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One of the first immunologic responses against HIV infection is the presence of neutralizing antibodies

that seem able to inactivate several HIV strains. Moreover, in vitro studies have shown the existence of

monoclonal antibodies that exhibit broad crossclade neutralizing potential. Yet their number is low and

slow to develop in vivo. In this paper, we investigate the potential benefits of inducing poly-specific

neutralizing antibodies in vivo throughout immunization. We develop a mathematical model that

considers the activation of families of B lymphocytes producing poly-specific and strain-specific

antibodies and use it to demonstrate that, even if such families are successful in producing neutralizing

antibodies, the competition between them may limit the poly-specific response allowing the virus to

escape. We modify this model to account for viral evolution under the pressure of antibody responses

in natural HIV infection. The model can reproduce viral escape under certain conditions of B

lymphocyte competition. Using these models we provide explanations for the observed antibody

failure in controlling natural infection and predict quantitative measures that need to be satisfied for

long-term control of HIV infection.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The ability of human immunodeficiency virus (HIV) to persist in
an infected individual and eventually cause AIDS is dependent on
its ability to avoid immune responses. Many factors facilitate virus
persistence, from high genetic diversity and evolution (Walker and
Korber, 2001) to the ability to stay latent in the body (Blankson
et al., 2002), to the infection of immune cells, whose activation by
vaccine candidates leads to an increase in the target cell population
(Stebbing et al., 2004). The large-scale vaccine clinical trials
(AIDSVax (Gilbert et al., 2005), STEP (Priddy et al., 2008) and
RV144 (Rerks-Ngarm et al., 2009) that were aimed at stimulating
both arms of the adaptive immune system: the antibody-mediated,
the cell-mediated and combined antibody and cell-mediated
immunity showed limited clinical efficacy (Fauci et al., 2008).

We study the roles of antibodies in limiting virus replication
during HIV infection. Antibodies directed against HIV structural
proteins are detected in the body within a few weeks following a
ll rights reserved.

pe).
natural infection (Aasa-Chapman et al., 2004; Richman et al.,
2003). Only a small fraction of them, however, neutralize the
virus, which escapes recognition by ensuing reduced accessibility
to antibody-binding sites, heavy glycosylation of the envelope
proteins and rapid mutation (Douek et al., 2006; Parren et al.,
1999; Richman et al., 2003; Wyatt and Sodroski, 1998). Despite
the hurdles the immune system has to overcome, neutralizing
antibodies do develop during natural infection (Burton et al.,
2005; Haynes and Montefiori, 2006; Pantophlet and Burton,
2006). Most of them are strain-specific and preferentially recog-
nize and inhibit preceding but not current viral strains (Burton
et al., 2004; Richman et al., 2003; Wei et al., 2003). To completely
control infection, the immune system has to find ways to elicit
potent, high affinity antibody responses capable of broad neu-
tralization, viral inactivation and protection against current infec-
tion and/or disease (Hone et al., 2002). A limited number of
known broadly neutralizing human monoclonal antibodies (2F5,
4E10, b12, 2G12, PG9, PG16 and VRC01) have been identified
(Burton et al., 2004; Zhou et al., 2010). They neutralize primary
isolates of HIV from different genetic subtypes in vitro (Buchacher
et al., 1994; Burton et al., 2004; Li et al., 2007), but are very rarely
produced in vivo (Dhillon et al., 2007), and are, therefore, difficult
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to induce through vaccination. The failure may be due to host
regulatory constraints (Haynes et al., 2005), incorrect epitope
conformation (Moore et al., 2006), HIV induction of polyclonal B
cell activation and terminal differentiation (Levesque et al., 2009),
and/or B cell competition (Deem and Lee, 2003; Heyman, 2003).

While many different B cells clones can recognize a given HIV
virus strain, only those of high affinity (strain-specific) respond in
large numbers to produce neutralizing antibodies. For a series of
discrete random infections over time (continuous immunization),
competition among B cell clones may lead to the phenomenon of
original antigenic sin, where B cells produced in response to a first
viral infection can suppress the creation of new immune cells in
response to a second infection with a related strain (Deem and Lee,
2003). For a chronic infection with a mutating virus, the original
antigenic sin may be limited, since there is enough time for the
immune system to create B cells against the new strain. However,
there is a time delay in the production of each strain-specific
neutralizing antibody that may cause that virus strain to expand at
high levels before the antibody can control it (Burton et al., 2004;
Richman et al., 2003). Most importantly, the continuous presence of
strain-specific antibodies may lead to suppression of the less fit
poly-specific B cell clones capable of producing broad neutralizing
antibodies. The limitation in number of broadly neutralizing anti-
bodies may represent the greatest weakness of the immune system.

Antibody-mediated immune suppression has been observed
during passive administration of antibodies as well. In this
situation, B cells are prevented from stimulation through a
reduction of available antigenic determinants (Heyman, 2003).
Finally, studies of Hepatitis C chronic infections have shown that
strain-specific antibodies may inhibit the development of poly-
specific antibodies by preventing them from recognizing antigen
(Zhang et al., 2004).

To investigate the competition among strain-specific and poly-
specific antibodies, we developed mathematical models of virus–
antibody interactions during both immunization and natural
infection with HIV. We start with the assumption that the
immune system produces both strain-specific and poly-specific,
cross reactive, neutralizing antibodies. The strain-specific and
poly-specific neutralizing antibodies target variable (unique to
each variant) or conserved (shared among variants) epitopes,
respectively, on the virus envelope. The governing hypothesis is
that while B cells producing both (strain-specific and poly-
specific) neutralizing antibodies are activated during the infec-
tion, those producing poly-specific broadly neutralizing antibo-
dies are made inefficient and consequently kept at undetectable
levels. This process is mediated by their competition with the B
cells that produce more fit strain-specific antibodies with which
they share antigenic stimulation, kinetic prolongation, space in
the lymph nodes and T cell conjugates.

We use information from previous modeling studies of HIV
viral infection (Ho et al., 1995; Nowak and May, 2000; Perelson
et al., 1996, 1997), cellular immune responses (Ciupe et al., 2006;
Stafford et al., 2000), antibody formation (Oprea and Perelson,
1996; Tomaras et al., 2008) and competition (Antia et al., 1998;
Boer et al., 2001; Borghans et al., 1999; Leenheer and Pilyugin,
2008) to derive and analyze models of the interaction between
virus and neutralizing antibodies. Our aim is to determine the
parameter regimes that lead to antibody failure and viral persis-
tence, and to predict ways to reverse these phenomena.

The paper is structured as follows. In Section 2 we develop and
analyze the mathematical model describing the interaction
between families of B lymphocytes producing poly-specific and
strain-specific neutralizing antibodies following continuous
immunization with several HIV variants. In Section 3 we expand
the model to account for natural infection and viral evolution;
their analysis is presented in two appendices. In Section 4 we
present numerical results of the two models. We conclude with a
discussion.

