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Stability Properties of Equilibria of Classes of
Cooperative Systems

Patrick De Leenheer and Dirk Aeyels

Abstract—This note deals with the constant control problem for homoge-
neous cooperative and irreducible systems. These systems serve as models
for positive systems. A necessary and sufficient condition for global asymp-
totic stability of the zero solution of this class of systems is known. Adding
a constant control allows to shift the equilibrium point from zero to a point
in the first orthant. We prove that for every nontrivial nonnegative control
vector a unique nontrivial equilibrium point is achieved which is globally
asymptotically stable if the zero solution of the uncontrolled system is glob-
ally asymptotically stable. In addition a converse result is provided. Finally
a stability result for a particular class of Kolmogorov systems is established.
We compare our main results to those in the literature.

Index Terms—Cooperative systems, positive systems, stability.

I. INTRODUCTION

A dynamical system is said to be positive if when initiated in the
first orthant ofRn, its state remains in this orthant for future times.
Examples of these systems are found in a variety of applied areas such
as biology, chemistry and sociology [1]–[3].

In [4] and [5] we considered homogeneous cooperative and irre-
ducible systems and we have characterized the stability behavior of
the zero solution. In particular we have shown that the zero solution is
globally asymptotically stable (GAS) if and only if there exists a unique
invariant ray in the interior of the first orthant such that the vector field
on this ray points toward the origin.

In applications, it is often undesirable that the zero solution is GAS.
Indeed, in a biological system for example, this implies that all species
die out. On the other hand a (asymptotically) stablenontrivial equilib-
rium implies coexistence of several species.

The aim of this note is threefold.
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1) To investigate the effect of a constant control on a particular class
of positive systems with a GAS zero solution. The controlled
system remainspositiveif and only if the control vector is non-
negative. We prove that the controlled system possesses a unique
nontrivial GAS equilibrium point.

2) Providing a converse result by proving that if the controlled
system possesses an equilibrium point in the first orthant ofR

n,
then the uncontrolled system has a GAS zero solution. The first
result and this converse result extend a well-known theorem for
linear positive systems to a class of nonlinear positive systems
[3]; see also [6] for a related result.

3) To establish a stability result for a particular class of so-called
Kolmogorov systems.

II. PRELIMINARIES

A. Notation

LetR be the set of real numbers andRn the set ofn-tuples for which
all components belong toR.R+ = [0; +1) andR+

0
= (0; +1),

whileRn
+ (int(Rn

+)) is the set ofn-tuples for which all components
belong toR+ (R+0 ). Finally, the boundary ofRn

+, Rn
+ n int(Rn

+), is
denoted asbd(Rn

+).
Whenx; y 2 R

n
+, thenx � y meansxi � yi, 8 i = 1; . . . ; n.

Furthermore,x < y if x � y andx 6= y andx � y if xi < yi,
8 i = 1; . . . ; n.

Let I be a nonempty and proper subset off1; 2; . . . ; ng. The set
FI := fx 2 R

n
+jxi = 0 for i 2 Ig is a faceof Rn

+. Thedimension
of FI equals#I , the cardinality of the setI .

Whenx 2 R
n
+ we define[0; x] = fz 2 R

n
+j0 � z � xg and

(0; x) = fz 2 R
n
+j0 � z � xg.

Given a vectorx 2 R
n, diag(x) is a realn � n diagonal matrix

where theith diagonal entry equalsxi, theith component of the vector
x. A real n � n matrix A = (aij) is Metzler if and only if its off-
diagonal entriesaij , 8 i 6= j belong toR+.
A is irreducible if and only if for every nonempty proper subsetK

of N := f1; . . . ; ng, there exists ani 2 K and aj 2 N n K such
thataij 6= 0. WhenA is not irreducible, it is calledreducible.

Consider the system

_x = f(x) (1)

wherex 2 R
n andf(x) is a continuously differentiable vector field.

The forward solutionof system (1) with initial conditionx0 2 R
n

at t = 0 is denoted asx(t; x0) and is defined on themaximal forward
interval of existenceIx := [0; Tmax(x0)). A setD � R

n is called
forward invariantif and only if for allx0 2 D,x(t; x0) 2 D for all t 2
Ix . A system is calledpositiveif and only ifRn

+ is forward invariant.
It is intuitively clear and shown in [5] that the following property is
necessary and sufficient for positivity of system (1):

P 8x 2 bd(Rn

+) : xi = 0) fi(x) � 0:

The flow of system (1) ismonotone inD if and only if for all x0,
y0 2 D with x0 � (<; �)y0 holds thatx(t; x0) � (<; �)x(t; y0)
for all t 2 (Ix \ Iy ) n f0g.

