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Il. PRELIMINARIES
Stability Properties of Equilibria of Classes of A. Notation
Cooperative Systems LetR be the set of real numbers aBd' the set of.-tuples for which

all components belong fB. R™ = [0, +oc) andR{ = (0, 4+00),
while RY} (int(R1)) is the set ofn-tuples for which all components
belong toR* (R). Finally, the boundary dR%, R} \ int(R2), is
denoted add(RY).
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Abstract—This note deals with the constant control problem for homoge-

neous cooperative and irreducible systems. These systems serve as models Whenz. y € R, thenz < y meanse; < yi, Vi = 1,..., n.
for positive systems. A necessary and sufficient condition for global asymp- Furthermorex < y if # < y andx # y anda < y if x; < y;,
totic stability of the zero solution of this class of systems is known. Adding V: = 1, ..., n.

a constant control allows to shift the equilibrium point from zero to a point Let I be é nonempty and proper subset{af 2, ..., n}. The set

in the first orthant. We prove that for every nontrivial nonnegative control i n N . 1 n . .
vector a unique nontrivial equilibrium point is achieved which is globally Fr:={e € Rl[x; = 0 fori € I} is afaceof RY. Thedimension

asymptotically stable if the zero solution of the uncontrolled system is glob- Of F7 equals#I, the cardinality of the sef.
ally asymptotically stable. In addition a converse result is provided. Finally Whenaz € R} we define0, z] = {z € R}|0 < z < x} and
a stability result for a particular class of Kolmogorov systems is established. (0, 2) = {z € R}|0 € z < x}.
We compare our main results to those in the literature. Given a vectorr € R, diag(z) is a realn x n diagonal matrix
Index Terms—Cooperative systems, positive systems, stability. where theth diagonal entry equals;, theith component of the vector
x. Arealn x n matrix A = (as;) is Metzlerif and only if its off-
diagonal entries,;, Vi # j belong toR.™.
A isirreducibleif and only if for every nonempty proper subdgt
A dynamical system is said to be positive if when initiated in thef N := {1, ..., n}, there exists an € K and aj € N \ I{ such
first orthant of R™, its state remains in this orthant for future timesthata;; # 0. WhenA is not irreducible, it is callededucible
Examples of these systems are found in a variety of applied areas sucionsider the system
as biology, chemistry and sociology [1]-[3].
In [4] and [5] we considered homogeneous cooperative and irre- i = f(x) 1)
ducible systems and we have characterized the stability behavior of
the zero solution. In particular we have shown that the zero solution¥§erez € R andf(z) is a continuously differentiable vector field.
globally asymptotically stable (GAS) if and only if there exists a unique Theforward solutionof system (1) with initial condition:o € R"
invariant ray in the interior of the first orthant such that the vector fieldt? = 0 is denoted as(#, =v) and is defined on theaximal forward
on this ray points toward the Origin. interval of eXiStenC@,rO = [0, Tinax (IO)) AsetD C R" is called
In applications, it is often undesirable that the zero solution is GA&rward invariantfand only ifforallzo € D, z(t, z0) € D forallt €
Indeed, in a biological system for example, this implies that all speciés, - A system is callegositiveif and only if R’} is forward invariant.
die out. On the other hand a (asymptotically) statmetrivial equilib- It is intuitively clear and shown in [5] that the following property is
rium implies coexistence of several species. necessary and sufficient for positivity of system (1):
The aim of this note is threefold.

|. INTRODUCTION

PVzebdRY): xi=0= fi(x) > 0.

