenius Theorem [1] follows 
that A(D) has a real, principal eigenvalue λp(D) (i.e. |λ| < λp(D) for every eigenvalue 
λ �= λp(D) of A(D)). Since A1 and A2 are Hurwitz it is clear that λp(0) < 0. Moreover, 
λp(D) is continuous in D. We claim that λp(D) < 0 for all D. To see this, it suffices 
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to show that the determinant of A(D) is positive for all D, and by using the fact that 
A1 −D is invertible, we observe that:

det(A(D)) = det
(
A1 −D D

D A2 −D

)

= det(A1 −D)det((A2 −D) −D(A1 −D)−1D)

Here we used the well-known identity that

det
(
P Q
R S

)
= det(P )det(S −RP−1Q),

for all n ×n matrices P, Q, R and S with invertible P , which is easily proved by observing 
that the following factorization always holds:

(
P Q
R S

)
=

(
P 0
R I

)(
I P−1Q
0 S −RP−1Q

)

Therefore,

det(A(D)) = det(A1 −D)det((A2 −D) −D(A1 −D)−1D)

= (1 + d1)(1 + d2)det
((

−(1 + d1) 1
0 −(1 + d2)

)
−

(
− d2

1
1+d1

0
− d1d2

(1+d1)(1+d2) − d2
2

(1+d2)

))

= (1 + d1)(1 + d2)det
(

d2
1−(1+d1)2
(1+d1) 1
d1d2

(1+d1)(1+d2)
d2
2−(1+d2)2
(1+d2)

)

= det
(
−(2d1 + 1) 1

d1d2 −(2d2 + 1)

)

= 3d1d2 + 2(d1 + d2) + 1

> 0, for all d1, d2 ≥ 0. (21)

Now if the zero solution of (19)–(20) would not be asymptotically stable on R4 for all 
D, then A(D) would not be Hurwitz for some matrix D. Then there would exist some 
matrix D̃ such that λp(D̃) = 0. But then det(A(D̃)) = 0, contradicting (21).
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