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COMPETITION IN THE CHEMOSTAT:

SOME REMARKS

This paper is dedicated to Paul Waltman on the occasion of his
retirement

PATRICK DE LEENHEER, BINGTUAN LI AND HAL L. SMITH

1 Review of competition for a single substrate Paul Walt-
man’s chemostat-related work has had a large impact in population bi-
ology, ecology and bio-engineering. It has motivated and inspired the
work of many other authors, including us. It seems appropriate to point
out a major open problem which remains unresolved after more than
thirty years and to touch on some other issues related to bacterial ecol-
ogy in the chemostat.

The basic equations for mixed culture competition in the chemostat
for a single growth-limiting substrate are given by [8, 26, 29]:

(1.1)

S′ = D(S0 − S) −
∑

i

γ−1

i fi(S)xi

x′

i = xi(fi(S) − Di)

where S is substrate concentration, S0 is the concentration of it in the
feed, and xi is ith population density. D is the dilution rate, γi is the
yield of the organism i, Di is the removal rate (usually equal to D + ki,
where ki, often neglected, is a death rate). All parameters are assumed
to be positive. Specific growth rates of the ith organism are given by
the fi(S). A typical form of the fi are Monod functions

(1.2) f(S) =
mS

a + S
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although it is common to take a more general approach by restricting fi

to be continuously differentiable and to satisfy fi(0) = 0. In many cases,
one also assumes that f ′

i(S) > 0, but see [3, 39] for notable exceptions.
Here we adopt this assumption but we will remark on the more general
case.

Assuming that fi(S
0) > Di, which we do since the alternative is ex-

tinction of the ith organism even in the absence of competition, and
monotonicity of fi, we may define the so-called “break-even concentra-
tion” λi by

(1.3) fi(λi) − Di = 0

The Competitive Exclusion Principle (CEP) in this context is
the following assertion: If λ1 < λj for all j > 1 then xj(t) → 0 as t → ∞
and, if x1(0) > 0, then x1(t) → γ1(D/D1)(S

0 − λ1).
CEP has been proved under a variety of hypotheses [1, 3, 12, 14,

20, 21, 39, 40] summarized crudely in the table below. In the table,
“fi monotone” means it is monotone increasing while mixed-monotone
includes the broader class of functions that may assume a particular
value at most twice. The meaning of “restricted to simplex” is that
initial data were required to belong to the invariant simplex, which exists
if Di = D. Except for [39], which also applies to non-delay models, we
have not cited any of the extensive literature on the chemostat model
which include time delays. The most important open question remains:
is CEP true assuming only that the fi are monotone with no restriction
on the Di ?

Author(s) and Date Hypotheses

Hsu, Hubbel, Waltman 1977 D = Di, fi Monod, restricted to simplex

Hsu 1978 fi Monod

Armstrong & McGehee 1980 Di = D, fi monotone, restricted to simplex

Butler & Wolkowicz 1985 Di = D, fi mixed-monotone

Wolkowicz & Lu 1992 Di 6= D, fi mixed-monotone, technical assumption

Wolkowicz & Xia 1997 Di − D small, fi monotone

Li 1998,1999 Di − D small, fi mixed-monotone, technical assumption

TABLE 1: Proofs of the Competitive Exclusion Principle.
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2 When does single substrate growth limitation hold? One
of the central tenets of the classical chemostat model of mixed culture
competition for a single growth limiting nutrient is the assumption that
all other nutrients required for growth are supplied in excess and there-
fore only one nutrient is growth limiting throughout the experiment
[8, 26, 29]. This is an assumption that can only be justified within the
context of a multi-resource model. In this section we aim to provide such
justification using a standard model for multi-resource competition.

The equations for n species Ni competing for m resources Rj are

(2.1)

N ′

i = Ni[µi(R) − Di], 1 ≤ i ≤ n

R′

j = D[Sj − Rj ] −
∑

k

cjkµk(R)Nk, 1 ≤ j ≤ m.

Here, Di > 0 is the removal rate of the ith species, D > 0 is the resource
turnover rate and Sj > 0 is the supply concentration of the jth resource.
On re-scaling the Ni, we could assume that that the cji satisfy

∑

j cji =
1; cjk > 0 is the content of resource j in species k.