" . ved October 4. 2000 revised Feb 13 2001 R The flow of system (1) isnonotone inD if and only if for all x¢,
anuscript received October 4, ; revised February 13, . Recom- S . (o (4
mended by Associate Editor J. M. A. Scherpen. This paper presents rese lpchE D with zo < (<, <<r)y° holds thate(t, xo) < (<, <)x(t. yo)
results of the Belgian Programme on Interuniversity Poles of Attraction, initiO" allt € (Zog N Zy,) \ 10} S o
ated by the Belgian State, Prime Minister’s Office for Science, Technology and The flow of system (1) istrongly monotone iD if and only if it
Culture. The scientific responsibility rests with its authors. is monotone inD and for allxzg, yo € D with 2y < yo holds that
P. De Leenheer is with the Department of Mathematics, Arizona State Unjir; . x(t forallt € (Z,. N1, 10}, We recall [7. Th.
versity, Tempe, AZ 85287 USA (e-mail: leenheer@math.la.asu.edu). (1i :gr)lie::e};oe)nce (Zro N Tys) \ {0} 7.
D. Aeyelsis with the SYSTeMS research group, Universiteit Gent, 9052 Geﬁt, ’ . .
Belgium (e-mail: dirk.aeyels@rug.ac.be). Theorem 1: Suppose that system (1) is defined on some subgst

Publisher Item Identifier S 0018-9286(01)11092-5. R". If system (1) possesses a unique equilibrium poiit D and if

0018-9286/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 12, DECEMBER 2001 1997

its flow is strongly monotone iD, then all solutions having compactteresting. Indeed in a biological system for example this implies that all

forward orbit closure inD converge tcr. the species die out. To counteract this undesired property we examine
_ _ the effect of applying a nonnegative constant control to system (1). In
B. Homogeneous, Cooperative and Irreducible Systems the sequel we will frequently consider systems satisfying the condi-

Definition 1: A vector field f(x), = € R" is said to behomo- following hypothesis:

geneousf orderr € R with respect to the dilation maf(x) := H Hypotheses$i1, H2 andH3 hold and the zero solution of system
(ANlzy, o N )T (Vi=1 o, nr € RY) (1) is GAS with respect to initial conditions iR% . The unique in-
’ variant ray inint(R1) of system (1) is denoted a8z and has the
Vac Rn./ V)€ R+ . f(éf\ (’8)) — >‘T’S§\ (f(x)) (2) property thatf(I) = vydiag('r):? with ¥z < 0.
Assume ll. MAIN RESULTS

H1 f(x) is a homogeneous vector field of ordere R with re- A Constant Control
spect to the dilation mag (z).
System (1) is callehomogeneous H1 holds.
SupposeH1 holds. If there exists a point € R", T # 0 . ,
such thatf(z) = ~zdiag(r)T, 7= € R, then the vector field &= f(x)+b 3)
at each point of theay Ry = {6%(%)|A € R} throughz is
tangent toR-. Indeed,d/d\(85(%))|x=, = diag(r)¥. This means Wherez € R", b € R" andf(z) satisfiesH1 andH2. We have the
that the vector field is tangent t&= in the pointz. In addition, following (for a proof we refer to [5]).
F(85(T)) = (A7 )diag(r)s5(z) and thus the vector field is also Proposition 1: If H1 andH2 hold, then system (3) is positive if and
tangent tai-- in everypoint of B As a consequence the forward (andnly if b € RE.
backward) solution of system (1) starting in a point of the ray through The proof of sufficiency is obtained by observing tRetolds. Con-
7 will remain on this ray for all future (and past) times for which thisersely, ifb ¢ R the forward solution starting in 0 leavé; .
solution is defined. We call such a ray mvariant rayfor system (1). ~ WhenH holds and» € R, we show next that (3) possesses at least
Next, we call on the concept of a cooperative vector field, which h&§e equilibrium point.
been widely studied, see for example [7]. Proposition 2: If H holds and it € RZ., then there existg, € Rz
Definition 2: A vector fieldf(z), > € R" is said to becooperative Suchthatforaly € Rz with y > y;, the sef0, y] is forward invariant
in W C R if the Jacobian matri¥ f /9 is Metzler for allz € 1.  for system (3). For aly € Rz with y > ys, the se{0, y] contains at
Assume least one equilibrium point of system (3).
H2 f(x) is cooperative iR . Proof: First, we show that fob € R} there existg, € Rz such