2. Model of antibody responses following continuous
immunization

Let V ¼ ðV1,V2, . . . ,VnÞ
T be viruses of specificity 1r irn,

A¼ ðA1,A2, . . . ,AnÞ
T be strain-specific neutralizing antibodies of

specificity 1r irn, and A0 be the poly-specific broadly neutralizing
antibody. Viruses are introduced into the body at times ti,
ViðtiÞ ¼ Vi,0, and do not mutate. We coarse-grain the viral life-cycle,
aggregating the processes of infection, integration and host–cell viral
production into a simple replication model in which viruses
replicate with different viral fitness per-capita rates ri. We treat
the dynamics of antibody production similarly, assuming that anti-
body concentration is in quasi-equilibrium with the B cell popula-
tion that produces them, and without representing the component
subprocesses such as activation, differentiation and antibody secre-
tion. The concentration of antibody specific to viral strain i is
denoted Ai, and that of poly-specific antibody A0. We only consider
the fraction of the produced antibodies that has neutralizing
function. In the presence of neutralizing antibodies viruses are
removed at rates K and K0 by the strain-specific and poly-specific
neutralizing antibodies, respectively. We assume that the removal
rates are independent of strain and that K4K0.

Strain-specific neutralizing antibodies are elicited at rate l by
the viral strain to which they are specific. Poly-specific neutraliz-
ing antibodies are elicited at rate l0 by all viral strains. We denote
by a the differences between B cells proliferation and death rates,
effectively treating the antibody at quasi-equilibrium with these
cells as surviving at that rate. Finally, all B cells compete with
each other (within and between clones) for antigen, space in the
lymph nodes, and conjugate T-cell help. The strength of this
competition is governed by parameter b.

The dynamics of the system is described by the following
equations:

dVi

dt
¼ ðri�KAi�K0A0ÞVi,

dAi

dt
¼ lViþAiða�bAT Þ,

dA0

dt
¼ l0TþA0ða�bAT Þ, ð1Þ

with ViðtiÞ ¼ Vi,0, AiðtiÞ ¼ 0, A0ðt1Þ ¼ 0, T ¼ 1T V and AT ¼ A0þ1T A.
In Section 2.1 we investigate the system dynamics for the case

where strain-specific B cells are absent. In Section 2.2 we explore
the dynamics when both poly-specific and strain-specific anti-
bodies are produced in response to infection.

2.1. Virus dynamics during poly-specific antibody responses

Let us consider the case where viruses V ¼ ðV1,V2, . . . ,VnÞ
T are

introduced into the body at times t¼ ðt1,t2, . . . ,tnÞ
T , independent

of each other. The immune system reacts by producing poly-
specific antibodies, A0, at rate l0, which neutralize all virus strains
at rate K0. For simplicity, we assume that all viral strains are
equally adapted to the host and they replicate at the same rate
ri¼r independent of the strain i. System (1) becomes

dV

dt
¼ ðr�K0A0ÞV ,

dA0

dt
¼ l0TþA0ða�bA0Þ, ð2Þ

with ViðtiÞ ¼ Vi,0 and A0ðt1Þ ¼ 0.
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2.1.1. Steady-state analysis

We investigate the long-run behavior of system (2) when all
viruses are present in the population. To eliminate the disconti-
nuities in the model, we consider that the system starts at time
t¼tn leading to initial conditions ViðtnÞ ¼ Vi,n40 and A0ðtnÞ40.
The steady-states of system (2) can be divided into three classes:
1.
 The no-infection steady-state S1
1 ¼ ð0,0, . . . ,0Þ:
2.
 The viral clearance steady-state S1
2 ¼ ð0,0, . . . ,0,a=bÞ.
3.
 The chronic infection hyperplane S1
3 ¼ ðV 1,V 2, . . . ,V n,r=K0Þ,
which exists for r4K0a=b and

T ¼
Xn

i ¼ 1

V i ¼
r

K0l0
b

r

K0
�a

� �
: ð3Þ

Let us study the asymptotic behavior of the steady-states. The
Jacobian matrix corresponding to our system is

J¼

r�K0A0 0 . . . 0 �K0V 1

0 r�K0A0 . . . 0 �K0V 2

. . . . . . � � � . . . . . .

0 0 . . . r�K0A0 �K0V n

l0 l0 . . . l0 a�2bA0

0
BBBBBB@

1
CCCCCCA
: ð4Þ

Proposition 1. (a) The infection free steady-state S1
1 is always

unstable.

(b) The viral clearance steady-state S2
1 is asymptotically stable if

roK0
a

b
ð5Þ

and unstable if the inequality is reversed.

(c) If

r4K0
a

b
ð6Þ

the chronic infection hyperplane S3
1 exists and each of its steady-

states has zero eigenvalues.

Proof. (a) The characteristic equation for the steady-state S1
1,

ðr�LÞnða�LÞ ¼ 0, ð7Þ

has positive eigenvalues L1,2,...,n ¼ r and Lnþ1 ¼ a. Therefore, the
infection free steady-state is always unstable.

(b) The characteristic equation for the steady-state S2
1,

r�K0
a

b
�L

� �n

ðLþaÞ ¼ 0 ð8Þ

has eigenvalues

L1,2,...,n ¼ r�K0
a

b
ð9Þ

and

Lnþ1 ¼�a: ð10Þ

When roK0a=b, the eigenvalues are negative and the viral

clearance steady-state is asymptotically stable. If the inequality

is reversed, the eigenvalues are positive and the viral clearance

steady-state is unstable. In other words, when the antibody

response at steady-states exceeds the viral production, the virus

will be cleared otherwise the virus persists.

(c) The characteristic equation for the steady-state S3
1,

Ln�1 L2
� a�2b

r

K0

� �
Lþr b

r

K0
�a

� �� �
¼ 0 ð11Þ
has eigenvalues

L1,...,n�1 ¼ 0,

Ln,nþ1 ¼

a�2b
r

K0
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2b

r

K0

� �2

�4r b
r

K0
�a

� �s

2
: ð12Þ

Although the latter pair of eigenvalues are negative for r4K0a=b,

there are always zero eigenvalues, and hence we cannot decide

stability of the chronic hyperplane based on linear analysis. &

2.1.2. Global stability

Proposition 2. When roK0a=b, S2
1 is globally asymptotically stable.