We restrict attention to essential resources R = (R1, · · · , Rm) for
which the Law of the Minimum applies

(2.2) µi(R) = min
j

{fji(Rj)},

where, typically, fji is a Monod function

(2.3) fji(Rj) =
riRj

Kji + Rj

,

although we really require only that fji is locally Lipschitz continuous,
strictly increasing and satisfies

fji(0) = 0, and fji(∞) = ri.

See [6] for a derivation of (2.2) as well as alternatives to the law of the
minimum. Model (2.1) with the law of the minimum has been tested and
verified extensively using competition experiments with phytoplankton
species [11, 15, 27, 31, 32, 35, 38]. The model also provides a con-
ceptual framework for competitive interactions among terrestrial plants
[36, 37]. A great deal of theoretical work has been devoted to system
(2.1); see e.g., [19, 13, 4, 22, 2, 25, 23, 24, 15, 16, 17, 18].
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In this paper, we are not interested in cases where a species becomes
extinct in the absence of competition. Thus, we assume that Di < ri

for all i so there exists positive real numbers λji such that

fji(λji) − Di = 0.

Note λji is the break-even concentration of resource Rj for the growth
of species i when only resource Rj is growth limiting.

Our goal is to provide explicit conditions for resource R1 to be ulti-
mately growth limiting. Mathematically, we seek conditions guarantee-
ing that for every solution of (2.1), we have

µi(R(t)) = f1i(R1(t))

for all organisms i and all large t. If this is the case, then the asymptotic
behavior of (2.1) is determined by that of the single-resource model

(2.4)

N ′

i = Ni[f1i(R1) − Di], 1 ≤ i ≤ n

R′

1 = D[S1 − R1] −
∑

k

c1kf1k(R1)Nk.

Without loss of generality, assume that organism N1 has the lowest
break-even concentration for resource R1:

(2.5) λ11 < λ1i, i = 2, . . . , n.

If CEP holds for (2.4) then

(2.6)

Nj(t) → 0, j > 1,

N1(t) →
D

c11D1

(S1 − λ11),

R1(t) → λ11.

Define
pj := max

k

cjk

c1k

and, given S1 > 0, define Pj = Pj(S1) by

Pj := max
k

f−1

jk ◦ f1k(S1).

As fji([0,∞)) = [0, ri) for all j, Pj > 0 is well-defined. In particular, if
the fji are Monod functions defined by (2.3), then

Pj = S1 max
k

Kjk

K1k

.
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Theorem 1. Let S1 > 0 and

(2.7) Sj > Pj + pjS1, j ≥ 2.

If (R(t), N(t)) is any solution of (2.1), then

(2.8) µi(R(t)) = f1i(R1(t))

for all large t and all i. In other words, (R1(t), N(t)) satisfy (2.4) for
all large t.

If, in addition CEP holds for (2.4), S1 > λ11 and N1(0) > 0, then
(2.6) holds as t → ∞ and Rj(t) → Sj − cj1(D1/D)N1(∞) for j ≥ 2.

Moreover, (2.8) holds for all t ≥ 0 and all i if, in addition to (2.7),

(2.9)
R1(0) ≤ S1,

Rj(0) ≥ Pj + pjS1, j ≥ 2.

Proof. Fix j ≥ 2 and observe that pj > 0 satisfies pjc1k ≥ cjk for
1 ≤ k ≤ n. The calculation

(Rj − pjR1)
′ = D[(Sj − pjS1) − (Rj − pjR1)] −

∑

k

(cjk − pjc1k)µkNk

≥ D[(Sj − pjS1) − (Rj − pjR1)]

leads to

(2.10) (Rj − pjR1)(t) ≥ (Rj − pjR1)(0)e−Dt + (Sj − pjS1)(1 − e−Dt).

As Sj − pjS1 > Pj by hypothesis (2.7) we have Rj(t) > Pj for all large
t. The sharper estimate, Rj(t) ≥ Sj − (pj/2)S1 holds if R1(t) > S1 for
all large t. The inequality

(2.11) R′

1 ≤ D(S1 − R1)

implies that either R1(t) ≤ S1 for all large t or R1(t) > S1 for all large
t and, in the latter case, R1(t) → S1 as t → ∞. In the former case, we
have