System (1) is called cooperative Hf2 holds. The meaning of the that
term cooperative is best explained in a biological context. Suppose that
the state of system (1) consistsiofnteracting species. If the system

is cooperative _thi§ implies. thaj[ the presence of speciaguces the Indeed, for ally € R- we have thaff (y) = (y=A7 )diag(r)y where
growth of specieg, for all j # 7. , ) ] X is such thay = 6% (Z). Sincevs < 0 by H, 7 > 0 by H1 and both
Finally, we introduce the concept of an irreducible vector field. andy € int(R®), it is clear that wherh € R \ {0}, there exists
H3 Forx € 1nt1(1Ri), the Jacoblan’matrli&f/_aw is irreducible. s € R (sufficiently far away from the origin) satisfying (4).
Forz € bd(R)\ {0} holds thali € N with z; = 0 suchthat ~ neyt e show that the sk, y3] is forward invariant for system (3).

fix) > 0. ) ) o ) Forallz € [0, ys] with z; = (ys); for somei, we have that
System (1) is called irreduciblelif3 holds. The following result was

roved in [4] and [5].
P TheorerL ]2: If H[l,] H2 andH3 hold, then system (1) is positive. In (Flwe) +8) = (f() +)
addition the zero solution of system (1) is GAS with respect to initial L af

. . . h . . : ; = </ —(tyb—l—(l—t)z)dt) (yp —

conditions inR% if and only if there exists a unique invariant r&y in 0 Ox
R} for system (1) such tha®z C int(R}) and f(Z) = yzdiag(r)T
with v& < 0. which, byH2 and (4), implies thaff;(z) + b; < fi(ys) + b; < 0.

A very brief and informal outline of the proof is given here to pro-Together with Proposition 1 this implies thét v;] is forward invariant
vide some insight in this result. First it follows fror2 andf(0) = 0  for (3).
(which is implied byH1 and continuity off) that the system is posi-  Notice that for ally € Rz withy > y, also holds thaf(y)+b < 0
tive. Relying on homogeneity and positivity of the system, a particulaincef(y) < f(y») < 0. This implies thaf0, y] is forward invariant
(n — 1)-dimensional system (a projection of the original system) cdor system (3).
be defined that evolves on the intersectiorRif and the unit sphere  Since every sdb), y] is homeomorphic to the standard unit disk, the
in R". Application of Brouwer’s Fixed Point Theorem leads to exlast assertion of the Theorem follows from an application of Brouwer’s
istence of an equilibrium point for the flow of the projected systerkixed Point Theorem. [ ]
which in turn implies existence of an invariant raylR} for the orig- It can be shown that equilibrium points of system (3) never belong
inal system. Finally, it follows fromH2 andH3 that the flow of the to bd(RY).
system is strongly monotone R% . This allows to prove uniqueness Proposition 3: If H holds and it € R4\ {0}, then every equilib-
of the invariant ray which can be shown to belon@itd R% ) because rium point of system (3) iR%, belongs tdut(RY).
of H3. Relying on the strong monotonicity property of the flow, it is Proof: Notice that by Proposition 2 the existence of at least one
possible to show that the zero solution is GAS. equilibrium point of system (3) iR% is guaranteed. Consider an ar-

Theorem 2 gives a criterion for GAS of the zero solution of systetitrary equilibrium pointz € R%} and assume that € bd(RZ).
(1). From a practical point of view a GAS zero solution is not very inSinceb # 0 and f(0) = 0 it is impossible that = 0 and therefore

Consider the following controlled system:

flys) +0 <0, (4)

z) (9
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z € bd(R%)\{0}. Then, it follows fromH3 and sincé € R1\ {0} 3) The Jacobian matrices of all zeros fifx) + b in (0, y) are

thatf(z)+b is not equal to zero, contradicting thais an equilibrium nonsingular (this is the case as can be seen from Proposition 4).

point of system (3). [ | The degree has the property that it is a homotopy invariant. We will
Next we investigate the behavior of system (3) in the vicinity of ashow thatf () + b is homotopic to the vector field(x) = —(x — 2)

arbitrary equilibrium point. wherez is any equilibrium point of system (3) in the g6t y]. Define
Proposition 4: If H holds and ift € RY\ {0}, then the Jacobian the functionk(z, t) = —t(x— z)+ (1 —t)(f(x)+b). Thenitis clear

matrix of f(x) + b, evaluated at an equilibrium point of system (3) irthat

RY, is a Hurwitz matrix.