The flow of system (1) isstrongly monotone inD if and only if it
is monotone inD and for allx0, y0 2 D with x0 < y0 holds that
x(t; x0) � x(t; y0) for all t 2 (Ix \ Iy ) n f0g. We recall [7, Th.
3.1] for later reference.

Theorem 1: Suppose that system (1) is defined on some subsetD of
R

n. If system (1) possesses a unique equilibrium pointx 2 D and if

0018–9286/01$10.00 © 2001 IEEE
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its flow is strongly monotone inD, then all solutions having compact
forward orbit closure inD converge tox.

B. Homogeneous, Cooperative and Irreducible Systems

Now we introduce the concept of a homogeneous vector field.
Definition 1: A vector field f(x), x 2 Rn is said to behomo-

geneousof order� 2 R with respect to the dilation map�r�(x) :=
(�r x1; . . . ; �

r xn)
T (8 i = 1; . . . ; n : ri 2 R

+

0 ) if

8 x 2 Rn; 8� 2 R+ : f(�r�(x)) = ���r�(f(x)): (2)

Assume
H1 f(x) is a homogeneous vector field of order� 2 R

+ with re-
spect to the dilation map�r�(x).

System (1) is calledhomogeneousif H1 holds.
SupposeH1 holds. If there exists a pointx 2 R

n, x 6= 0
such thatf(x) = 
xdiag(r)x, 
x 2 R, then the vector field
at each point of theray Rx = f�r�(x)j� 2 R

+

0 g through x is
tangent toRx. Indeed,d=d�(�r�(x))j�=1 = diag(r)x. This means
that the vector field is tangent toRx in the point x. In addition,
f(�r�(x)) = (
x�

� )diag(r)�r�(x) and thus the vector field is also
tangent toRx in everypoint ofRx. As a consequence the forward (and
backward) solution of system (1) starting in a point of the ray through
x will remain on this ray for all future (and past) times for which this
solution is defined. We call such a ray aninvariant rayfor system (1).

Next, we call on the concept of a cooperative vector field, which has
been widely studied, see for example [7].

Definition 2: A vector fieldf(x), x 2 R
n is said to becooperative

in W � R
n if the Jacobian matrix@f=@x is Metzler for allx 2W .

Assume
H2 f(x) is cooperative inRn

+.
System (1) is called cooperative ifH2 holds. The meaning of the

term cooperative is best explained in a biological context. Suppose that
the state of system (1) consists ofn interacting species. If the system
is cooperative this implies that the presence of speciesi induces the
growth of speciesj, for all j 6= i.

Finally, we introduce the concept of an irreducible vector field.
H3 Forx 2 int(Rn

+), the Jacobian matrix@f=@x is irreducible.
For x 2 bd(Rn

+)nf0g holds that9i 2 N with xi = 0 such that
fi(x) > 0.

System (1) is called irreducible ifH3 holds. The following result was
proved in [4] and [5].

Theorem 2: If H1, H2 andH3 hold, then system (1) is positive. In
addition the zero solution of system (1) is GAS with respect to initial
conditions inRn

+ if and only if there exists a unique invariant rayRx in
R
n

+ for system (1) such thatRx � int(Rn

+) andf(x) = 
xdiag(r)x
with 
x < 0.

A very brief and informal outline of the proof is given here to pro-
vide some insight in this result. First it follows fromH2 andf(0) = 0
(which is implied byH1 and continuity off ) that the system is posi-
tive. Relying on homogeneity and positivity of the system, a particular
(n � 1)-dimensional system (a projection of the original system) can
be defined that evolves on the intersection ofR

n

+ and the unit sphere
in R

n. Application of Brouwer’s Fixed Point Theorem leads to ex-
istence of an equilibrium point for the flow of the projected system
which in turn implies existence of an invariant ray inRn

+ for the orig-
inal system. Finally, it follows fromH2 andH3 that the flow of the
system is strongly monotone inRn

+. This allows to prove uniqueness
of the invariant ray which can be shown to belong toint(Rn

+) because
of H3. Relying on the strong monotonicity property of the flow, it is
possible to show that the zero solution is GAS.