Proof. Consider the function

WðV1,V2, . . . ,Vn,A0Þ ¼
Xn

i ¼ 1

Z Vi

0
dtþ K0A

2

0

l0

Z A0

A0

1

A0

�
1

t

� �
dt: ð13Þ

Note that for positive ðV1, . . . ,Vn,A0Þ40, W is positive semi-
definite and zero only if ðV1,V2, . . . ,Vn,A0Þ ¼ ð0,0, . . . ,0,a=bÞ. More-
over,

_W ¼
Xn

i ¼ 1

Vi r�K0A0þK0A0�K0
A

2

0

A0

 !
�

K0A0

l0
bðA0�A0Þ

2

¼
Xn

i ¼ 1

Vi r�K0A0�K0 A0�2A0þ
A

2

0

A0

 ! !
�

K0A0

l0
bðA0�A0Þ

2

¼
Xn

i ¼ 1

Viðr�K0A0Þ�
X

i

Vi
K0

A0
ðA0�A

2

0Þ�
K0A0

l0
bðA0�A0Þ

2: ð14Þ

When roK0a=b is satisfied _W is negative semi-definite, and the largest
invariant set where _W ¼ 0 is fð0,0, . . . ,0,a=bÞg. Since _W r0, and W is a
proper function (i.e. for each c, the set fxZ0jWðxÞrcg is compact) we
have that all solutions of (2) are bounded. Therefore, from Lasalle’s
invariance principle, S2

1 is globally asymptotically stable. &

Proposition 3. When r4K0a=b, S3
1 is globally asymptotically

attractive.

Proof. T ¼
Pn

i ¼ 1 Vi satisfies system

dT

dt
¼ Tðr�K0A0Þ,

dA0

dt
¼ l0TþA0ða�bA0Þ: ð15Þ

Consider the function

WðT ,A0Þ ¼ l0T

Z T

T

1

T
�

1

t

� �
dtþ

Z A0

A0

ðK0t�rÞ dt, ð16Þ

where A0 ¼ r=K0 and T ¼ ðr=l0K0Þðbr=K0�aÞ.

Note that W is positive semi-definite for ðT,A0Þ40, and zero at

ðT ,A0Þ. Moreover,

_W ¼ l0ðr�K0A0ÞðT�T Þþðl0TþA0ða�bA0ÞÞðK0A0�rÞ

¼ ðK0A0�rÞðl0TþA0ða�bA0ÞÞ

¼ ðK0A0�rÞð�A0ða�bA0ÞþA0ða�bA0ÞÞ, ð17Þ

where we used that l0TþA0ða�bA0Þ ¼ 0. Notice that _W is a

product of two factors, each of which has a single root at

A0 ¼ A0. For A0aA0, these factors have opposite signs, and thus
_W r0. Moreover, the largest invariant set where _W ¼ 0 is

fðT ,A0Þg. Since _W r0, and W is a proper function (i.e. for each c,

the set fxZ0jWðxÞrcg is compact) we have that all solutions

of (15) are bounded. From Lasalle’s invariance principle, the

hyperplane S3
1 is globally attractive. &
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2.2. Virus dynamics in the presence of competition between strain-

specific and poly-specific antibody responses

Let us consider the general case given by the system (1) where
immunization with viruses V ¼ ðV1,V2, . . . ,VnÞ

T at times
t¼ ðt1,t2, . . . ,tnÞ

T leads to production of both poly-specific and
strain-specific neutralizing antibodies, A0 and A¼ ðA1, . . . ,AnÞ

T

respectively. As before, we assume that all viral strains replicate
at the same rate ri¼r independent of the strain i. We study the
viruses’ long term behavior as strain-specific and poly-specific
neutralizing antibodies compete with each other for resources.

2.2.1. Steady-state analysis

As before, we eliminate the discontinuities in the model, by
considering system’s initial condition for time t¼tn, where all
viruses are already present in the population. The steady-states
can be divided into three classes:
1.
 The infection free steady-state S2
1 ¼ ð0,0, . . . ,0,0,0, . . . ,0,0Þ.
2.
 The clearance hyperplane S2
2 ¼ ð0,0, . . . ,0,A1,A2, . . . ,An,A0Þ,

where AiZ0 for i¼ 1, . . . ,n, and A0Z0 are any vector,
respectively number, such that AT ¼ a=b. This set of steady-
states is the intersection of a hyperplane of dimension
ð2nþ1Þ�n�1¼ n in R2nþ1, and the non-negative orthant
R2nþ1
þ .
3.
 Let |a I� f1,2, . . . ,ng, and assume that #ðIÞ ¼mZ1. Then
there are chronic steady-states S2

3 ¼ ðV 1,V 2, . . . ,V n,A1,A2, . . . ,
An,A0Þ with ðV i,AiÞ40 for all iA I and V j ¼ Aj ¼ 0 for all j=2I if
and only if

r4
mK0l0þKl

mðlþl0Þ

� �
a

b
: ð18Þ

The nonzero components of such steady-states are given by

A ¼ Ai ¼
lr

mK0l0þKl
, V i ¼

r

mK0l0þKl
b

mrðlþl0Þ

mK0l0þKl
�a

� �
for all iA I,

A0 ¼
ml0r

mK0l0þKl
: ð19Þ
Proposition 4. (a) The infection free steady-state S2
1 is always

unstable.

(b) The viral clearance hyperplane S2
2 has zero eigenvalues.

(c) For every m¼ 1,2, . . . ,n�1 for which (18) holds, there are ðnmÞ

corresponding steady-states S2
3 of form (19) having exactly m virus

strains and corresponding antibodies present, and they are all

unstable. Moreover, there is a unique steady-state of form (19)

having exactly m¼n virus strains and corresponding antibodies

present, and it is asymptotically stable.

Proof. The Jacobian matrix corresponding to the linearized sys-
tem is

J¼

X1 0 . . . 0 �KV 1 0 . . . 0 �K0V 1

0 X2 . . . 0 0 �KV 2 . . . 0 �K0V 2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . Xn 0 0 . . . �KV n �K0V n

l 0 . . . 0 Y1 �bA1 . . . �bA1 �bA1

0 l . . . 0 �bA2 Y2 . . . �bA2 �bA2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . l �bAn �bAn . . . Yn �bAn

l0 l0 . . . l0 �bA0 �bA0 . . . �bA0 Z

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

,

ð20Þ
where for i¼1,2,y,n,

Xi ¼ r�ðK0A0þKAiÞ,

Yi ¼ a�bðATþAiÞ,

Z ¼ a�bðATþA0Þ: ð21Þ

(a) The characteristic equation of the steady-state S2
1,

ðr�LÞnða�LÞnþ1
¼ 0 ð22Þ

has positive eigenvalues L1,2,...,n ¼ r and Lnþ1,...,2nþ1 ¼ a. There-

fore the infection free steady-state is always unstable.

(b) The characteristic equation of the hyperplane S2
2,

Ln
ðaþLÞ

Yn

i ¼ 1

fL�ðr�K0A0�KAiÞg ¼ 0 ð23Þ

has eigenvalues L1,2,...,n ¼ 0, Lnþ1,...,2n ¼ r�K0A0�KAi, L2nþ1 ¼�a.