(2.12) fji(Rj(t)) > fji(Pj) ≥ f1i(S1) ≥ f1i(R1(t))
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for all large t. In the latter case, since fji(Pj) ≥ f1i(S1) and R1(t) → S1

we have

fji(Rj(t)) > fji(Sj − (pj/2)S1) > fji(Pj + (pj/2)S1) > f1i(R1(t))

for all large t. In either case (2.8) holds for all large t and all i.
The result (2.6) now follows from CEP.
Finally, assume that (2.9) holds. Then Rj(0) − pjR1(0) ≥ Pj and

(2.11) implies that R1(t) ≤ S1 for all t ≥ 0. Inequality (2.10) implies
that Rj(t) − pjR1(t) ≥ Pj for all t ≥ 0, and in particular, Rj(t) ≥ Pj

for t ≥ 0 and j ≥ 2. The inequality (2.12) therefore holds for all t ≥ 0
so (2.8) also holds for all t ≥ 0.

We remark that if (2.3) holds, then (2.7) becomes

(2.13)
Sj

S1

> max
k

Kjk

K1k

+ max
k

cjk

c1k

, j ≥ 2.

The right hand side is small when resource R1 contributes the dominant
fraction of each organisms make-up and when each organisms affinity
(K−1

1k ) for resource R1 is small relative to its affinity for the others.
Note that the first assertion of Theorem 1 depends only on the second

equation of system (2.1) and not at all on the first.

3 The turbidostat: feedback control of dilution rate The
present section is motivated by the work of de Leenheer and Smith [7]
who considered two-species competition in the chemostat where the di-
lution rate is taken to be positive linear combination of the species den-
sities. There, it was shown that coexistence of the two populations can
occur in a robust manner. Control of the dilution rate by state feedback
is not unknown to bio-engineers and biologists who commonly refer to
it as a turbidostat. See Panikov [26] and Shuler and Kargi [28]. In the
turbidostat, an optical sensor measures the turbidity of the fluid, a rough
measure of population density, and this signal is used to control the di-
lution rate. The turbidostat is not nearly as popular as the chemostat,
perhaps due to the fact that it more complicated to run and because it is
not analogous to any natural ecosystem. However, it has been used for
theoretical studies of competition for growth-limiting substrate by Flegr
[5] whose work consists primarily of numerical simulations of two-species
competition. Our aim in this brief section is to describe the model, to
give a thorough analysis of the case of competition between two-species,
and to give an essentially complete analysis of the three-species case.
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In the turbidostat, an optical sensor measures the turbidity of the
fluid, assumed to be related to the densities of the microbial densities
xi by

∑

i dixi, where di reflects the turbidity weighting given to strain
i. This signal is then used as a negative feedback to control the dilution
rate of the reactor by setting D = D0 +

∑

i dixi where D0 ≥ 0, di > 0.
This leads to the system:

S′ = D(S0 − S) −
∑

i

γ−1

i fi(S)xi(3.1)

x′

i = xi[fi(S) − D], 1 ≤ i ≤ n(3.2)

D = D0 +
∑

i

dixi.(3.3)

Flegr [5] takes D0 = 0; we allow D0 ≥ 0 so as to include the classical
chemostat (di = 0) and the turbidostat (D0 = 0) in a single setting.

The usual scaling

(3.4) S̄ =
S

S0
, x̄i =

xi

γiS0
, f̄i(S̄) = fi(S

0S̄), d̄i = diγiS
0.

leads to (on dropping the bars):

S′ = D(1 − S) −
∑

i

fi(S)xi(3.5)

x′

i = xi[fi(S) − D], 1 ≤ i ≤ n(3.6)

D = D0 +
∑

i

dixi.(3.7)

Later it will be important to observe that the scaled di depend on the
yield coefficients as well as on S0. We will see that this allows these
parameters to play a role that they do not in the ordinary chemostat.

If D0 = 0 then the entire S-axis consists of equilibria. However,

S′ =
∑

i

[di(1 − S) − fi(S)]xi > 0

for all small S ≥ 0 so there exists ε > 0 such that lim inf t→∞ S(t) ≥ ε.
See [7] for details.

We still have the conservation of total substrate:
(

S +
∑

i

xi

)

′

= D

(

1 − S −
∑

i

xi

)
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implying that, in the limit

S = 1−
∑

i

xi.

The limiting equations are given by

(3.8) x′

i = xi

[

fi

(

1 −
∑

j

xj

)

− D0 −
∑

j

djxj

]

, 1 ≤ i ≤ n.

Hereafter, we work exclusively with the limiting equations. Standard
techniques allow one to make the appropriate conclusions for (3.5). See
[7].

