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Abstract. This paper deals with an almost global stability result for a chemostat
model with including effects. The proof relies on a particular small-gain theorem
which has recently been developed for feedback interconnections of monotone sys-
tems.

1 Introduction

The chemostat is a well-known model used to describe the interaction between
microbial species which are competing for a single nutrient, see [12] for a
review. One of the prominent results in this area is the so-called ’competitive
exclusion principle’ which states roughly that in the long run only one of
the species survives. This is in contrast to what is observed in nature where
several species seem to coexist. This discrepancy has lead to modifications
of the model to try and bring theory and practice in better accordance; see
[14, 3, 9, 7]. Recently the chemostat has been made coexistent by means of
feedback control of the dilution rate [4].

In this paper we propose another modification of the chemostat model:

ẋi = xi(fi(S) − Di − aixi)

Ṡ = 1 − S −
n∑

i=1

xifi(S) (1)

where i = 1, 2, ..., n, xi is the concentration of species i and S is the nutrient
concentration. The positive parameters Di are the sum of the (natural) death
rates of species i and the dilution rate, while the positive parameters ai give
rise to death rates aixi which are due to crowding effects.

Throughout this paper we will assume the following:



2 Patrick De Leenheer et al.

fi : R+ → R+ is continuously differentiable Moreover the functions fi are
globally Lipschitz continuous on R+ with Lipschitz constants Li.

The classical Monod function f(S) = MS/(b + S) with b, M > 0 satisfies
these assumptions with global Lipschitz constant M/b.

The only difference with the classical chemostat model [12] is that here
crowding effects -modeled by the ai- are taken into consideration.

Our main result is the following:

Theorem 1. If

n . max
i

(
Li

ai
). max

i
(fi(1)) < 1 (2)

then there exists an equilibrium point E∗ of system (1) such that every solu-
tion ξ(t) = (x1(t), x2(t), ..., xn(t), S(t))T starting in {(x1, x2, ..., xn, S)T ∈
R

n+1
+ | xi > 0, ∀ i = 1, ..., n} converges to E∗.

Notice that our main result does not guarantee coexistence since the equi-
librium point E∗ could belong to the boundary of R

n+1
+ and correspond to the

absence of one of the species. However, in the sequel we will provide conditions
that do imply coexistence.

The proof of our main result is based on the observation that system (1)
can be written as a negative feedback interconnection of monotone subsys-
tems and the availability of a particular small-gain theorem for such feed-
back systems. To see this, let us first introduce some notation. Define x =
(x1, x2, ..., xn)T , f(S) = (f1(S), f2(S), ..., fn(S))T , D = (D1, D2, ..., Dn)T

and a = (a1, a2, ..., an)T . System (1) can then be compactly rewritten as
follows:

Ṡ = 1 − S + fT (S)u1, y1 = S (3)
ẋ = diag(x)(f(u2) − D − diag(a)x), y2 = x (4)

u1 = −y2, u2 = y1 (5)

System (3)− (5) is a negative feedback system consisting of two input/output
(I/O) subsystems (3) and (4) with inputs u1, respectively u2 and outputs y1,
respectively y2.

The development of a theory for monotone I/O systems has recently been
initiated in [1]. One of its purposes is to extend the rich theory of monotone
dynamical systems developed by Hirsch [8], see [11] for a review and [11, 1,
6, 10] for applications in biology. For biological applications of monotone I/O
systems see [5] and the use of small-gain theorems in biology see [13].

2 Preliminaries and proofs

2.1 Monotone I/O systems and a small-gain theorem

The material in this section can be found in a far more general setting in [1, 2].
We restrict to a framework that serves our purposes, namely I/O systems
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described by differential equations. Consider the following I/O system:

ẋ = f(x, u), y = h(x) (6)

where x ∈ R
n is the state, u ∈ U ⊂ R

m the input and y ∈ Y ⊂ R
p the output.

It is assumed that f and g are smooth (say continuously differentiable) and
that the input signals u(t) : R → U are Lebesgue measurable functions and
locally essentially bounded (i.e. for every compact time interval [Tm, TM ],
there is some compact set C such that u(t) ∈ C for almost all t ∈ [Tm, TM ]).
This implies that solutions with initial states x0 ∈ R

n are defined for all
inputs u(.) and will be denoted by x(t, x0, u(.)), t ∈ I where I is the maximal
interval of existence for this solution. From now on we will assume that a fixed
set X ⊂ R

n is given which is forward invariant, i.e. for all inputs u(.) and for
every x0 ∈ X it holds that x(t, x0, u(.)) ∈ X, for all t ∈ I ∩ R+. Henceforth
initial conditions are restricted to this set X. For our purposes X will be R

n
+

or R+ and U will be R+ or −R
n
+.