Proof: Pick any equilibrium point € RY. From Proposition h(z,0) = f(x) +b
(3) we obtain that € int(RZ). ‘
Assume thatd f /dx)(z) is not a Hurwitz matrix. h(z,1) =—(z — 2)

Since(df/dx)(z) is an irreducible Metzler matrix it follows from
the Perron—Frobenius Theorem that there existeah dominating and thath(z, t) is C° in [0, y] x [0, 1]. Also it can be checked that
eigenvalue\o (dominating, in the sense that the real part of any othef( ., ¢) does not vanish on the boundary[6f ] x [0, 1], implying
eigenvalue of the matrix is strictly less than) which is simple. As- thath(z, ) is a homotopy as claimed.
sociated to\, is a (left) eigenvectop” € int(RY). The assumption  This leads to
that(df/0x)(z) is not a Hurwitz matrix implies that, > 0. Thus,

e have that deg(f(x) +b, (0, y)) = deg(—( = 2), (0, ) = (1), (10)
) = e ©) o S
x Proposition 4 implies thatiign det((8f/0x)(z)) = (—=1)" whenz is
On the other hand Euler’s formula gives: an equilibrium point of (3) if0, y]. Then it follows from (9) and (10)
that there exists exactly one equilibrium point of (3]0n y].

So far we have shown that system (3) contains a unique equilibrium
pointinR% . Let us denote this equilibrium point a8. It remains to be
shown that:* is GAS for system (3) with respect to initial conditions
wherer™ := (7, 7,..., 7). in R%.. (Local asymptotic) stability of* is clear from Proposition 4,

Multiplying (7) with p" on the left and invoking (6) we find that  while convergence of all trajectories R’} to =~ follows from an ap-

plication of Theorem 1 wittD = R Indeed, there holds that

O (- ding(r)= = diag(r + 7)1 (2) @)

Xop' diag(r)z = p' diag(r + 7%) £(2). (8) 1) the flow of system (3) is strongly monotoneRd! . This follows
from Kamke’s Theorem which can be found in e.g., [7];

We know thatf(z) = —b < 0 and that there exists at least ghsuch 2) all the solutions of system (3) startingRi} have compact for-
thatf;(z) < 0sinceb € RY\{0}. This implies that the right hand side ward orbit closure iR% . This follows from the fact that all the
of (8) is strictly negative, while the left hand side is nonnegative. We ~ compact set§0, y] with y € Rz andy > y;, are known to be
have therefore reached a contradiction and conclude &hyatox)( =) forward invariant sets (see Proposition 2);
is a Hurwitz matrix. u 3) the equilibrium point™ of system (3) is unique iR .

Now, we are ready to state the main result of this section. -

Theorem 3:If H holds and ift € R\ {0}, then there exists a
unique equilibrium point™ in R for system (3). This equilibrium B. A Converse Result

i I int(RY is GAS f ith ) .
point belongs tant(R-) and is GAS for system (3) with respect to Next, we will prove a converse result. Together with Theorem 3 we

initial conditions inR%. . - -
) ) . . ... extend in this way a Theorem for controlled linear positive systems to
Proof: Let us first prove that there exists a unique equnlbrlurr(’!I class of controlled nonlinear positive svstems
point for system (3). P A '

Invoking Proposition 2, we shall establish that for@le Rz with Theorem 4: Suppose thatl1, H2 andH3 hold and thab € R’

y > y» the setd0, y] containexactly oneequilibrium point of system {0 1f sys_tem_ @) POSSESSes an eqU|!|br|um painte Rn’. then the
(3). This implies uniqueness of the equilibrium point of system (3) ifSro SOlu“(.Jr.] ISa GAnS equilibrium point of system (1) with respect to
R1Z [which, as we know from Proposition 3, must belongito( R )]. initial con(Eiltlons IR . .