Theorem 2 gives a criterion for GAS of the zero solution of system
(1). From a practical point of view a GAS zero solution is not very in-

teresting. Indeed in a biological system for example this implies that all
the species die out. To counteract this undesired property we examine
the effect of applying a nonnegative constant control to system (1). In
the sequel we will frequently consider systems satisfying the condi-
tions of Theorem 2. To avoid a cumbersome notation we introduce the
following hypothesis:

H HypothesesH1, H2 andH3 hold and the zero solution of system
(1) is GAS with respect to initial conditions inRn

+. The unique in-
variant ray inint(Rn

+) of system (1) is denoted asRx and has the
property thatf(x) = 
xdiag(r)x with 
x < 0.

III. M AIN RESULTS

A. Constant Control

Consider the following controlled system:

_x = f(x) + b (3)

wherex 2 R
n, b 2 R

n andf(x) satisfiesH1 andH2. We have the
following (for a proof we refer to [5]).

Proposition 1: If H1 andH2 hold, then system (3) is positive if and
only if b 2 R

n

+.
The proof of sufficiency is obtained by observing thatP holds. Con-

versely, ifb =2 R
n

+ the forward solution starting in 0 leavesRn

+.
WhenH holds andb 2 R

n

+, we show next that (3) possesses at least
one equilibrium point.

Proposition 2: If H holds and ifb 2 R
n

+, then there existsyb 2 Rx

such that for ally 2 Rx with y � yb, the set[0; y] is forward invariant
for system (3). For ally 2 Rx with y � yb, the set[0; y] contains at
least one equilibrium point of system (3).

Proof: First, we show that forb 2 R
n

+ there existsyb 2 Rx such
that

f(yb) + b� 0: (4)

Indeed, for ally 2 Rx we have thatf(y) = (
x�
� )diag(r)y where

� is such thaty = �r�(x). Since
x < 0 by H, � � 0 by H1 and both
r andy 2 int(Rn

+), it is clear that whenb 2 R
n

+ nf0g, there exists
yb 2 Rx (sufficiently far away from the origin) satisfying (4).

Next, we show that the set[0; yb] is forward invariant for system (3).
For all z 2 [0; yb] with zi = (yb)i for somei, we have that

(f(yb) + b)� (f(z) + b)

=
1

0

@f

@x
(tyb + (1� t)z)dt (yb � z) (5)

which, byH2 and (4), implies thatfi(z) + bi � fi(yb) + bi < 0.
Together with Proposition 1 this implies that[0; yb] is forward invariant
for (3).

Notice that for ally 2 Rx with y � yb also holds thatf(y)+b� 0
sincef(y)� f(yb)� 0. This implies that[0; y] is forward invariant
for system (3).

Since every set[0; y] is homeomorphic to the standard unit disk, the
last assertion of the Theorem follows from an application of Brouwer’s
Fixed Point Theorem.

It can be shown that equilibrium points of system (3) never belong
to bd(Rn

+).
Proposition 3: If H holds and ifb 2 R

n

+nf0g, then every equilib-
rium point of system (3) inRn

+, belongs toint(Rn

+).
Proof: Notice that by Proposition 2 the existence of at least one

equilibrium point of system (3) inRn

+ is guaranteed. Consider an ar-
bitrary equilibrium pointz 2 R

n

+ and assume thatz 2 bd(Rn

+).
Sinceb 6= 0 andf(0) = 0 it is impossible thatz = 0 and therefore
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z 2 bd(Rn

+)nf0g. Then, it follows fromH3 and sinceb 2 Rn

+nf0g
thatf(z)+b is not equal to zero, contradicting thatz is an equilibrium
point of system (3).

Next we investigate the behavior of system (3) in the vicinity of an
arbitrary equilibrium point.

Proposition 4: If H holds and ifb 2 Rn

+ nf0g, then the Jacobian
matrix of f(x) + b, evaluated at an equilibrium point of system (3) in
R
n

+, is a Hurwitz matrix.
Proof: Pick any equilibrium pointz 2 Rn

+. From Proposition
(3) we obtain thatz 2 int(Rn

+).
Assume that(@f=@x)(z) is not a Hurwitz matrix.
Since(@f=@x)(z) is an irreducible Metzler matrix it follows from

the Perron–Frobenius Theorem that there exists areal dominating
eigenvalue�0 (dominating, in the sense that the real part of any other
eigenvalue of the matrix is strictly less than�0) which is simple. As-
sociated to�0 is a (left) eigenvectorpT 2 int(Rn

+). The assumption
that (@f=@x)(z) is not a Hurwitz matrix implies that�0 � 0. Thus,
we have that

pT
@f

@x
(z) = �0p

T : (6)

On the other hand Euler’s formula gives:

@f

@x
(z)diag(r)z = diag(r + ��)f(z) (7)

where�� := (�; �; . . . ; � ).
Multiplying (7) with pT on the left and invoking (6) we find that

�0p
Tdiag(r)z = pTdiag(r+ ��)f(z): (8)

We know thatf(z) = �b � 0 and that there exists at least onej such
thatfj(z) < 0 sinceb 2 Rn

+nf0g. This implies that the right hand side
of (8) is strictly negative, while the left hand side is nonnegative. We
have therefore reached a contradiction and conclude that(@f=@x)(z)
is a Hurwitz matrix.