There are uninteresting cases (but not if D0 = 0!).

Lemma 1. If fi(1) ≤ D0, then xi(t) → 0.

The proof is a straightforward exercise in differential inequalities.
Hereafter, we assume that fi(1) > D0 for 1 ≤ i ≤ n. For the pure
turbidostat, this is no assumption at all.

If fi(1) > D0 then there exists a unique root x̂i of fi(1 − xi) − D0 −
dixi = 0 satisfying 0 < x̂i < 1. In that case,

Ei = (0, 0, · · · , x̂i, 0, · · · , 0)

is a steady state of (3.8). Define Si := 1 − x̂i.
The Jacobian matrix J = (Jij) of the vector field (3.8) evaluated at

E1 is easily seen to have non-zero entries only on the diagonal and the
first row:

J1j = −x̂1f
′

1(S1) − dj x̂1, 1 ≤ j ≤ n,

Jkk = fk(S1) − f1(S1), k ≥ 2.

Consequently, E1 is asymptotically stable in the linear approximation if
and only if

fk(S1) < f1(S1), k ≥ 2.

Similarly, we have

Lemma 2. Ei is asymptotically stable in the linear approximation if
and only if

(3.9) fk(Si) < fi(Si), k 6= i.

Ei is unstable if any of the strict inequalities is reversed.
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Observe that depending on the di and how the fi intersect each other,
it is quite possible for several of the Ei to be locally asymptotically
stable. For example, suppose that there exists 0 = u0 < u1 < u2 <
· · · < un = 1 such that

fi(S) > fj(S), ui−1 < S < ui, j 6= i, 1 ≤ i ≤ n.

For each i, we can choose di > 0 such that the graph of y = fi(S)
meets the line y = D0 + di(1 − S) at a point with S = Si ∈ (ui−1, ui).
Consequently, Ei is asymptotically stable for every i!

For simplicity, we make the following generic assumptions in the re-
mainder of this section.

(A1) fi(S) = fj(S) for at most one S > 0, i 6= j; in this case f ′

i(S) 6=
f ′

j(S).

(A2) fi(S) = fj(S) = fk(S) does not hold for any S > 0 and distinct
i, j and k.

(A3) fi(Si) 6= fj(Si) for i 6= j.

(A3) allows for at most two species to be present at positive density
at equilibrium. If f1(S

∗) = f2(S
∗) := D∗ > D0 at some 1 > S∗ > 0

then there may exist a steady state E12 at which x1, x2 > 0 and all other
densities vanish. It is easily seen that x1, x2 must satisfy

d1x1 + d2x2 = D∗ − D0

x1 + x2 = 1 − S∗.

This system has a positive solution given by

x∗

1 =
D∗ − D0 − d2(1 − S∗)

d1 − d2

, x∗

2 =
D∗ − D0 − d1(1 − S∗)

d2 − d1

if and only if (D∗ − D0)/(1 − S∗) lies strictly between d1 and d2.
It is easily seen that, provided S∗ exists and satisfies 0 < S∗ < 1,

then Si < S∗ if and only if di < (D∗ − D0)/(1 − S∗). Consequently,

(3.10) d1 <
D∗ − D0

1 − S∗
< d2

is equivalent to

(3.11) S1 < S∗ < S2,
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while

(3.12) d2 <
D∗ − D0

1 − S∗
< d1

is equivalent to

(3.13) S2 < S∗ < S1.

The Jacobian matrix J = (Jij) of (3.8) at E12 = (x∗

1, x
∗

2) has nonzero
entries only in the first two rows and along the diagonal:

J1j = −x∗

1(f
′

1 + dj),

J2j = −x∗

2(f
′

2 + dj), j = 1, 2,

Jkk = fk − D0 − d1x
∗

1 − d2x
∗

2, k ≥ 2.

The two-by-two submatrix in the upper left corner has negative trace
and determinant given by

(3.14) J11J22 − J12J21 = x∗

1x
∗

2(d2 − d1)(f
′

1 − f ′

2).

Only very limited results seem possible for the general case of n
species. Hirsch’s carrying simplex can be established following ideas
in [23]. This means that there is an n − 1 dimensional invariant mani-
fold, homeomorphic to the standard simplex by radial projection, which
attracts all non-zero initial data. We now turn to an analysis of two-
population competition.