Therefore, S2
2 is unstable when r4K0AiþKAi for at least one i. The

stability of any steady-state that belongs to the hyperplane S2
2

cannot be determined from linear analysis.

(c) If (18) holds for m¼1, then it also holds for all m¼2,3,y,n.

For each m, there will be steady-states with exactly ðnmÞ virus

strains and corresponding antibodies present that satisfy

equalities (19).

We investigate the local stability of the chronic steady-states

for which m strains persist and n�m strains are cleared. The

steady-states have the characteristic equation

detðJ�LI2nþ1Þ ¼ L�
rKl

mK0l0þKl

� �n�m

det

x y . . . y z

y x . . . y z

. . . . . . . . . . . . . . .

y x . . . x z

w w . . . w v

0
BBBBBB@

1
CCCCCCA

¼ L�
rKl

mK0l0þKl

� �n�m

ðy�xÞm�1
fðxþðm�1ÞyÞvþmzwg, ð24Þ

where

x¼L2
þðbAþbAT�aÞLþKAðbAT�aÞ,

y¼ bAL,

z¼ AfbLþK0ðbAT�aÞg,

w¼ A0ðL�aþbAT Þ,

v¼ nAðL�aþbAT Þ, ð25Þ

which simplifies to

detðJ�LI2nþ1Þ ¼ L�
rKl

mK0l0þKl

� �n�m

ðLþbAT�aÞ

�ðL2
þðbAT�aÞLþKAðbAT�aÞÞm�1

�ðAL2
þðbAT�aþmbAþbA0ÞLþrðbAT�aÞÞ:

ð26Þ

The first n�m eigenvalues L1,...,n�m ¼ rKl=ðmK0l0þKlÞ are posi-

tive. Therefore the chronic steady-states S2
3 for which m strains

persist and n�m strains are cleared are always unstable.

Finally, we will show that the unique steady-state with m¼n

virus strains and corresponding antibodies present is asymptoti-

cally stable.
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S3
2, satisfying (19) for m¼n, has the characteristic equation

detðJ�LI2nþ1Þ ¼ det

x y . . . y z

y x . . . y z

. . . . . . . . . . . . . . .

y x . . . x z

w w . . . w v

0
BBBBBB@

1
CCCCCCA

¼ ðy�xÞn�1
fðxþðn�1ÞyÞvþnzwg, ð27Þ

where

x¼L2
þðbAþbAT�aÞLþKAðbAT�aÞ,

y¼ bAL,

z¼ AfbLþK0ðbAT�aÞg,

w¼ A0ðL�aþbAT Þ,

v¼ nAðL�aþbAT Þ, ð28Þ

which simplifies to

detðJ�LI2nþ1Þ ¼ ðLþbAT�aÞðL2
þðbAT�aÞLþKAðbAT�aÞÞn�1

�ðAL2
þðbAT�aþnbAþbA0ÞLþrðbAT�aÞÞ: ð29Þ

One can show that all eigenvalues have negative real parts provided

that bAT 4a. Therefore, if the chronic steady-state exists then it is

stable. In other words, when the viral production exceeds the

combined removal by antibodies the viruses will persist. &
3. Model of antibody responses following natural infection

Model (1) assumes that the viruses are introduced into the host at
random times through, for example, a continuous immunization. We
are interested in how these results change in an individual chronic
HIV infection, where the virus mutates over time. Assuming that a
primary infection with V1 leads to production of strain-specific and
poly-specific neutralizing antibodies A1 and A0 (for example, the poly-
specific production may be caused by previous vaccination), and that
V1 mutates over time into strains Vi (i¼2,y, n) at rates m1i40, which
stimulate strain-specific immune cells to produce antibodies, Ai,
model (1) becomes

dVi

dt
¼ ri

Xn

j ¼ 1

mijVj�ViðKAiþK0A0Þ,

dAi

dt
¼ lViþAiða�bAT Þ,
O¼

K0

K
þ

l
l0

� �
2

K0

K
þ

l
l0

� �

K0

K
1þ

l
l0

� �
4

K0

K
þ3

l
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dA0

dt
¼ l0TþA0ða�bAT Þ, ð30Þ

with V1(0)¼V1,0, Vi(0)¼Ai(0)¼A0(0)¼0 for i42. Q ¼ fmijg1r i,jrn is a
mutation matrix with non-negative off-diagonal entries and columns
entries that add up to one. We consider two situations describing HIV
evolution over time:
(A)
 The initial virus strain V1 mutates to produce virus strain
V2 at rate m1240, which mutates to produce virus V3 at
rate m2340 and so forth. The mutation is irreversible,
and the mutation matrix describing this situation has the
form:

Q ¼

1�m12 0 0 . . . 0

m12 1�m23 0 . . . 0

^ & & . . . ^

0 0 . . . mn�1n 1

0
BBBB@

1
CCCCA,

with miiþ1o1.

(B)
 Viruses mutate forward and backward randomly with the addi-

tional assumption that the mutation matrix Q ¼ fmijg1r i,jrn is
irreducible.
Note that Q has a simple dominant eigenvalue 1 with a corre-
sponding non-negative eigenvector zZ0 such that Qz¼z. In case
(1) z is an entry-wise positive vector (by the Perron–Frobenius
theorem) and in case (2) z¼(0,0,y,0,1)T.

As before we assume that all viruses replicate at the same rate
ri¼r. We perform stability analysis of model (30) for the mutation
matrix Q satisfying condition (A). When the antibody response is
poly-specific all viruses are cleared when roK0a=b and persist
otherwise. This relation is independent on the mutation matrix Q

or the number of viruses present n (see Appendix A).
When the antibody responses are poly-specific and strain-

specific we study viruses’ long term behavior for the case n¼2
and mutation matrix satisfying condition (A), i.e. virus V1 mutates
to produce virus V2 at rate m and the mutation is irreversible.
System (30) becomes

dV1

dt
¼ rð1�mÞV1�V1ðKA1þK0A0Þ,

dV2

dt
¼ rmV1þrV2�V2ðKA2þK0A0Þ,

dA1

dt
¼ lV1þA1ða�bAT Þ,

dA2

dt
¼ lV2þA2ða�bAT Þ,

dA0

dt
¼ l0ðV1þV2ÞþA0ða�bAT Þ, ð31Þ

with V1(0)¼V1,0, V2(0)¼A1(0)¼A2(0) ¼A0(0)¼0.
We show that for rominfðK0l0þKlÞ=ðlþl0Þ,K0Oga=b both

viruses are cleared. Conversely, when m4Kl=ðKlþK0l0Þ and
r4ððK0l0þKlÞ=ðl0þlÞÞa=b at least one virus strain persists.
Similarly for moKl=ðKlþK0l0Þ and r4OK0a=b, both viruses
persist, where
as shown in Appendix B. Note that O depends on the relative ratio
of the poly-specific and strain-specific antibody production and
viral removal rates.
4. Numerical results

Previous studies (Ciupe et al., 2006; Stafford et al., 2000) have
considered an initial HIV load of 10�9 virions per ml, correspond-
ing to the presence of a small number of virions in the inoculum.
We increase this estimate to 10�1 virions per ml to account for a
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stronger continuous immunization. The viral dynamics is not
sensitive to this value, as we can show numerically. When we
vary the initial inoculum five orders of magnitude, the peak of the
virus shifts to the right by only one day.