Now, we are ready to state the main result of this section.
Theorem 3: If H holds and ifb 2 Rn

+ nf0g, then there exists a
unique equilibrium pointz� in Rn

+ for system (3). This equilibrium
point belongs toint(Rn

+) and is GAS for system (3) with respect to
initial conditions inRn

+.
Proof: Let us first prove that there exists a unique equilibrium

point for system (3).
Invoking Proposition 2, we shall establish that for ally 2 Rx with

y � yb the sets[0; y] containexactly oneequilibrium point of system
(3). This implies uniqueness of the equilibrium point of system (3) in
R
n

+ [which, as we know from Proposition 3, must belong toint(Rn

+)].
To prove that all the mentioned sets[0; y] contain exactly one equi-

librium point we introduce the concept of degree off(x) + b relative
to (0; y)

deg(f(x) + b; (0; y)) =
f(z)+b=0

sign det
@f

@x
(z) (9)

where sign denotes the sign of a real number (0,+1 or �1) and
det((@f=@x)(z)) stands for the determinant of the Jacobian matrix
((@f=@x)(z)).

To define the concept of degree,f(x) + b and(0; y) should satisfy
the following conditions:

1) f(x) + b isC1 on the open set(0; y) andC0 on the closure of
(0; y) (This holds because ofH2);

2) f(x) + b is has no zeros on the boundary of(0; y) (This is the
case as can be seen from Proposition 3);

3) The Jacobian matrices of all zeros off(x) + b in (0; y) are
nonsingular (this is the case as can be seen from Proposition 4).

The degree has the property that it is a homotopy invariant. We will
show thatf(x) + b is homotopic to the vector fieldg(x) = �(x� z)
wherez is any equilibrium point of system (3) in the set[0; y]. Define
the functionh(x; t) = �t(x�z)+(1� t)(f(x)+ b). Then it is clear
that

h(x; 0) = f(x) + b

h(x; 1) =�(x� z)

and thath(x; t) is C0 in [0; y] � [0; 1]. Also it can be checked that
h(x; t) does not vanish on the boundary of[0; y] � [0; 1], implying
thath(x; t) is a homotopy as claimed.

This leads to

deg(f(x) + b; (0; y)) = deg(�(x� z); (0; y)) = (�1)n: (10)

Proposition 4 implies thatsign det((@f=@x)(z)) = (�1)n whenz is
an equilibrium point of (3) in[0; y]. Then it follows from (9) and (10)
that there exists exactly one equilibrium point of (3) in[0; y].

So far we have shown that system (3) contains a unique equilibrium
point inRn

+. Let us denote this equilibrium point asz�. It remains to be
shown thatz� is GAS for system (3) with respect to initial conditions
in Rn

+. (Local asymptotic) stability ofz� is clear from Proposition 4,
while convergence of all trajectories inRn

+ to z� follows from an ap-
plication of Theorem 1 withD = Rn

+. Indeed, there holds that

1) the flow of system (3) is strongly monotone inRn

+. This follows
from Kamke’s Theorem which can be found in e.g., [7];

2) all the solutions of system (3) starting inRn

+ have compact for-
ward orbit closure inRn

+. This follows from the fact that all the
compact sets[0; y] with y 2 Rx andy � yb are known to be
forward invariant sets (see Proposition 2);

3) the equilibrium pointz� of system (3) is unique inRn

+.

B. A Converse Result

Next, we will prove a converse result. Together with Theorem 3 we
extend in this way a Theorem for controlled linear positive systems to
a class of controlled nonlinear positive systems.

Theorem 4: Suppose thatH1, H2 andH3 hold and thatb 2 Rn

+n
f0g. If system (3) possesses an equilibrium pointx� 2 Rn

+, then the
zero solution is a GAS equilibrium point of system (1) with respect to
initial conditions inRn

+.
Proof: Suppose that the zero solution of system (1) is not GAS

with respect to initial conditions inRn

+. It follows from the Main The-
orem in [4] or from [5] that system (1) possesses an invariant ray inR

n

+

such that the vector field on this ray does not point toward the origin.
In addition this invariant ray belongs toint(Rn

+) but is not necessarily
unique. Denoting this invariant ray asRx, we obtain that the following
holds

f(x) = 
x diag(r)x for some
x � 0: (11)

By assumption system (3) possesses an equilibrium pointx� 2 Rn

+. It
is easily checked thatx� 2 int(Rn

+) becauseH1, H2 andH3 hold and
sinceb 2 Rn

+ nf0g. Indeed, this follows immediately from the proof
of Proposition 3.