Whereas in the chemostat model, we typically order species i by their
break-even concentrations λi, here it is more convenient to assume that
f1(S) > f2(S) for all small positive S and, if S∗ exists (we do not
demand it!) and satisfies S∗ < 1, we make the generic assumption (A1)
that f ′

2(S
∗) > f ′

1(S
∗).

Theorem 2. Every solution of (3.8) where n = 2 converges to one of
E1, E2, E12. There are four cases (S∗ < 1 is assumed in (b)–(d)):

(a) If f1 > f2 for all 0 < S < 1 or if S∗ < 1 and di < (D∗−D0)/(1−S∗)
for i = 1, 2, then x2(t) → 0 and x1(t) → x̂1. Competitive Exclusion.

(b) If di > (D∗−D0)/(1−S∗) for i = 1, 2, then x1(t) → 0 and x2(t) →
x̂2. Competitive Exclusion.

(c) If d1 < (D∗ − D0)/(1 − S∗) < d2, then both Ei are locally asymp-
totically stable and E12 is a saddle point. Bistability.
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(d) If d2 < (D∗−D0)/(1−S∗) < d1, then both Ei are unstable and E12

attracts all solutions satisfying xi(0) > 0, i = 1, 2. Coexistence.

Proof. The limiting system (3.8) is a planar competitive system so it
follows that all solutions converge to equilibrium [30].

In case (a), f1 > f2 at S1, S2 so E1 is asymptotically stable and E2 is
unstable by Lemma 2. There is no interior steady state so E1 attracts
all positive initial data.

In case (b), since f2 > f1 at S1, S2, E2 is asymptotically stable and
E1 is unstable by Lemma 2. As there is no interior steady state, E2

attracts all positive initial data.
In case (c), f1(S1) > f2(S1) and f1(S2) < f2(S2) so E1 and E2 are

locally asymptotically stable. By (3.14), f ′

2(S
∗) > f ′

1(S
∗), and d1 < d2,

E12 is a saddle point. It follows that there is a separatrix formed by the
stable manifold of E12 which forms the common basin boundary of E1

and E2.
In case (d), f1(S1) < f2(S1) and f1(S2) > f2(S2) so E1 and E2

are unstable. By (3.14), f ′

2(S
∗) > f ′

1(S
∗), and d2 < d1, E12 is locally

asymptotically stable and hence must attract all positive solutions.

In terms of the original, unscaled parameters, the crucial numbers
that decide the outcome of competition are diγiS

0 and S0(D∗−D0)/(S0−
S∗), the latter being meaningful if S∗ < S0. Dividing out the common
factor S0, we have diγi and (D∗−D0)/(S0−S∗), implying that the yield
constants γi and the resource in the feed S0 can change the outcome of
competition. We explore the case that D0 = 0, d1γ1 > d2γ2, and that
S∗ exists. For S0 < S∗ we have case (a) where x1 wins. In fact, x1

wins even when S0 > S∗ so long as D∗/(S0 − S∗) > d1γ1, i.e., so long
as S0 < S∗ + D∗/(d1γ1). For S∗ + D∗/(d1γ1) < S0 < S∗ + D∗/(d2γ2),
we have case (d), coexistence. Finally, for S0 > S∗ + D∗/(d2γ2), case
(b) holds so x2 wins. This scenario is drastically different from what
occurs in the usual chemostat where the γi play no role in altering the
outcome of competition and where a change in S0 can lead to extinction
but otherwise cannot change the winner of competition.

We finally investigate the dynamics of three species competing for a
resource in the turbidostat. Recall that (A2) implies that there is no
positive equilibrium of (3.8) and it implies that if Eij exists, then it is
non-degenerate (fk 6= fi = fj at Eij), i.e., the Jacobian is nonsingular.
(A3) implies that each Ei is non-degenerate.

The question of interest is if three species can coexist on a single
resource in the turbidostat. The following theorem provides a negative
answer.



240 P. DE LEENHEER, B. LI AND H. L. SMITH

Theorem 3. Every solution of (3.8) where n = 3 converges to an Ei

or an Eij .