Viruses replicate at an effective rate of r¼25 virions per day
(Ciupe et al., 2006; Stafford et al., 2000). In response, B cells
become activated and differentiate into antibody producing
plasma cells. Typical antibody affinities for the elicited antigen
are 105 M�1 (Hollinger and Liang, 2001). Since each HIV virion
has many potential binding sites and affinity maturation may
occur, we assume the avidity of specific and poly-specific anti-
bodies to be as high as 6 �109 M�1 per day for strain-specific
antibody and 3 �109 M�1 per day for the poly-specific antibody.
Using the Avogadro’s number we can covert the avidity rates
measured in inverse molars into removal rates measured in ml per
molecule as follows:

1 M�1
¼ 1

Liter

mole
¼

106 ml

mole
¼

106 ml

6� 1023 molecules
¼

ml

6� 1017 molecules
:

ð33Þ

Using this conversion we obtain removal rates of K ¼ 10�8 ml per
antibody molecule per day and 5� 10�9 ml per antibody molecule
per day by the strain-specific and poly-specific antibody
respectively.

Initially, at the time of immunization, there are neither strain-
specific nor poly-specific neutralizing antibodies present, i.e.

Ai(0)¼A0(0)¼0 molecules per ml. One B cell secretes between 10
and 104 antibody molecules per second, corresponding to 8�105

and 8�108 antibody molecules per day (Bachmann et al., 1994).
Assuming that one B cell is activated by one viral epitope, we
consider an average antibody production rate of l¼ l0 ¼ 107

molecules per day per virion (regardless of antibody type). Finally,
we assume that the difference between antibody (B cell) prolif-
eration rate and death rate is a¼1.4 per day (Hodgkin et al., 1996;
Janeway et al., 2001) and that the source B cells compete
with each other at a rate b varying between 2.5�10�11 and
2:5� 10�9 ml per antibody molecule per day.

For the continuous immunization model (1), numerical results
for the interaction between four virus strains, introduced in the
body at times t1¼0, t2¼5, t3¼10 and t4¼15, in the sole presence
of poly-specific antibody are presented in Fig. 1. Poly-specific
neutralizing antibody is produced immediately after infection
with virus V1, expands at a fast rate, and reaches its peak at the
same time as the virus. A slight decrease to its steady-state value
occurs three days later. When roK0a=b, V1 and all subsequent
viral infections decay exponentially (left panel). When r4K0a=b
viruses persists and reach different steady-state values. While we
know the steady-state position of the total virus load VT, we
cannot determine the position of individual viral steady-states
which is highly dependent on initial conditions and inoculation
times. If two or all viruses are introduced at time zero and
replicate at the same rate, r then they have identical dynamics
(not shown). When, however, viruses V2, V3 and V4 are introduced
later than virus V1 and antibody A0 they reach steady-states values
that may be different than the steady–state value of virus V1.

When both poly-specific and strain-specific neutralizing anti-
bodies are presented then both strain-specific and poly-specific
neutralizing antibodies are produced immediately after infection
with virus V1. They expand at a fast rate, and reach high steady-
state values. When ro ðð4K0l0þKlÞ=ð4ðlþl0ÞÞÞa=b, V1 and all
subsequent virus strains decay exponentially (Fig. 2, left upper
panel). The introduction of new virus strains leads to production
of corresponding strain-specific antibodies which expand to
lower steady-state values due to competition with existent anti-
body. While we know the total antibody value, AT, we cannot
predict individual antibody values at steady-state which are
highly dependent of initial conditions and inoculation times. If
one or all strain-specific antibody are introduces at the same time
as the poly-specific antibody then their steady-state levels are
identical. The other strain-specific antibodies are prevented from
expanding due to their competition with high A0 and A1 antibody
loads at the time of their appearance (Fig. 2, left, lower panel).
When r4 ðð4K0l0þKlÞ=ð4ðlþl0ÞÞÞa=b, all viruses persist and
undergo damped oscillations. This is due to the existence of
complex eigenvalues with negative real parts in (29) (Fig. 2, right,
upper panel). Strain-specific antibodies reach the same steady-
state which is lower than that of poly-specific antibody (Fig. 2,
left, lower panel). The combined antibody response is inefficient
in controlling the infection.

Putting together the analytical results regarding virus
dynamics in the presence of poly-specific neutralizing antibodies
alone and in the presence of competing poly-specific and strain-
specific neutralizing antibodies, we find that for any mZ2 for
which,

a

b
K04r4

a

b
ml0K0þlK

mðl0þlÞ

� �
ð34Þ

viruses are cleared in the presence of poly-specific neutralizing
antibodies but persist in the presence of additional immune
responses, in the form of strain-specific neutralizing antibodies
(see Fig. 3).

For the natural infection model (30), we consider an initial
viral load of 10�1 virions per ml, which mutates over time at rate
m, varying between 1% and 80% to produce a second virus. The
virus is eliminated at rate 10�8 ml per antibody molecule per day
by the strain-specific neutralizing antibodies and 5� 10�9 ml per
antibody molecule per day by the poly-specific neutralizing
antibodies (Hollinger and Liang, 2001). There are no strain-
specific and poly-specific neutralizing antibodies in the body at
the time of infection, i.e. Ai(0)¼A0(0)¼0 molecules per ml. Anti-
bodies are produced at rate l¼ l0 ¼ 107 molecules per day per
virion regardless of the antibody type (Bachmann et al., 1994),
and compete with each other at rate b varying between 10�10 and
5� 10�10 ml per antibody molecule per day. Rates r and a are as in
the immunization model.

Numerical results for the interaction between two virus strains
in the sole presence of poly-specific neutralizing antibodies and
stepwise mutation matrix, Q, are presented in Fig. 4. Infection
with V1 and mutant strain V2 leads to immediate production of
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poly-specific antibody who clears both viruses when roK0a=b
(left panel). When r4K0a=b, only the dominant virus load V2

persists (right panel). The clearance conditions are independent of
the mutation rate m, which only controls the rate at which the
dominant virus gets established.