We denote the usual partial order on R
n by �, i.e. for x, y ∈ R

n, x � y
means that xi ≤ yi for i = 1, ..., n. The state space X (input space U , output
space Y ) inherits the partial order from R

n (Rm, R
p) as the former sets are

subsets of the latter ones. Similarly, the partial order on R
m carries over to the

set of input signals in a natural way (hence we use the same notation for the
partial order on this latter set): u(.) � v(.) if u(t) � v(t) for almost all t ≥ 0.
The next definition introduces the concept of a monotone I/O system which,
loosely speaking means that ordered initial conditions and input signals lead
to subsequent ordered solutions.

Definition 1. The I/O system (6) is monotone (with respect to the usual
partial orders) if the following conditions hold:

x1 � x2, u(.) � v(.) ⇒ x(t, x1, u(.)) � x(t, x2, v(.)), ∀ t ∈ (I1 ∩I2)∩R+. (7)

and
h is a monotone map, i.e. x1 � x2 ⇒ h(x1) � h(x2). (8)

Of particular interest is how an I/O system behaves when it is supplied
with a constant input. Next we introduce a notion which implies that this
behavior is fairly simple [2].

Definition 2. Assume that X has positive (Lebesgue) measure. The I/O sys-
tem (6) possesses an Input/State (I/S) quasi-characteristic k : U → X if for
every constant input u ∈ U (and using the same notation for the corresponding
u(.)), there exists a set of (Lebesgue) measure zero Bu such that:

∀x0 ∈ X \ Bu : lim
t→+∞

x(t, x0, u) = k(u) (9)

If system (6) possesses an I/S quasi-characteristic k then it also possesses an
Input/Output (I/O) quasi-characteristic g : U → Y defined as g := h ◦ k.
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Next we recall the main tool (see [2]) for proving our main result. In
the following statement we use the concept of an almost globally attractive
equilibrium point of an autonomous system, which means that there exists an
equilibrium point of this system which attracts all solutions which are not
initiated in a certain set of (Lebesgue) measure zero.

Theorem 2. Consider the following two I/O systems:

ẋ1 = f1(x1, u1), y1 = h1(x1) (10)
ẋ2 = f2(x2, u2), y2 = h2(x2) (11)

where xi ∈ Xi ⊂ R
ni , ui ∈ Ui ⊂ R

mi and yi ∈ Yi ⊂ R
pi for i = 1, 2. Suppose

that Y1 = U2 and Y2 = −U1 and that the I/O systems are interconnected
through a (negative) feedback loop:

u2 = y1, u1 = −y2 (12)

Assume that:

1. Both I/O systems (10) and (11) are monotone.
2. Both I/O systems (10) and (11) possess continuous I/S quasi-characteristics

k1 and k2 respectively (and thus also I/O quasi-characteristics g1 and g2).
3. All forward solutions of the feedback system (10) − (12) are bounded.

Then the feedback system possesses an almost globally attractive equilibrium
point (x̄1, x̄2) ∈ X1 ×X2 if the following discrete-time system, defined on U2:

uk+1 = (g1 ◦ (−g2))(uk) (13)

possesses a globally attractive fixed point ū ∈ U2. In that case (x̄1, x̄2) =
((k1 ◦ (−k2))(ū), k2(ū)).

In the sequel we will refer to this result as a small-gain theorem and to the
last condition as a small-gain condition.

2.2 Properties of the full system and both subsystems

Lemma 1. R
n+1
+ is a forward invariant set for system (1) and the solutions

initiated in this set remain bounded.

(Sketch of proof) The first claim follows from e.g. Theorem 3 in [1]. The second
claim follows from the fact that for V (x, S) = S +

∑n
i=1 xi, we have V̇ ≤

1−D∗V with D∗ = min(1, D1, ..., Dn) and hence V (t) ≤ V (0) e−D∗t +1/D∗.
Next we investigate the I/O-properties of the subsystems (3) and (4) which

have the following input, state and output spaces.