To prove that all the mentioned séfs y] contain exactly one equi- Proof: Suppose that the zero solution of system (1) is not GAS

librium point we introduce the concept of degreefef:) + b relative with respect to initial conditions it . It follows from_the Maln Th?'
t0 (0, ) orem in [4] or from [5] that system (1) possesses an invariant rRin

such that the vector field on this ray does not point toward the origin.
of In addition this invariant ray belongs iot(R% ) but is not necessarily
deg(f(x)+b, (0,y)) = Z sign det <£(:)) (9) unique. Denoting this invariant ray @&-, we obtain that the following

f(z)+b=0 holds

where sign denotes the sign of a real number+Q, or —1) and f(T) = vz diag(r)x for somevz > 0. (11)
det((0f/0x)(z)) stands for the determinant of the Jacobian matrix
((0f/0x)(2)). By assumption system (3) possesses an equilibrium poigg R . It

To define the concept of degregz) + b and(0, y) should satisfy is easily checked that* € int(RY) becausdd1, H2 andH3 hold and
the following conditions: sinceb € R} \ {0}. Indeed, this follows immediately from the proof

1) f(x) + bisC" on the open se, y) andC® on the closure of ©f Proposition 3.

(0, y) (This holds because ¢12); Then ay € Rz can be found such that

2) f(x) + bis has no zeros on the boundary(6f y) (This is the
case as can be seen from Proposition 3); y<a* (12)
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and such that at least one componeng @ind+* are equal, i.e., there exponent of every; in r(x) is the same. This means that the exponent
exists ak € N such thay, = 7. that dictates how fast a reaction proceeds is the same for all reactions,

Notice that it is not possible that € Rz or in other words that a nontrivial assumption. Another property of this reaction scheme is
y = «*. This is impossible since from (11) and becatise R} \ {0} that we are dealing with elosedchemical reactor: No chemicals are
would imply thatf(z*) + b € R} \ {0}. But thenz" would not be exchanged with the outside world.
an equilibrium point of system (3). Hence there exists N such that We have proved in [4] and [5] that the zero solution of system (16)
y; < x; . Now we can define two nonempty sdtsandL as follows s stable, but not asymptotically stable.

Suppose that we introduce a dissipative term that models the extrac-
w <}, (13) tion of one of the chemicals from the reactor. Without loss of gener-
ality we assume that the first chemic#l is extracted. Moreover we

K:={ke€Nlye=ar} and L:={leN

It follows from (12) thatk U L = N. are looking for a dissipation term that results in a homogeneous, co-
Consider the following equalities: operative and irreducible system. The following choice satisfies these
constraints:
(f(-’"*) +0) = (f(y) +b)=0~—(f(y)+b) & =Cr(x) - d(l) (18)

-1
= [/ %ktw*-&-(l—t)y) dt| (" —y). (14) whered(z) = (x% 0 --- 0)T. The dissipative term is-=¢. Notice
0 that the exponent in this term should be the same as the exponents
From H3 follows that there exist&* € K such that the:*th com- aPPearing in(x). Our strategy implies that is known. In practice
ponent of the vector of the right hand side of (14) is a strictly positi&?WEVer: itis often hard to determine , .
number. On the other hand it follows from (11) and sihe@ R\ {0} We show next that the zero solution of system (18) is GAS with

that thel* th component of the vector in the left hand sidéf- (y)+ ;espect tohinitial c}onditionshiﬁ{i. First, we will show that i'_[ follqws
br+), IS not positive. Thus, we have reached a contradiction. m rom [4, Th. 3] or from [5] that system (18) possesses an invariant ray

Theorem 3 and Theorem 4 together give rise to the following. in in_t(R_i). It turns out that this ray is asymptotically stable and an
Corollary 1: Suppose thatl1l, H2 andH3 hold and thab € R% \ appllcatlor|1 ofk'_l'he;)rem 2 thenfigncludﬁsrt]he proof.

{0}. System (3) possesses an equilibrium peihte R if and only We are looking for & € int(R?) such that

if the zero solution of system (1) is GAS with respect to initial condi-

tions inRY. If ™ exists, it is unique iR% and belongs tant(RY ). Cr(T) —d(¥) =57 19)
Moreover,z™ is a GAS equilibrium point of system (3) with respect to
initial conditions inRZ.. for some~vz € R. We assume without loss of generality (by homo-