When both strain-specific and poly-specific neutralizing antibo-
dies are present and for mutation matrix, Q, satisfying condition (A),
infection with V1 and mutant strain V2 leads to immediate produc-
tion of both strain-specific and poly-specific antibody who clear
both viruses when rominfðK0l0þKlÞ=ðlþl0Þ,K0Oga=b (Fig. 5, left
panel). Poly-specific and strain specific antibodies are produced
immediately after infection and our model predicts the total anti-
body value needed for clearance, AT, but not the individual antibody
values at steady-state. When r4 ððK0l0þKlÞ=ðlþl0ÞÞa=b, and the
mutation rate satisfies m4Kl=ðK0l0þKlÞ then a single chronic
infection establishes where the dominant virus persists and the
suboptimal virus is cleared. The poly-specific and dominant virus-
specific antibodies have the same dynamic when l¼ l0, while the
other strain-specific antibody is degraded and leaves the body
(Fig. 5, middle panel). When r4K0Oa=b and the mutation rate
satisfies moKl=ðK0l0þKlÞ then both virus strains persist. The
strain-specific antibody reach steady-state levels smaller than the
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poly-specific antibody and their combined avidity is inefficient in
controlling the virus (Fig. 5, right panel).

That parameter region,

a

b
K04r4

a

b
K0O,

mo Kl
K0l0þKl

ð35Þ

describes the interesting situation where viruses are cleared in
the presence of poly-specific immune responses and persist in the
presence of additional (yet competing) immune responses, in the
form of strain-specific neutralizing antibodies (see Fig. 6).
5. Discussion

We developed mathematical models of HIV viral dynamics
that account for the counterintuitive hypothesis that additional
immune responses (in the form of strain-specific antibody
responses) may be detrimental to the host and lead to viral
persistence. We show that this phenomenon may occur even
when successful previous vaccination leads to production of poly-
specific broadly neutralizing antibodies. For parameter regimes
for which the poly-specific broadly neutralizing antibody
response (when operating alone, that is, unaccompanied by
strain-specific B cells) are sufficient for clearance of the virus,
the presence of additional strain-specific antibodies leads to viral
rebound and in the end viral chronicity.

In the first model, we described host–virus interaction during
immunization with several virus strains and found that for
parameters satisfying

a

b
K04r4

a

b
ml0K0þlK

mðl0þlÞ

� �
ð36Þ

viruses go extinct in the presence of only poly-specific broadly
neutralizing antibodies, and persist when both strain-specific and
poly-specific neutralizing antibodies are present (see Fig. 3). The
results are based on the assumption that viruses replicate at the
same rate r. This assumption is justified by recent findings
by Arnott et al. (2010) that have shown that viruses obtained
shortly after initial infection from individuals who were not
taking antiretroviral therapy (ART) have a higher fitness level
than was previously believed and therefore justifying our
assumption that closely induced viral strains can have the same
replication rates. However, since it is known that in the long-run
fitness changes and viruses become more (less) fit in the absence
(presence) of ART we have run simulations to see how this change
affects our results. We have found the existence of parameter
regimes for which four viruses replicating at different rates go
extinct in the presence of only poly-specific broadly neutralizing
antibodies, and persist when both strain-specific and poly-spe-
cific neutralizing antibodies are present (see Fig. 8). Analytical
results that sustain this observation will be presented elsewhere.

For a natural infection with a virus that mutates over time at a
rate moKl=ðK0l0þKlÞ, when

a

b
K04r4

a

b
K0O ð37Þ

viruses go extinct in the presence of only poly-specific broadly
neutralizing antibodies, and persist when both strain-specific and
poly-specific neutralizing antibodies are present (see Fig. 6). The
results are maintained when viruses have different fitness rates
(not shown).

These results allow us to advance the idea that one of the
reasons for the absence (or inefficiency) of poly-specific broadly
neutralizing antibodies, in vivo, is the competition between
plasma lymphocyes that produces them with the plasma lym-
phocytes producing strain-specific neutralizing antibodies. Parti-
cularly, even if such poly-specific antibodies are being induced
(say through successful vaccines), they may be kept at low
enough levels by the more fit strain-specific antibodies. Para-
doxically, the presence of additional, specific, immune response is
detrimental to the host and allows for the establishment of
chronic infections. The suppression of poly-specific immune cells
by the more fit immune cells has been documented both in HIV
and HCV infections (Heyman, 2003; Zhang et al., 2004), but has
never been implied as the reason for viral chronicity. Our study
implies that competition between immune cells leading to
suppression of B cells capable of inducing broadly neutralizing
responses may be sufficient for HIV to become chronic. The
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implication is even more worrisome if we consider that the
contemporary strain-specific antibodies usually recognize and
inhibit preceding but not current viral strains (Burton et al.,
2004; Richman et al., 2003; Wei et al., 2003). Our model assumes
that neutralizing antibodies to the current dominant viral strain
are produced immediately after virus infection, or mutation. A
delay in their production by two weeks results in a chronic
infection with an increased viral set point by one order of
magnitude (results not shown).

The analytical results for systems (1) and (30) when both
antibody types are present are based on local analysis. We
hypothesized that the conditions for long-term viral clearance
and persistence are independent of initial conditions. Our
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conclusions are bolstered by numerical results; future work is
needed to prove global stability analytically.

In the model of natural infection where the virus mutates, the
analytical results are presented for the particular case of two
virus–two strain-specific antibody populations. Numerically, we
can show that viral clearance in the presence of broadly neutra-
lizing poly-specific antibodies and viral persistence in the pre-
sence of both strain-specific and poly-specific neutralizing
antibodies in the same parameter regime occurs for any number
of new viral strains. Moreover, the analytical results for the
mutation matrix satisfying condition (A) can be obtained for a
mutation matrix satisfying condition (B), as long as Q, is irredu-
cible (results not shown).

The condition of viral clearance in the sole presence of the poly-
specific antibody is given by roK0a=b. Since K0a=boðK0l0þKlÞ=
ðlþl0Þa=b, viral chronicity in the presence of competing strain-
specific and poly-specific neutralizing antibodies happens when the
double chronic infection steady-state (but not the single infection
one) exists (parameters described in case 3). If we can induce a poly-
specific neutralizing antibody of equal avidity to that of strain-specific
antibody, then for known virus average production and antibody life
span we can determine the correlation between the poly-specific
antibody levels and the minimum avidity rates needed for this
condition to fail. As seen in Fig. 7, clearance in the presence of
poly-specific broadly neutralizing antibody alone (regions 1 and 4) is
maintained for competing poly-specific and strain-specific antibodies
when poly-specific antibody levels l0 are much higher than strain-
specific antibody levels l (region 2). When their levels are similar
then we can insure clearance in the competition model by increasing
the avidity of the poly-specific broadly neutralizing antibody K0