Then ay 2 Rx can be found such that

y � x� (12)
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and such that at least one component ofy andx� are equal, i.e., there
exists ak 2 N such thatyk = x�k.

Notice that it is not possible thaty 2 Rx or in other words that
y = x�. This is impossible since from (11) and becauseb 2 Rn

+nf0g
would imply thatf(x�) + b 2 Rn

+ nf0g. But thenx� would not be
an equilibrium point of system (3). Hence there existsl 2 N such that
yl < x�l . Now we can define two nonempty setsK andL as follows

K := fk 2 N jyk = x
�

kg and L := fl 2 N jyl < x
�

l g: (13)

It follows from (12) thatK [ L = N .
Consider the following equalities:

(f(x�) + b)� (f(y) + b) = 0� (f(y) + b)

=
1

0

@f

@x
j(tx +(1�t)y) dt (x� � y): (14)

From H3 follows that there existsk� 2 K such that thek�th com-
ponent of the vector of the right hand side of (14) is a strictly positive
number. On the other hand it follows from (11) and sinceb 2 Rn

+nf0g
that thek�th component of the vector in the left hand side,�(fk (y)+
bk ), is not positive. Thus, we have reached a contradiction.

Theorem 3 and Theorem 4 together give rise to the following.
Corollary 1: Suppose thatH1, H2 andH3 hold and thatb 2 Rn

+n
f0g. System (3) possesses an equilibrium pointx� 2 Rn

+ if and only
if the zero solution of system (1) is GAS with respect to initial condi-
tions inRn

+. If x� exists, it is unique inRn

+ and belongs toint(Rn

+).
Moreover,x� is a GAS equilibrium point of system (3) with respect to
initial conditions inRn

+.
Corollary 1 implies that the existence of an equilibrium point inRn

+

for the controlled system is equivalent with a GAS zero solution of the
uncontrolled system.

IV. A PPLICATIONS

A. Control of Dissipative Cyclic Chemical Reactions

In this section, we consider a particular class of chemical reactions
taking place inside a chemical reactor. For more on modeling of chem-
ical reactions we refer to [2]. The class of reactions under considera-
tions is that ofcyclic chemical reactions:

X1 ! X2 ! � � � ! Xn ! X1: (15)

If we assume that the reactions proceed according to the so-calledmass
action principle[2], we obtain that the concentrationsxi, i 2 N , of the
chemicalsXi obey the following differential equation:

_x = Cr(x) (16)

where

C =

�1 0 . . . 1

1 �1 . . . 0

...
. . .

. . .
...

0 . . . 1 �1

and r(x) =

x�1

x�2

...

x�n

(17)

for some� � 1. We have assumed that the reaction rate constants of all
reactions are equal to 1 (to simplify the notation and the calculations).
It is clear that system (16) is homogeneous of order� := �� 1, coop-
erative and irreducible. An important feature of this system is that the

exponent of everyxi in r(x) is the same. This means that the exponent
that dictates how fast a reaction proceeds is the same for all reactions,
a nontrivial assumption. Another property of this reaction scheme is
that we are dealing with aclosedchemical reactor: No chemicals are
exchanged with the outside world.

We have proved in [4] and [5] that the zero solution of system (16)
is stable, but not asymptotically stable.

Suppose that we introduce a dissipative term that models the extrac-
tion of one of the chemicals from the reactor. Without loss of gener-
ality we assume that the first chemicalX1 is extracted. Moreover we
are looking for a dissipation term that results in a homogeneous, co-
operative and irreducible system. The following choice satisfies these
constraints:

_x = Cr(x)� d(x) (18)

whered(x) = (x�1 0 � � � 0)T . The dissipative term is�x�1 . Notice
that the exponent� in this term should be the same as the exponents
appearing inr(x). Our strategy implies that� is known. In practice
however, it is often hard to determine�.

We show next that the zero solution of system (18) is GAS with
respect to initial conditions inRn

+. First, we will show that it follows
from [4, Th. 3] or from [5] that system (18) possesses an invariant ray
in int(Rn

+). It turns out that this ray is asymptotically stable and an
application of Theorem 2 then concludes the proof.