Corollary 1 implies that the existence of an equilibrium poinRifi  geneity) thatz; = 1. Adding all components of both vectors in (19)
for the controlled system is equivalent with a GAS zero solution of thesults in—1 = v#(1 + T> + - -« + T,, ). But sincez € int(RY) we
uncontrolled system. obtain thatyz= < 0. Therefore, the zero solution of system (18) is GAS

with respect to initial conditions iR .
IV. APPLICATIONS To conclude we would like to control system (18) with a constant
. . . . control vector. We obtain the following system:
A. Control of Dissipative Cyclic Chemical Reactions gsy

In this section, we consider a particular class of chemical reactions

taking place inside a chemical reactor. For more on modeling of chem-

ical r ions we refer to [2]. The cl fr ions under considerg- . .
cal reactions we refer to .[ . The (_:ass_ of reactions under co sdevﬁwereb € RY \{0}. Since hypothesisl has shown to be true for
tions is that ofcyclic chemical reactions:

system (18), Theorem 3 can be invoked: Fobadl R\ {0} system
(20) possesses a unique equilibrium poiritit{ R% ) that is GAS with
respect to initial conditions iR .
We point out that the chemical reactor associated to system (20) is
If we assume that the reactions proceed according to the so-o@ies! open ChemicalX; is withdrawn from the reactor and all chemicals for
action principle[2], we obtain that the concentrations i € IV, of the  which the corresponding component of the veétds different from
chemicalsX; Obey the fOIIOWing differential equation: zero are fed to the reactor at a constant rate.
In conclusion, we have designed a very simply control methodology
z=Cr(z) (16) for the class of cyclic chemical reactors. Both a dissipative term and a
constant control vector define this methodology. The restrictions in our
where example are that the exponenthat determines the speed of a reaction
is thesamefor all reactions. and that this exponent has t&kbewnto
-1 0 ... 1 xf introduce an appropriate dissipative term.

1 -1 ... 0 xy
C= . . . . and r(x) = . an B. Kolmogorov Systems

#=Cr(z)—d(z)+b (20)

Xi—-Xo—--- =X, - X (15)

Next we consider a particular class of Kolmogorov systems. Kol-

0 1 -1 o mogorov systems are described by the following differential equation:

for somea > 1. We have assumed that the reaction rate constants of all i = diag(x) F(x) (21)
reactions are equal to 1 (to simplify the notation and the calculations).

It is clear that system (16) is homogeneous of ordet o — 1, coop- whereF () isC*' onR™. They are often encountered in mathematical
erative and irreducible. An important feature of this system is that tiéology, see, e.g., [3].
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Notice that the well-known Volterra—Lotka systems are examples of 2) All the solutions of system (22) imt(R%) have compact for-

Kolmogorov systems whe®(x) is an affine map. The (biological) in- ward orbit closure innt(RY ). [We stress that they must have a
terpretation for the map'(z) in a Kolmogorov system is the following: compact closure imt(R1 ) and notinR% . Here lies the differ-
a componenf; () of the mapF'(«x) is the per-capita growth-rate of ence with the proof of Theorem 3.]
species. Indeed, the compact sdts y] with y € Rz andy > y; are
We shall restrict ourself to the study of the following particular class known to be forward invariant for system (22) (see Proposition
of Kolmogorov systems 6), implying that all the forward solutions of system (22) starting
in RY are bounded. We still need to establish that the closure of
z = diag(z)(f(x) +b) (22) every forward orbit icompact innt(RY ). For this purpose we
use the same reasoning as in [8].
where it will be assumed that holds and thab € int(R?) (notice Forally € int(RY), sufficiently close to the origin, holds that
the slightly stronger restriction ol compared to the one in the pre- diag(y)(f(y) + b) > 0 by continuity of f and sincef (0) = 0.
vious Section). Hypothesid implies in particular that system (22) is This implies that for all thesg, the set§« € int(R%})|x > y}
cooperative ifR* and irreducible irint (R ). are forward invariant sets for system (22) as this system is co-
It can be established (for a proof we refer to [5]) that operative orRZ. Then it follows that the closure of the forward
Proposition 5: The setsR%, bd(RY), int(R?) and all the faces orbit of solutions of system (22) startingiint(R? ), belongs to
of RY are invariant sets for system (21). In particular system (21) is a int(RY).
positive system. 3) The equilibrium point™ of system (22) is unique imt(R%}).
System (21) is positive because propé®titolds. Invariance of the
faces follows from the fact that if; = 0, then alsor; = =;f; = 0. V. DISCUSSION OF THEMAIN RESULTS

Notice that the dynamics of system (21) on the invariant faces are als?n this section, we discuss the main results of this note (Corollary 1

of the Kolmogorov type. and Theorem 5) and compare them to some known results.