(region 4).
6. Conclusions

In this study, we investigated the hypothesis that poly-specific
broadly neutralizing antibodies develop alongside strain-specific
neutralizing antibodies. Using a mathematical modeling
approach, we have determined the parameter regions where
competition between poly-specific and strain-specific antibodies
after inoculation
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can help the virus escape and predicted ways of preventing it,
providing insight into the ultimate roles of antibody responses in
controlling HIV infection. We predict that in a preventive vaccination
design, one can prevent/delay viral chronicity by inducing poly-
specific antibodies of high avidity, increasing the overall poly-specific
antibody levels and by speeding the rate at which viruses mutate.
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Appendix A

Virus evolution during poly-specific antibody response: We
assume that primary inoculation leads to infection by a single
virus strain V1. This virus mutates over time under pressure from
poly-specific immune response, A0, giving rise to n genetically
distinct virus strains V¼(V1,V2,y,Vn)T at rates given by the
mutation matrix Q, satisfying condition (A) or (B). As before, we
consider the replication rate ri¼r to be independent of the virus
strain i. The model describing the virus-host interaction becomes

dV

dt
¼ ðrQ�K0A0InÞV ,

dA0

dt
¼ l0TþA0ða�bA0Þ, ð38Þ

with V1ð0Þ40 and Vi(0)¼A(0)¼0, for i¼2,y,n.
Since Tð0Þ40, we can define f(t)¼(V/T)(t), for i¼1,y,n. Then

the following result follows.

Proposition A.1. The dynamics of (38) are equivalent to the

dynamics of

df

dt
¼ rðQ�InÞf ,

dT

dt
¼ ðr�K0A0ÞT ,

dA0

dt
¼ l0TþA0ða�bA0Þ: ð39Þ

for mutation matrix Q satisfying condition (A) or (B).

Proof. Note that

df

dt
ðtÞ ¼ ðrQ�K0A0InÞf�ðr�K0A0Þf ¼ rðQ�InÞf , ð40Þ

with f ð0ÞZ0 and 1Tf (0)¼1. We see that there is a bijective
correspondence between solutions of (38) with Vð0Þa0, and
solutions of (39). &

Steady-state analysis: Notice that the last two equations of (39) are
decoupled from the first n. We study the stability of steady-states of
this planar subsystem next. System (38) has three steady-states:
1.
 The infection free steady-state S1
3
¼(0,0).
2.
 The viral clearance steady-state S3
2 ¼ ð0,a=bÞ.
3.
1 Indeed, for jZ2, we have that 0¼ 1T
ðQ�InÞzj ¼ ðrj�1Þ1T zj , and thus 1Tzj¼0.

This implies that 0o1T f ð0Þ ¼ c11T z and thus that c1 40.
The chronic steady-state S3
3 ¼ ððr=K0l0Þðbr=K0�aÞ,r=K0Þ, which

exists for r4K0a=b.

Proposition A.2. (a) The infection free steady-state S1
3 is always

unstable.

(b) If roK0a=b, then S2
3 it is GAS with respect to initial conditions

Tð0Þ40.
(c) If r4K0a=b, then S3
3 it is GAS with respect to initial conditions

Tð0Þ40.

Proof. The proof is similar to that of Propositions 2 and 3. &

Theorem A.3. If r4K0a=b, then every solution (f(t),T(t),A0(t))
of (39) with Tð0Þa0 satisfies

lim
t-þ1

ðf ðtÞ,TðtÞ,A0ðtÞÞ ¼ ð1=1T zÞz,
r

K0l0
b

r

K0
�a

� �
,

r

K0

� �
, ð41Þ

where zZ0 is the dominant eigenvector of the simple eigenvalue1 of

the matrix Q (Qz¼z).

Proof. The proof follows from Proposition 6 if we show that
f ðtÞ-ð1=1T zÞz. From the eigenvector expansion we have that

f ðtÞ ¼ c1zþ
X
j42

cje
rjtzj, ð42Þ

where the real part of all rj’s is negative and c140.1 Then

lim
t-þ1

f ðtÞ ¼ c1z ð43Þ

and since 1Tf(t)¼1 for all t, it follows that c1 ¼ 1=1T z. &

Corollary A.4. Under the conditions of Theorem1 every solution

(V(t),A0(t)) of (38) satisfies

lim
t-þ1

ðVðtÞ,AðtÞÞ ¼
r

K0l0
b

r

K0
�a

� ��
1T z

� �
z,

r

K0

� �
: ð44Þ

Proof. This is immediate from Theorem 1 since f(t)¼V(t)/
T(t). &

Proposition A.5. If roK0a=b, then every solution (V(t),A0(t))
of (38) satisfies

lim
t-þ1

VðtÞ ¼ 0: ð45Þ

Proof. This is immediate from Proposition 6 since 0rVðtÞ. &

Appendix B

Virus evolution during both strain-specific and poly-specific antibody

responses: Let us consider the general case given by system (30),
where virus strain V1 mutates over time under the pressure of both
specific and poly-specific immune responses A1 and A0 to produce
n�1 genetically distinct virus strains Vi (i¼2,y,n) and their
corresponding strain-specific neutralizing antibodies, Ai. Moreover,
the mutation matrix, Q ¼ fmijg1r i,jrn, satisfies condition (A). Similar
results follow for condition (B) and will not be shown here.

Steady-state analysis: We study viruses’ long term behavior for
the case n¼2 and mutation matrix satisfying condition (A), i.e.

virus V1 mutates to produce virus V2 at rate m and the mutation is
irreversible. System (30) becomes

dV1

dt
¼ rð1�mÞV1�V1ðKA1þK0A0Þ,

dV2

dt
¼ rmV1þrV2�V2ðKA2þK0A0Þ,

dA1

dt
¼ lV1þA1ða�bAT Þ,

dA2

dt
¼ lV2þA2ða�bAT Þ,

dA0

dt
¼ l0ðV1þV2ÞþA0ða�bAT Þ, ð46Þ

with V1(0)¼V1,0, V2(0)¼A1(0)¼A2(0)¼A0(0)¼0.
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System (46) has at most four types of non-negative steady-
states:
1.
 The infection free steady-state S1
4
¼(0,0,0,0,0).
2.
 The viral clearance hyperplane S4
2 ¼ ð0,0,A1,A2,A0Þ, such that

AT ¼ a=b.

3.
 The chronic single infection steady-state

S4
3 ¼ 0,

r

K0l0þKl
b

rðlþl0Þ

K0l0þKl
�a

� �
,0,

rl
K0l0þKl

,
rl0

K0l0þKl

� �
,

ð47Þ

which exists when r4 ððK0l0þKlÞ=ðl0þlÞÞa=b.