We are looking for ax 2 int(Rn

+) such that

Cr(x)� d(x) = 
xx (19)

for some
x 2 R. We assume without loss of generality (by homo-
geneity) thatx1 = 1. Adding all components of both vectors in (19)
results in�1 = 
x(1 + x2 + � � � + xn). But sincex 2 int(Rn

+) we
obtain that
x < 0. Therefore, the zero solution of system (18) is GAS
with respect to initial conditions inRn

+.
To conclude we would like to control system (18) with a constant

control vector. We obtain the following system:

_x = Cr(x)� d(x) + b (20)

whereb 2 Rn

+ nf0g. Since hypothesisH has shown to be true for
system (18), Theorem 3 can be invoked: For allb 2 Rn

+nf0g system
(20) possesses a unique equilibrium point inint(Rn

+) that is GAS with
respect to initial conditions inRn

+.
We point out that the chemical reactor associated to system (20) is

open: ChemicalX1 is withdrawn from the reactor and all chemicals for
which the corresponding component of the vectorb is different from
zero are fed to the reactor at a constant rate.

In conclusion, we have designed a very simply control methodology
for the class of cyclic chemical reactors. Both a dissipative term and a
constant control vector define this methodology. The restrictions in our
example are that the exponent� that determines the speed of a reaction
is thesamefor all reactions. and that this exponent has to beknownto
introduce an appropriate dissipative term.

B. Kolmogorov Systems

Next we consider a particular class of Kolmogorov systems. Kol-
mogorov systems are described by the following differential equation:

_x = diag(x)F (x) (21)

whereF (x) isC1 onRn. They are often encountered in mathematical
biology, see, e.g., [3].
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Notice that the well-known Volterra–Lotka systems are examples of
Kolmogorov systems whereF (x) is an affine map. The (biological) in-
terpretation for the mapF (x) in a Kolmogorov system is the following:
a componentFi(x) of the mapF (x) is the per-capita growth-rate of
speciesi.

We shall restrict ourself to the study of the following particular class
of Kolmogorov systems

_x = diag(x)(f(x) + b) (22)

where it will be assumed thatH holds and thatb 2 int(Rn

+) (notice
the slightly stronger restriction onb compared to the one in the pre-
vious Section). HypothesisH implies in particular that system (22) is
cooperative inRn

+ and irreducible inint(Rn

+).
It can be established (for a proof we refer to [5]) that
Proposition 5: The setsRn

+, bd(Rn

+), int(R
n

+) and all the faces
ofRn

+ are invariant sets for system (21). In particular system (21) is a
positive system.

System (21) is positive because propertyP holds. Invariance of the
faces follows from the fact that ifxi = 0, then also_xi = xifi = 0.
Notice that the dynamics of system (21) on the invariant faces are also
of the Kolmogorov type.

It is clear that every equilibrium point of system (3) is also an equilib-
rium point of system (22). In addition, the equilibrium points of system
(3) and (22) inint(Rn

+) are the same. However, notice that system (22)
may have equilibrium points onbd(Rn

+) which are not equilibrium
points of system (3).

When we assume thatH holds for system (3) and thatb 2 Rn

+nf0g, it
follows from Theorem 3 that system (3) possesses an equilibrium point
z� in int(Rn

+) which is unique inRn

+. The previous discussion implies
that z� is also an equilibrium point of system (22) and that it is the
unique equilibrium point inint(Rn

+) of system (22). From Proposition
5 we have thatint(Rn

+) andbd(Rn

+) are forward invariant sets for
system (22). This implies thatz� canat bestbe a GAS equilibrium
point of system (22)with respect to initial conditions inint(Rn

+). We
will show that this is indeed the case, but before doing so we need an
auxiliary result. Its proof is omitted since it is similar to the proof of
Proposition 2.

Proposition 6: If H holds and ifb 2 Rn

+ nf0g, then there exists
yb 2 Rx such that for ally 2 Rx with y � yb, the set[0; y] is forward
invariant for system (22).

Theorem 5: If H holds and ifb 2 int(Rn

+), then there exists an
equilibrium pointz� of system (22) which is unique inint(Rn

+) and
GAS with respect to initial conditions inint(Rn

+).
Proof: Existence of the equilibrium pointz� and its uniqueness

in int(Rn

+) has been shown already. We are left with proving thatz�

is GAS for system (22) with respect to initial conditions inint(Rn

+).
(Local asymptotic) Stability of z� follows from the fact

that the Jacobian ofdiag(x)(f(x) + b) evaluated at z�

equals diag(z�)(@f=@x)(z�). We know from Proposition
4 that (@f=@x)(z�) is a Hurwitz matrix, implying that
diag(z�)(@f=@x)(z�) is also a Hurwitz matrix (This follows from
the fact—which we do not prove here—that ifM is a Hurwitz Metzler
matrix thenDM is also a Hurwitz Metzler matrix for all diagonal
matricesD having strictly positive diagonal elements).