The proof of this theorem is similar to that of Theorem 6.1 in [22]
which is established by using the monotone theory for three dimensional
competitive systems, as well as the Butler-McGehee Lemma. The proof
in [22] requires considering all potential boundary phase portraits. In
[22], the triangle method is used to describe boundary phase diagrams
with vertices denoting Ei’s points (if any) on lateral sides EiEj denoting
Eij , and line segments with arrows denoting orbits (belonging to the
boundary) that connect steady states. As E0 is always a source, each
triangle does not include this aspect of the boundary dynamics. This
triangle method is illustrated in Figure 1 as shown in [22]. As in [22],
Figure 2–Figure 5 provide triangle diagrams according to the number
of steady states other than E0 involved. All other possible triangle
diagrams can be obtained from triangle diagrams in Figure 2–Figure 5
by symmetric rotations or reflections of the triangle. We will only need
deal with the triangle diagrams in Figure 2–Figure 5.

3

0

23

 1  

2

.

1

2

3

x 1

2

E
E

x

E

x

E

3

23

E E

E

E

FIGURE 1: Triangle method of depicting boundary phase diagrams

( a ) ( b )

FIGURE 2: Case 1: boundary phase diagrams involving 3 steady states.
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( a ) ( b ) ( c )

( d ) ( e ) ( f )

FIGURE 3: Case 2: boundary phase diagrams involving 4 steady states.

( a ) ( b ) ( c ) ( d )

FIGURE 4: Case 3: boundary phase diagrams involving 5 steady states.

We give several useful lemmas below. They are either lemmas or
modified versions of lemmas used in the proof of Theorem 6.1 of [22].
In each, ω = ω(p) is the omega limit set of a point p with p ∈ IR3

+ and
pi > 0, 1 ≤ i ≤ 3.

Lemma 3. ω contains at least one steady state, and E0 /∈ ω.

The proof of this lemma is similar to that of Lemma 6.9 of [22]. We
omit it here.

Lemma 4. ω does not contain any steady state with a one-dimensional
stable manifold that lies in a boundary plane.

The proof of this lemma is the same as the proof of Lemma 6.10 of
[22].

Lemma 5. Let i, j and k be distinct. (i) Assume that fk > fi at Ei

and fk > fj at Ej , and Ei and Ej are asymptotically stable in the linear
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( a ) ( b ) ( c ) ( d )

FIGURE 5: Case 4: boundary phase diagrams involving 6 steady states.

approximation in the xi−xj plane. Then fk > fi = fj at Eij if it exists.
(ii) Assume that fk < fi at Ei and fk < fj at Ej . Then fk < fi = fj at
Eij if it exists and is asymptotically stable in the linear approximation
in the xi − xj plane.

Proof. We prove only the case i = 1, j = 2 and k = 3. The proofs of
other cases are similar. Assume f3 > f1 at E1 and f3 > f2 at E2. Then
f3(S1) > f1(S1) and f3(S2) > f2(S2). On the other hand, since Ei and
Ej are asymptotically stable in the linear approximation in the xi − xj

plane, f1(S1) > f2(S1) and f2(S2) > f1(S2). If follows that f3(S1) >
f1(S1) > f2(S1) and f3(S2) > f2(S2) > f1(S2). Recall that E12 exists
means S∗ lies strictly between S1 and S2. Because f3 meets each of f1

and f2 at most once for S > 0, it follows that f3(S
∗) > f1(S

∗) = f2(S
∗),

i.e., f3 > f1 = f2 at E12. Case (i) is established.
Assume f3 < f1 at E1 and f3 < f2 at E2. Then f3(S1) < f1(S1) and

f3(S2) < f2(S2). Note that E12 exists and is asymptotically stable in the
linear approximation in the xi−xj plane implies that S2 < S∗ < S1, f2 >
f1 at E1 and f1 > f2 at E2. Since f1(S2) > f2(S2) and f1(S1) < f2(S1),
we have f3(S1) < f1(S1) < f2(S1) and f3(S2) < f2(S2) < f1(S2). Since
f3 meets each of f1 and f2 at most once for S > 0, f3(S

∗) < f1(S
∗) =

f2(S
∗), i.e., f3 < f1 = f2 at E12. The proof is complete.

Lemma 5 is a modified version of Lemma 6.11 of [22].

Lemma 6. Let i, j and k be distinct. Suppose that Ei and Ej are
axial steady states in the plane xk = 0 and both are unstable in the xk-
direction. If either Eij does not exist or Eij exists and is unstable in the
xk-direction, then ω contains no point with xk = 0.

Lemma 6 is a modified version of Lemma 6.12 of [22]. The proof of
Lemma 6.12 of [22] is still valid to establish Lemma 6.