Ṡ = 1 − S + fT (S)u1

y1 = S (14)
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where S ∈ X1 := R+ denotes the state, u1 ∈ U1 := −R
n
+ denotes the input

and y1 ∈ Y1 := R+ denotes the output. The input signals u1(t) : R → U1 are
assumed to Lebesgue be measurable and essentially locally bounded, ensuring
existence and uniqueness of solutions as discussed in the previous subsection.

Similarly consider

ẋ = diag(x)(f(u2) − D − diag(a)x)
y2 = x (15)

where x ∈ X2 := R
n
+ denotes the state, u2 ∈ U2 := R+ denotes the input and

y2 ∈ Y2 := R
n
+ denotes the output. As before, input signals u2(t) : R → U2

are Lebesgue measurable and essentially locally bounded.

Lemma 2. X1, respectively X2, is forward invariant for system (14), respec-
tively system (15).

Proof. The proof follows from an application of Theorem 3 in [1].

Lemma 3. Systems (14) and (15) are monotone.

Proof. This follows from an application of Proposition 3.3 in [1].
The next result is the key to proving the main theorem and reveals that

both subsystems possess I/S quasi-characteristics with certain smoothness
properties.

Lemma 4. System (14) possesses a continuously differentiable I/S quasi-
characteristic k1 : U1 → X1. Moreover, k1 is globally Lipschitz with Lipschitz
constant L∗

1 := n . maxi=1,...,n fi(1), i.e.

∀ua
1 , ub

1 ∈ U1 : |k1(ua
1) − k1(ub

1)| ≤ L∗
1 ||ua

1 − ub
1||max (16)

where ||.||max denotes the max-norm on R
n, i.e. ||z||max = maxi=1,...,n |zi|

when z ∈ R
n.

System (15) possesses a globally Lipschitz continuous I/S quasi-characteristic
k2 : U2 → X2 with Lipschitz constant L∗

2 := maxi=1,...,n Li/ai, i.e.

∀ua
2 , ub

2 ∈ U2 : ||k2(ua
2) − k2(ub

2)||max ≤ L∗
2 |ua

2 − ub
2| (17)

Proof. Due to space limitations we leave out the proof of this result. It will
be included in an extended version of this paper.

Remark 1. Notice that the output spaces Y1, Y2 of systems (14) and (15)
are identical to their respective state spaces X1, X2 and that the output
mappings h1 and h2 are just the identity mappings. Therefore the I/O quasi-
characteristics g1 and g2 of these systems equal their respective I/S quasi-
characteristics and possess the same smoothness properties.
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2.3 Proof of the main result

Consider system (1) or its equivalent feedback representation (3) − (5). We
will show that the three conditions and the small-gain condition in theorem
2 are satisfied. The first, second and third conditions follow from respectively
lemma 3, lemma 4 and lemma 1. To see that small-gain condition is satisfied,
recall from lemma 4 and remark 1 that g1 = k1 and g2 = k2 are globally
Lipschitz with Lipschitz constants L∗

1, respectively L∗
2. This implies that for

all ua, ub ∈ U2, the composition g := g1 ◦ (−g2) satisfies the following:

|g(ua) − g(ub)| ≤ L∗
1||(−g2)(ua) − (−g2)(ub)||max ≤ L∗

1L
∗
2|ua − ub|

which by the definitions of L∗
1 and L∗

2 (see lemma 4) and condition (2) shows
that g is a contraction mapping on the complete metric space U2 = R+. Then
a contraction mapping argument shows the small-gain condition is indeed
satisfied, which concludes the proof of this theorem.

3 Coexistence for 2 species

In this section we provide a coexistence result for system (1) with n = 2. A
coexistence result in case of n species is deferred to an extended version of
this paper.

Definition 3. System (1) with n = 2 is coexistent if there exists some ε > 0
such that for i = 1, 2 holds:

lim inf
t→∞

xi(t) > ε whenever x1(0) > 0 and x2(0) > 0

where (x1(t), x2(t), S(t))T denotes the solution of system (1) with initial con-
dition (x1(0), x2(0), S(0))T ∈ R

3
+.

In fact we will prove the much stronger result that coexistence takes the
form of a globally attracting interior equilibrium point. This contrasts the
competitive exclusion principle which holds for the classical chemostat model.
Since crowding effects are the only difference between the classical chemostat
and the model presented here, this suggests they may be responsible for the
observed coexistence of several species competing for a single nutrient.