Convergence of all trajectories inint(Rn

+) to z� follows from an
application of Theorem 1 withD = int(Rn

+). Recall that this The-
orem was also applied in the proof of Theorem 3. Notice however the
slight difference: previouslyD was equal toRn

+, while now it equals
int(Rn

+). This difference complicates the proof as will become clear
in the second item below.

1) The flow of system (22) is strongly monotone inint(Rn

+). This
follows from Kamke’s Theorem which can be found in, e.g., [7].

2) All the solutions of system (22) inint(Rn

+) have compact for-
ward orbit closure inint(Rn

+). [We stress that they must have a
compact closure inint(Rn

+) and not inRn

+. Here lies the differ-
ence with the proof of Theorem 3.]

Indeed, the compact sets[0; y] with y 2 Rx andy � yb are
known to be forward invariant for system (22) (see Proposition
6), implying that all the forward solutions of system (22) starting
inRn

+ are bounded. We still need to establish that the closure of
every forward orbit iscompact inint(Rn

+). For this purpose we
use the same reasoning as in [8].

For ally 2 int(Rn

+), sufficiently close to the origin, holds that
diag(y)(f(y)+ b)� 0 by continuity off and sincef(0) = 0.
This implies that for all thesey, the setsfx 2 int(Rn

+)jx � yg
are forward invariant sets for system (22) as this system is co-
operative onRn

+. Then it follows that the closure of the forward
orbit of solutions of system (22) starting inint(Rn

+), belongs to
int(Rn

+).
3) The equilibrium pointz� of system (22) is unique inint(Rn

+).

V. DISCUSSION OF THEMAIN RESULTS

In this section, we discuss the main results of this note (Corollary 1
and Theorem 5) and compare them to some known results.

Let us first discuss Corollary 1. Consider the following affine system:

_x = Ax + b (23)

whereA is an irreducible Metzler matrix andb 2 Rn

+nf0g. It can be
shown that system (23) is a positive system. A classical result as proved,
for example, in [3] states thatA is a Hurwitz matrix if and only if system
(23) possesses a unique equilibrium point inRn

+. If this equilibrium
point exists then it belong toint(Rn

+) and it is GAS. Corollary 1 can
be interpreted as a generalization of this result to a particular class of
nonlinear systems. For a related result we refer to [6].

To conclude we compare Theorem 5 with a result from [8]. In that
paper a particular class of Kolmogorov systems is studied and the fol-
lowing Theorem is proved.

Theorem 6: Consider system (21) and suppose that the following
holds:

C1 F (x) is cooperative inRn

+;
C2 F (0) � 0;
C3 (@F=@x)(y) � (@F=@x)(z) (where the inequality is to be
interpreted entry-wise) whenz � y � 0.

If system (21) possesses an equilibrium point inint(Rn

+), then this
equilibrium point is unique inint(Rn

+) and it is GAS with respect to
initial conditions inint(Rn

+).
This result and Theorem 5 are dealing with the same problem: de-

termining the stability properties of an interior equilibrium point for
particular Kolmogorov systems. Both results have in common that a
cooperativity condition holds and the fact that the vector fieldsf(x)+b
andF (x)point toward the interior of the first orthant. More importantly
we point out the differences between both Theorems: In our result there
is no concavity conditionC3 (and typically this condition is not satis-
fied for systems for which our result applies). On the other hand, our
systems are subject to a homogeneity condition and an irreducibility
condition, both absent in the result of [8].
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On the Consistency Between an LFT Described Model Set
and Frequency Domain Data

Tong Zhou

Abstract—The main objective of this technical note is to derive a simple
necessary and sufficient condition for a linear fractional transformation
(LFT) perturbed model set being consistent with frequency domain plant
input–output data. Only discrete-time models and unstructured modeling
errors are dealt with. Compared with the available results in which the
eigenvalues of a matrix are involved, this condition is related only to the
Euclidean norms of two vectors. Moreover, these vectors linearly depend
on measurement errors. Some of its applications to model set validation
have been briefly discussed. Based on this condition, an almost analytic so-
lution has been established for model set validation under a deterministic
framework when the measurement errors are energy bounded. Numerical
simulations show that this consistency condition can lead to a significant
computation cost reduction.