As in [22], we use the idea of a saturated equilibrium [10]. In view of
(A3), Ei is saturated if and only if it is asymptotically stable, while, from
(A2), Eij is saturated if and only if it is stable in the xk-direction, where
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i, j, k are distinct. The following lemma is a modified version of Lemma
6.13 of [22], which is an immediate consequence of [10] (Theorem 1 ,
Sec. 19.4 and Exercise 3).

Lemma 7. There exists an odd number of saturated equilibria for (3.8).

Proof of Theorem 3.. The strategy of the proof is simple. Let ω denote
the limit set of our solution with x(0) = p and pi > 0 for all i. By
Lemma 3, ω contains an equilibrium. We use the lemmas above to
eliminate as many of the steady states as possible from belonging to ω.
We use the Butler-McGehee lemma to show that ω must be either an
asymptotically stable steady state or one of the Eij . Following the proof
of Theorem 6.1 of [22], we proceed in a case-by-case manner according
to the phase diagrams in the Figures 2–Figures 5. Because Lemma 5
and Lemma 6 are essentially weaker than Lemma 6.11 and Lemma 6.12
in [22] respectively, the proof of Theorem 6.1 of [22] is no longer valid
to prove Theorem 3. However, one can see that the cases 1a, 1b, 2b,
2f, 3b, 3c, 3d, 4b, and 4d can be still handled in the same way as in
the proof of Theorem 6.1 of [22] with the lemmas used there replaced
by the corresponding lemmas listed above, and with “fk − D < 0(> 0)
at Eij” whenever it appears replaced by “Eij is stable (unstable) in the
xk-direction”. So we will only deal with other cases.

Case 2a: Lemma 4 implies that E2 does not belong to ω. If either
E1 or E3 belongs to ω an application of the Butler-McGehee lemma
would force E13 to belong to ω. By Lemma 7, E13 is the only saturated
equilibrium, and thus locally asymptotically stable so E13 coincides with
ω.

Case 2c: Lemma 7 implies that E2 is the only saturated equilibrium.
It follows that E12 is unstable in the x3-direction. Lemma 6 implies that
x2 > 0 on ω. Lemma 3 implies that the locally asymptotically stable
steady state E2 must belong to ω so it coincides with ω.

Case 2d: Lemma 7 implies that E3 is the only saturated equilibrium.
It follows that E13 is unstable in the x2 direction. Since E3 is asymp-
totically stable, if ω contains E3 then ω = {E3}. If E2 belongs to ω an
application of the Butler-McGehee lemma would force E3 to belong to
ω. Therefore ω cannot contain E2. If E1 belongs to ω an application
of the Butler-McGehee lemma would force E2 to belong to ω. It fol-
lows that ω cannot contain E1. If E13 belongs to ω an application of
the Butler-McGehee lemma would force E2 or E1 to belong to ω. So ω
cannot contain E13. By Lemma 3, ω = {E3}.
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Case 2e: Same argument as case 2d; ω = {E2}.

Case 3a: Lemma 4 and Lemma 6 indicate that none of E1, E2, and
E3 belong to ω. If E13 is saturated, then Lemma 6 implies that E12

cannot belong to ω, and by Lemma 3, ω = {E13}. If E13 is unsaturated,
then Lemma 6 implies that E13 cannot belong to ω and in this case by
Lemma 3, ω = {E12}.

Case 4a: Lemma 4 implies that none of E1, E2, and E3 belongs to
ω. By Lemma 3, ω contains at least one of E12, E13, and E23. On the
other hand, by Lemma 7, either E12, E23, E13 are all asymptotically
stable or only one of them is asymptotically stable. In the first case, if ω
contains Eij then ω = {Eij}. In the second case, assume first that E12

is asymptotically stable and E13 and E23 are not. Then by Lemma 6,
only E12 can belong to ω, and thus ω = {E12}. Other subcases in which
E13 or E23 is the only asymptotically stable equilibrium can be treated
in the same way.

Case 4c: The argument for Case 4c in [22] is essentially still valid if
one can show x1 > 0 in ω. Therefore it is sufficient to show x1 > 0. If
E23 is not saturated, then by Lemma 6, x1 > 0 in ω. If E23 is saturated,
by Lemma 7, there are two possibilities: either E12 and E13 are both
saturated, or they are both not saturated. If E12, E23 and E13 are
saturated, both E12 and E13 are asymptotically stable. If ω contains
one of E2, E3, E23, then the Butler-McGehee lemma implies that ω
contains E12 or E13, and thus ω = {E12} or ω = {E13}. If ω contains
none of E2, E3, and E23, the Butler-McGehee Lemma implies x1 > 0 in
ω.