4.
 The chronic co-infection steady-state S4

4 ¼ ðV 1,V 2,A1,A2,A0Þ,
where

x¼
K0

K
þ

l
l0

,

y¼ 2
K0

K
þ

l
l0

,

A0 ¼
r

2xyK
2xþy�2myþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2xþy�2myÞ2�8ð1�mÞ2xy

q� �
,

A1 ¼
rð1�mÞ

K
�

K0

K
A0,

A2 ¼
K0

K
þ

l
l0

� �
A0�

rð1�mÞ
K

,

V 1 ¼
1

l
b 1þ

l
l0

� �
A0�a

� �
rð1�mÞ

K
�

K0

K
A0

� �
,

V 2 ¼
1

l
b 1þ

l
l0

� �
A0�a

� �
K0

K
þ

l
l0

� �
A0�

rð1�mÞ
K

� �
: ð48Þ

S4
4 exists when moKl=ðKlþK0l0Þ ¼ ð2x�yÞ=x and r4K0Oa=b,

where

O¼
2xy

ðy�xÞð1þ2x�yÞð2xþy�2myþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2xþy�2myÞ2�8ð1�mÞ2xy

q
Þ

:

ð49Þ

Case 1: When
1a:
 m4Kl=ðKlþK0l0Þ and roððK0l0þKlÞ=ðl0þlÞÞa=b or

1b:
 moKl=ðKlþK0l0Þ and rominfððK0l0þKlÞ=ðl0þlÞÞa=b,K0

Oa=bg
then S1
4 and S2

4 exist.
Case 2: When
2a:
 m4Kl=ðKlþK0l0Þ and r4ððK0l0þKlÞ=ðl0þlÞÞa=b or

2b:
 moKl=ðKlþK0l0Þ and K0Oa=b4r4 ððK0l0þKlÞ=ðl0þlÞÞa=b
then S1
4, S2

4 and S3
4 exist.

Case 3: When moKl=ðKlþK0l0Þ and K0Oa=boro ððK0l0þ

KlÞ=ðl0þlÞÞa=b then S1
4, S2

4 and S4
4 exist.

Case 4: When moKl=ðKlþK0l0Þ and r4maxfððK0l0þKlÞ=
ðl0þlÞÞa=b,K0Oa=bg then all four steady-states exist.

Proposition B.1. (a) The infection free steady-state S1
4 is always

unstable.

(b) The viral clearance hyperplane S2
4 has zero eigenvalues.

(c) The chronic single infection steady-state S3
4 is asymptotically

stable for parameters satisfying condition 2a and unstable for

parameters satisfying condition 2b.
(d) The chronic co-infection steady-state S4
4 is asymptotically stable

whenever it exists (for parameters satisfying conditions 3 and 4).

Proof. The Jacobian matrix corresponding to the linearized sys-
tem is

J¼

Y1 0 �kV 1 0 �K0V 1

rm Y2 0 �KV 2 �K0V 2

l 0 a�bAT�bA1 �bA1 �bA1

0 l �bA2 a�bAT�bA2 �bA2

l0 l0 �bA0 �bA0 a�bAT�bA0

0
BBBBBB@

1
CCCCCCA

, ð50Þ

with

Y1 ¼ rð1�mÞ�K0A0�KA1,

Y2 ¼ r�K0A0�KA2: ð51Þ

(a) The characteristic equation of S4
1,

ðrð1�mÞ�LÞðr�LÞða�LÞ3 ¼ 0 ð52Þ

has positive eigenvalues L1 ¼ rð1�mÞ, L2 ¼ r and L3,4,5 ¼ a. There-

fore, the infection free steady-state is always unstable.

(b) The characteristic equation of hyperplane S4
2,

L2
ðaþLÞðL�ðr�K0A0�KA2ÞÞðL�ðrð1�mÞ�K0A0�KA1ÞÞ ¼ 0 ð53Þ

has eigenvalues L1,2 ¼ 0, L3 ¼�a, L4 ¼ r�K0A0�KA2 and

L5 ¼ rð1�mÞ�K0A0�KA1. Therefore, S2
4 is unstable for

r4minfK0A0þKA2,1=ð1�mÞðK0A0þKA1Þg. Since some eigenvalues

are zero, the stability cannot be determined from linear analysis.

We will show numerically the hyperplane is asymptotically stable

for parameters satisfying condition (A).

(c) The chronic single infection steady-state S4
3 has the char-

acteristic equation

rð1�mÞ� rK0l0

K0l0þKl
�L

� �
ða�bZ�LÞ2ðL2

þLð2bZ�aÞþðbZ�aÞKZÞ ¼ 0,

ð54Þ

where Z¼ rðl0þlÞ=ðK0l0þKlÞ. The eigenvalue

L1 ¼ rð1�mÞ� rK0l0

K0l0þKl
ð55Þ

is negative when m4Kl=ðKlþK0l0Þ and positive otherwise. The

rest of the eigenvalues

L2,3 ¼ a�b
rðl0þlÞ

K0l0þKl
,

L4,5 ¼
1
2 a�2bZ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�2bZÞ2�4KZðbZ�aÞ

q� �
ð56Þ

are negative when r4 ða=bÞðK0l0þKlÞ=ðlþl0ÞÞ. This happens

every time steady-state S4
3 exists.

(d) Let o¼ bAT�a¼ br=K0O�a. We will show that when the

chronic steady-state S4
4 exists (respectively, when o is positive) it

is asymptotically stable. The characteristic equation correspond-

ing to the chronic steady-state is

ðLþbAT�aÞðL4
þa1l3þa2L

2
þa3Lþa4Þ ¼ 0, ð57Þ

where

a1 ¼ 2oþbATþrmV 1

V 2

,

a2 ¼ ðK0l0þKlÞðV 1þV 2ÞþoðoþbAT ÞþrmV 1

V 2

ð2oþbAT Þ,
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a3 ¼ ðK0l0þKlÞ oðV 1þV 2ÞþrmV
2

1

V 2

 !
þ

V 1

V 2

ðrmoðoþbAT Þ

þðrmK0l0þ2ðlþl0ÞkbA2ÞV 2Þ,

a4 ¼ KlV 1V 2ð2K0l0þKlÞþrmo ðK0l0þKlÞ
V

2

1

V 2

þK0l0V 1

 !
: ð58Þ

The eigenvalue L1 ¼�o is negative for positive o. By the

Ruth–Hurwitz condition, the remaining eigenvalues solving

Eq. (57) have negative real parts if and only if

a140, a440, B1 � a1a2�a340, and B2� B1a3�a1a440:

ð59Þ

Variables a1, a4 and

B1 ¼oðoþbAT Þð2oþbAT ÞþoðV 1þV 2ÞðK0l0þKlÞþrmKlV 1

þKlbA2
V

2

1þV
2

2

V 1þV 2

þK0l0bAT ðV 1þV 2Þ ð60Þ

are polynomials in o with positive coefficients. The proof of the

last relation, B240, is tedious and can be verified using maple for

parameters where S4
4 exists. &
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