Index Terms—Convex optimization, linear fractional transformation,
model set validation, robust control.

I. INTRODUCTION

An LFT described model set (MS) is widely considered to be the
most general one adopted in robust controller design. This MS can
easily capture all the other representations, such as additive perturbed
MS, coprime factor perturbed MS, etc., as its special case. To validate
a MS through experimental data, the consistency condition plays an es-
sential role in both deterministic and stochastic frameworks [2], [13],
[14], [12], [6], [15], [16]. Compared with time domain experimental
data (TDFD), the utilization of frequency domain experimental data
(FDED) is more computationally attractive in MS validation. It is be-
cause that owing to the boundary tagential Nevanlinna–Pick interpo-
lation theory, the consistency of a MS withall the FDED can bein-
dependentlyverified at eachindividual frequency point. This property
significantly reduces the computational complexity in falsifying a MS
[6], [15].

The problem of validating an LFT perturbed MS through FDED was
originally attacked by Smith and Doyle under a quite general frame-
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work [14]. In their problem formulation, modeling errors are permitted
to be structured and disturbances may affect a plant at arbitrary loca-
tions. In their research, the relations have been made clear between MS
validation and structured singular values. Moreover, a necessary con-
dition has been derived for the reproduction of FDED. Furthermore,
some convexity properties have been established under a condition con-
cerning the dimension of a subspace when the number of modeling
error blocks is not greater than 2. And so on. The implementation of the
developed validation test, however, seems not very easy. To establish a
computable test, this problem has been reinvestigated by Chen in [6].
In his study, through an introduction of auxiliary signals, it is proved
that an LFT described MS is consistent with FDED at a frequency point
if and only if a matrix is negative semi-definite. As the involved ma-
trix depends linearly on the measurement errors of the plant output, the
model set validation problem (MSVP) is finally reduced to a convex
optimization problem which is computationally tractable. All these re-
sults are derived from the assumptions that the modeling errors are un-
structured and the measurements of the plant input are perfect. Based
on that consistency condition, an algorithm is proposed for validating
an LFT described MS with structured uncertainties. The convergence
of the algorithm, however, remains unclear.

When the eigenvalues of a matrix are involved in convex optimiza-
tion, however, eigenvalue decomposition (ED) or singular value de-
composition (SVD) is usually necessary in order to obtain a subgradient
of the cost function. And these decompositions are generally time con-
suming [3], [4]. Moreover, when discussing a MSVP under a stochastic
framework, it seems very hard to derive from the results of [6] an el-
egant and physically meaningful expression for the unfalsified proba-
bility of a MS. This is due to that there are uncertain elements in the
involved matrix and the eigenvalues of the matrix are related to the un-
falsified probability [10], [15], [16].

To overcome these difficulties, in this technical note, a simpler con-
dition is derived for the consistency of an LFT described MS with
FDED. Only discrete time LFT models will be discussed. Under the
condition that modeling errors are unstructured, it is shown that a MS
with LFT uncertainties is consistent with FDED if and only if the square
of the Euclidean norm of a vector is not greater than that of another
vector. An appealing characteristic of this condition is that both of these
vectors are linear functions of measurement errors. Based on this condi-
tion, a MSVP is investigated under a deterministic framework in which
the measurement errors of the plant output are energy bounded. An an-
alytic solution is established for the existence of a measurement error
and a model error such that the experimental data can be reproduced,
except that the zeros of a simply structured function must be numer-
ically computed. It is also proved that this function is monotonically
increasing in the interested domain. All the derivations are based on
routine linear algebra.

Throughout this technical note, the following standard notation is
adopted.kH(z)k1 represents theH1-norm ofH(z), while kvk2 the
Euclidean norm of a vectorv. �(X) denotes the maximal singular
value of matrixX. Rm�n andCm�n stand respectively for the sets
of real and complexm�n dimensional matrices. Whenn = 1,m�n

is always abbreviated tom.Refxg, Imfxg are, respectively, the real
and imaginary parts ofx. Im and 0m�n represent respectively the
m�m dimensional identity matrix and them�n dimensional matrix
with all the elements being zero. When the dimension is not very im-
portant, the subscript is often omitted.X

H andXT are respectively the
conjugate transpose and transpose of matrixX. Finally,diagf�ijni=1g
is then�n diagonal matrix with itsith row ith column element equal
to �i.

This technical note is organized as follows. The next section states
the main results and briefly compares them with the available results
when applying to MS validation, while Section III investigates an appli-
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