Assume that E23 is saturated but E23 and E13 are not. Since E1 is
unstable in the x2-direction and x3-direction, one obtains at E1

(3.15) f2(S1) > f1(S1), f3(S1) > f1(S1).

E2 is stable in the x3-direction and unstable in the x1 direction. It
follows that at E2

(3.16) f1(S2) > f2(S2) > f3(S2).

E3 is stable in the x2-direction and unstable in the x1 direction. At E3

(3.17) f1(S3) > f3(S3) > f2(S3).
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Throughout this proof we use S∗

ij to denote the positive number at which
fi and fj intercept. E12 exists, and is asymptotically stable in the x1-x2

plane and unstable in the x3-direction. At E12,
(3.18)

(i) f ′

2 > f ′

1, S2 < S∗

12 < S1, f3(S
∗

12) > f1(S
∗

12) = f2(S
∗

12);

or (ii) f ′

2 < f ′

1, S1 < S∗

12 < S2, f3(S
∗

12) > f1(S
∗

12) = f2(S
∗

12).

E13 exists, and is asymptotically stable in the x1-x3 plane and unstable
in the x2-direction. At E13,
(3.19)

(i) f ′

3 > f ′

1, S3 < S∗

13 < S1, f2(S
∗

13) > f1(S
∗

13) = f3(S
∗

13);

or (ii) f ′

3 < f ′

1, S1 < S∗

13 < S3, f2(S
∗

13) > f1(S
∗

13) = f3(S
∗

13).

E23 exists, and is asymptotically stable in the x1 and is a saddle in the
x2, x3 plane. At E23,
(3.20)

(i) f ′

3 > f ′

2, S2 < S∗

23 < S3, f1(S
∗

23) < f2(S
∗

23) = f2(S
∗

23);

or (ii) f ′

3 < f ′

2, S3 < S∗

23 < S2, f1(S
∗

23) < f2(S
∗

23) = f3(S
∗

23).

In the case that that E23 is saturated but E23 and E13 are not, one of
the following eight sets of conditions is satisfied:

(a) (3.15), (3.16), (3.17), (3.18)(i), (3.19)(i), (3.20)(i);
(b) (3.15), (3.16), (3.17), (3.18)(i), (3.19)(i), (3.20)(ii);
(c) (3.15), (3.16), (3.17), (3.18)(i), (3.19)(ii), (3.20)(i);
(d) (3.15), (3.16), (3.17), (3.18)(i), (3.19)(ii), (3.20)(ii);
(e) (3.15), (3.16), (3.17), (3.18)(ii), (3.19)(i), (3.20)(i);
(f) (3.15), (3.16), (3.17), (3.18)(ii), (3.19)(i), (3.20)(ii);
(g) (3.15), (3.16), (3.17), (3.18)(ii), (3.19)(ii), (3.20)(i);
(h) (3.15), (3.16), (3.17), (3.18)(ii), (3.19)(ii), (3.20)(ii).

We prove that each of cases (a)–(h) cannot occur. As a result, it is
impossible that E23 is saturated but E23 and E13 are not.

Case (a): Due to (3.16), (3.17) and (A1), f1 lies above f2 and f3 over
the interval [S2, S3]. It follows that f1(S

∗

23) > f2(S
∗

23) = f3(S
∗

23). This
contradicts (3.20)(i).

Cases (b), (g), (h) can be handled using an argument similar to that
for Case (1).
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Case (c): It is easy to see S3 > S1 > S2. Because of (3.15) and
(3.16), f1 and f2 intercept in the interval (S2, S1). On the other hand,
because of (3.15) and (3.17), f1 and f2 intercept in the interval (S1, S3).
A contradiction follows from (A1).

Case (f) can be handled using an argument similar to that for Case
(c).

Case (d): (3.18)(i) and (3.19)(ii) show that S3 > S2 while (3.20) (ii)
indicates S3 < S2. A contradiction follows.

Case (e): (3.18)(ii) and (3.19)(i) show that S2 > S3 while (3.20)(i)
indicates S3 > S2. A contradiction follows. The proof is complete.
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