. Itis cllear thatevery eq“"'b”“".‘ pomt of systgm .(3) 'S a!so an equilib- Let usfirstdiscuss Corollary 1. Consider the following affine system:
rium point of system (22). In addition, the equilibrium points of system

(3)and (22) innt(RY ) are the same. However, notice that system (22)
may have equilibrium points ohd(RZ) which are not equilibrium T=Ax+0b (23)
points of system (3).

When we assume thhitholds for system (3) and thate RI\{0},it  whereA is an irreducible Metzler matrix anide R\ {0}. It can be
follows from Theorem 3 that system (3) possesses an equilibrium pogiown that system (23) is a positive system. A classical result as proved,
=" inint(RY) which is unique iR Y. The previous discussion implies for example, in [3] states thak s a Hurwitz matrix if and only if system
that =" is also an equilibrium point of system (22) and that it is thgz3) possesses a unique equilibrium poinRY . If this equilibrium
unique equilibrium pointifnt(R%) of system (22). From Proposition point exists then it belong tmt(R” ) and it is GAS. Corollary 1 can
5 we have thatnt(RY) andbd(RY) are forward invariant sets for pe interpreted as a generalization of this result to a particular class of
system (22). This implies that" canat bestbe a GAS equilibrium nonlinear systems. For a related result we refer to [6].
point of system (22}vith respect to initial conditions imt(RY). We o conclude we compare Theorem 5 with a result from [8]. In that
will show that this is indeed the case, but before doing so we need{%]oer a particular class of Kolmogorov systems is studied and the fol-
auxiliary result. Its proof is omitted since it is similar to the proof o{owing Theorem is proved.

Proposition 2. Theorem 6: Consider system (21) and suppose that the following

Proposition 6: If H holds and ift € R\ {0}, then there exists pg|gs:
ys € Rz suchthatforaly € R-withy > ys, the sef0, y] is forward
invariant for system (22).

Theorem 5: If H holds and ifb € int(RY), then there exists an
equilibrium pointz* of system (22) which is unique imt(R%}) and
GAS with respect to initial conditions iimt(RY ).

Proof: Existence of the equilibrium point" and its uniqueness
in int(RY) has been shown already. We are left with proving tiat
is GAS for system (22) with respect to initial conditiondin(RY ).

(Local asymptotic) Stability of z* follows from the fact
that the Jacobian ofdiag(x)(f(x) + ) evaluated atz*
equals diag(z")(0f/0x)(z"). We know from Proposition
4 that (9f/9x)(z*) is a Hurwitz matrix, implying that
diag(z*)(9f/0x)(z") is also a Hurwitz matrix (This follows from
the fact—which we do not prove here—thaf\if is a Hurwitz Metzler
matrix thenDM is also a Hurwitz Metzler matrix for all diagonal
matricesD having strictly positive diagonal elements).

Convergence of all trajectories int(R%}) to =" follows from an
application of Theorem 1 wittD = int(RY). Recall that this The-
orem was also applied in the proof of Theorem 3. Notice however the
slight difference: previously) was equal tdR’}, while now it equals
int(RY). This difference complicates the proof as will become clear [1] J. Hofbauer and K. Sigmundyvolutionary Games and Population Dy-

C1 F(xz) is cooperative irRY ;

C2 F(0) > 0;

C3 (0F/dx)(y) > (9F/dx)(z) (where the inequality is to be
interpreted entry-wise) when> y > 0.

If system (21) possesses an equilibrium pointit{RY ), then this
equilibrium point is unique innt(RY ) and it is GAS with respect to
initial conditions inint(RY).