We make the following additional -but fairly natural; see [12]- assumptions:

• H1 fi(S1) < fi(S2) if S1 < S2, where S1, S2 ∈ R+ and i = 1, 2.
• H2 For i = 1, 2 there exist numbers λi ∈ (0, 1) satisfying fi(λi)−Di = 0.

Notice that if H1 holds, then the numbers λi, i = 1, 2 are unique. It is
noteworthy that the numbers λi are independent of the ai, i = 1, 2.

For i = 1, 2, we define the functions Fi : R+ → R as follows:

Fi(S) = 1 − S − fi(S) − Di

ai
fi(S) for i = 1, 2
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Obviously, both functions Fi(S) are continuously differentiable.
Claim: If H1 and H2 are satisfied, then there exist unique roots λ∗

i ∈ R+

such that Fi(λ∗
i ) = 0 for i = 1, 2. In addition, λ∗

i ∈ (λi, 1) for i = 1, 2. (The
proof of this claim is deferred to an extended version of this paper)

A final additional and non-trivial assumption is expressed in terms of these
roots λ∗

i :

• H3 max(λ1, λ2) < min(λ∗
1, λ∗

2).

Later we will impose H1, H2 and H3 on system (1) with n = 2, so it is
important to know whether these assumptions can be satisfied simultaneously.
The next lemma shows that this can always be arranged by choosing the
crowding effect parameters a1 and a2 large enough. The proof is left out and
will be included in an extended version of this paper.

Lemma 5. Assume that two uptake functions f1, f2 and two numbers D1 and
D2 are given such that H1 and H2 hold. Interpret both a1 and a2 as variables
in int(R+).

Then for i = 1, 2, the λ∗
i are differentiable functions of ai taking values in

(λi, 1):
λ∗

i : int(R+) → (λi, 1) and lim
ai→∞

λ∗
i (ai) = 1

In particular, this implies that for a∗
i large enough, H3 is satisfied.

Under the 3 additional assumptions it turns out that system (1) with
n = 2, possesses 4 equilibria in R

3
+. Exactly one of these equilibria lies in

int(R3
+) and is locally asymptotically stable as we show next. Again, the proof

is deferred to an extended version of this paper.

Lemma 6. If H1, H2 and H3 are satisfied, then system (1) with n = 2
possesses the following equilibria in R

3
+:

E0 = (0, 0, 1)T , E1 = (x∗
1, 0, λ∗

1)
T , E2 = (0, x∗

2, λ
∗
2)

T and Ee = (xe
1, x

e
2, λ

e)T

where x∗
1, x∗

2, xe
1, xe

2 and λe are positive numbers. The equilibrium point Ee

is locally asymptotically stable.

The previous lemma and our main result suggest a mechanism to achieve
coexistence for system (1) with n = 2: Suppose that it is possible to satisfy
both the small-gain condition (2) and the three conditions expressed by H1,
H2 and H3. Then lemma 6 guarantees the existence of a locally asymptot-
ically stable equilibrium point Ee ∈ int(R3

+), while Theorem 1 ensures the
existence of an equilibrium point for system (1) with n = 2 which attracts
almost every solution initiated in R

3
+. Obviously this equilibrium point must

be Ee. It can be shown that the set of non-converging initial conditions (note
that although they are not converging to Ee, they might be converging to
other equilibria) is:

B = {(x1, x2, S)T ∈ R
3
+| x1 = 0 or x2 = 0}
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In particular, this implies that all solutions initiated in P := {(x1, x2, S) ∈
R

3
+ |x1 > 0, x2 > 0} do converge to Ee and consequently that system (1) with

n = 2 is coexistent.
The main problem is thus whether the small-gain condition (2) and H1,

H2 and H3 can be satisfied simultaneously for system (1) with n = 2. But
from lemma 5 and (2) is follows that this is possible if crowding effects are
large enough. Combining theorem 1 and lemma 6 we conclude:

Theorem 3. Assume that two uptake functions f1, f2, two numbers D1 and
D2 are given such that H1 and H2 hold. Consider system (1) with n = 2 and
interpret the ai, i = 1, 2 as positive parameters.

If the ai are chosen large enough then H3 and (2) are satisfied. Then
system (1) with n = 2 possesses an equilibrium point Ee ∈ int(R3

+) which is
almost globally asymptotically stable with respect to initial conditions in R

3
+.

Moreover, every solution initiated in P converges to Ee implying that system
(1) with n = 2 is coexistent.
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