This result and Theorem 5 are dealing with the same problem: de-
termining the stability properties of an interior equilibrium point for
particular Kolmogorov systems. Both results have in common that a
cooperativity condition holds and the fact that the vector figlds) + b
andF'(x) point toward the interior of the first orthant. More importantly
we point out the differences between both Theorems: In our result there
is no concavity conditioi©3 (and typically this condition is not satis-
fied for systems for which our result applies). On the other hand, our
systems are subject to a homogeneity condition and an irreducibility
condition, both absent in the result of [8].
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and Frequency Domain Data an LFT described MS with structured uncertainties. The convergence
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When the eigenvalues of a matrix are involved in convex optimiza-
tion, however, eigenvalue decomposition (ED) or singular value de-
Abstract—The main objective of this technical note is to derive asimple - composition (SVD) is usually necessary in order to obtain a subgradient
necessary and sufficient condition for a linear fractional transformation ¢ the cost function. And these decompositions are generally time con-
(LFT) perturbed model set being consistent with frequency domain plant . . . .
input—output data. Only discrete-time models and unstructured modeling suming [3], [_4]' Moreover, when dlscu§smg aMSVP under a stochastic
errors are dealt with. Compared with the available results in which the framework, it seems very hard to derive from the results of [6] an el-
eigenvalues of a matrix are involved, this condition is related only to the egant and physically meaningful expression for the unfalsified proba-
Euclidean norms of two vectors. Moreover, these vectors linearly depend bility of a MS. This is due to that there are uncertain elements in the

on measurement errors. Some of its applications to model set validation jyolved matrix and the eigenvalues of the matrix are related to the un-
have been briefly discussed. Based on this condition, an almost analytic S0~ ¢ Isified probability [10], [15], [16]
lution has been established for model set validation under a deterministic ! ! '
framework when the measurement errors are energy bounded. Numerical ~ To overcome these difficulties, in this technical note, a simpler con-

simulations show that this consistency condition can lead to a significant dition is derived for the consistency of an LFT described MS with

computation cost reduction. FDED. Only discrete time LFT models will be discussed. Under the
Index Terms—Convex optimization, linear fractional transformation,  condition that modeling errors are unstructured, it is shown that a MS
model set validation, robust control. with LFT uncertainties is consistent with FDED if and only if the square

of the Euclidean norm of a vector is not greater than that of another
vector. An appealing characteristic of this condition is that both of these
vectors are linear functions of measurement errors. Based on this condi-
An LFT described model set (MS) is widely considered to be tHén, a MSVP is investigated under a deterministic framework in which
most general one adopted in robust controller design. This MS cé¢ measurement errors of the plant output are energy bounded. An an-
easily capture all the other representations, such as additive perturB@C solution is established for the existence of a measurement error
MS, coprime factor perturbed MS, etc., as its special case. To valigafd a model error such that. the experimental datg can be reproduced,
a MS through experimental data, the consistency condition plays an 8%cept that the zeros of a simply structured function must be numer-
sential role in both deterministic and stochastic frameworks [2], [13f&/ly computed. Itis also proved that this function is monotonically
[14], [12], [6], [15], [16]. Compared with time domain experimentaf'cr€asing in the interested domain. All the derivations are based on
data (TDFD), the utilization of frequency domain experimental dafgQutine linear algebra.
(FDED) is more computationally attractive in MS validation. It is be- Throughout this technical note, the following standard notation is
cause that owing to the boundary tagential Nevanlinna—Pick intergRflopted|| H (=) || represents th&(..-norm of H (=), while [|v || the
lation theory, the consistency of a MS widlii the FDED can bén-  Euclidean norm of a vector. (X') denotes the maximal singular
dependentlyerified at eactindividual frequency point. This property Value of matrixX. R™*" andC™*" stand respectively for the sets
significantly reduces the computational complexity in falsifying a M8f réal and complex: x n dimensional matrices. When= 1, m x n
6], [15]. is alvyays gbbrewated tea. Re{z}, Im{x} are, respectlvely,. the real
The problem of validating an LFT perturbed MS through FDED wa@nd imaginary parts of. I,, and0..x. represent respectively the

originally attacked by Smith and Doyle under a quite general framB% X ™ dimensional iden}ity matrix and the x n dime.nsic.)nal matrix .
with all the elements being zero. When the dimension is not very im-

portant, the subscriptis often omitte’”” andX " are respectively the
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