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Optimal placement of Marine Protected Areas: a
trade-off between fisheries goals and conservation

efforts
Patrick De Leenheer

Abstract—Marine Protected Areas (MPAs) are regions in the
ocean or along coastlines where fishing is controlled to avoid the
reduction or elimination of fish populations. A central question
is where exactly to establish an MPA. We cast this as an
optimal problem along a one-dimensional coast-line, where fish
are assumed to move diffusively, and are subject to recruitment,
natural death and harvesting through fishing. The functional
being maximized is a weighted sum of the average fish density
and the average fishing yield. It is shown that optimal controls
exist, and that the location of the MPA is determined by two key
model parameters, namely the size of the coast, and the weight
of the average fish density in the functional.

Index Terms—optimal control, fisheries.

I. INTRODUCTION

Marine Protected Areas (MPAs) [7] are regions in oceans or
along coastlines where fishing is controlled. MPAs have been
proposed as a fisheries management tool and contrast more
traditional approaches which rely on limiting spatially uniform
harvesting rates. The purpose of this paper is to present a
mathematical framework to aid in the decision of whether or
not it would be beneficial to introduce an MPA, and if so,
where to implement it. A novel objective measure capturing
the effect of the MPA is proposed. It takes the form of a
weighted sum consisting of the yield, and the average fish
density. This leads to a trade-off problem, and the natural
context to consider it is provided by optimal control theory [4],
[5]. This paper is not the first to propose the use of optimal
control in the context of MPAs, and follows the lead of [6].
However, both the model, the analysis, and the results obtained
here, deviate from those in [6] in several respects. Details of
some proofs are omitted due to space constraints, but can be
found in [2].

II. THE PROBLEM

Consider the following model:

UT = DUXX +R− µU −H(X)U,

U(−L/2, T ) = U(L/2, T ) = 0, (1)

for all T ≥ 0 and X ∈ (−L/2, L/2). Here, points along
the scalar coastline of length L > 0 are represented by the
spatial variable X taking values in the interval [−L/2, L/2],
and U(X,T ) denotes the fish density at location X and time
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T . The boundary condition corresponds to a lethal or ab-
sorbing boundary, where fish cannot survive. Other boundary
conditions (e.g. no-flux or mixed-type) can be handled with
a similar approach. The fish diffuse with diffusion constant
D > 0, are recruited at rate R > 0, die at per capita rate µ > 0
and are harvested at per capita rate H(X) which depends on
the location X . We note that this model does not include
any density-dependent features, since recruitment occurs at
a constant rate R in space and time, and is independent of
the current fish density U . This scenario is motivated by reef
fish whose habitats are restricted to specific reef patches. The
boundary of such a patch is lethal, possibly due to the presence
of a predator patrolling the patch boundary. Recruitment
happens after larvae have settled in the patch. The assumption
of a uniform recruitment rate corresponds to a case where adult
fish abundantly generate larvae over many reef patches, which
in turn are dispersed over these patches by diffusion and/or
advection due to ocean currents. Since the fishermen’s fleet is
limited, we assume that H takes values in the interval [0, H̄],
where H̄ > 0 denotes the maximal harvesting rate. In what
follows < F >:= 1/L

� L/2
−L/2 F (X)dX denotes the average

of a function F (X), defined on the interval [−L/2, L/2]. The
problem addressed here is to find the function H(X) which
maximizes the steady state functional:

J(H(X)) =< H(X)U(X) > +Q < U(X) >, (2)

where Q ≥ 0 is a fixed weight parameter, and U(X) is
a steady state of (1) using H(X). This functional reflects
the tradeoff between < HU >, the average harvest and the
average fish density, weighted by a parameter Q which is small
in regions whenever there is little pressure by conservationists
to limit fishing, and large otherwise. Several model parameters
can be scaled out, yielding the scaled model:

ut = uxx − (1 + h(x))u+ 1, −l/2 < x < l/2,

u(−l/2, t) = u(l/2, t) = 0, for all t ≥ 0 (3)

with scaled functional:

j(h(x)) =< h(x)u(x) > +q < u(x) >, (4)

which needs to be maximized over functions h(x) taking
values in [0, h̄], and where u(x) is the steady state of (3)
corresponding to h(x). Averages appearing in the scaled
functional, are averages over the scaled interval [−l/2, l/2].
The scaled problem contains only 3 parameters: the weight
parameter q ≥ 0, the coastal length l > 0, and the maximum
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harvesting rate h̄ > 0. The main results will be phrased in
terms of these parameters, but they are easily translated in
terms of the parameters of the unscaled problem. By letting
v = u

� where � denotes d/dx, we recast the steady state
problem associated to (3) as:

u
� = v (5)

v
� = (1 + h(x))u− 1 (6)

u(−l/2) = u(l/2) = 0 (7)

The problem is to find a measurable function h(x), taking
values in the interval [0, h̄] for x in [−l/2, l/2] a.e., such
that for this particular choice of h(x), a solution (u(x), v(x))
to (5) − (6) exists that satisfies the boundary condition (7),
and the constraint that u(x) ≥ 0 for all x ∈ [−l/2, l/2] (fish
densities are non-negative). Standard existence results [4], [1]
yield:

Theorem 1. There exists an admissible control h∗(x) defined
for x ∈ [−l/2, l/2], which maximizes the scaled functional
(4).

The Hamiltonian associated to (5)− (6) and functional (4)
is:

H(u, v, λ1, λ2, h) =
1

l
(h+ q)u+ λ1v + λ2 ((1 + h)u− 1) ,

(8)
where (λ1, λ2) are the adjoint variables. By Pontryagin’s maxi-
mum principle [4], any maximum for the functional attained at
some (u∗(x), v∗(x), λ∗

1(x), λ
∗
2(x), h

∗(x)) must maximize the
Hamiltonian with respect to h(x):

H(u∗(x), v∗(x), λ∗
1(x), λ

∗
2(x), h(x)) ≤

H(u∗(x), v∗(x), λ∗
1(x), λ

∗
2(x), h

∗(x)), (9)

for all x in [−l/2, l/2] and h(x) in [0, h̄], and must solve the
Hamiltonian system

u
� = ∂H/∂λ1 = v (10)

v
� = ∂H/∂λ2 = (1 + h)u− 1 (11)

λ
�
1 = −∂H/∂u = −(h+ 1)λ2 −

h+ q

l
(12)

λ
�
2 = −∂H/∂v = −λ1 (13)

with boundary and transversality conditions:

u(−l/2) = u(l/2) = 0 (14)
λ2(−l/2) = λ2(l/2) = 0 (15)

Since H is linear in the control variable h, it follows from (9)
that

h
∗(x) =

�
0, if u∗(x)(1/l + λ

∗
2(x)) < 0

h̄, if u∗(x)(1/l + λ
∗
2(x)) > 0

(16)

The set of points {(u, v, λ1, λ2)|u = 0 or λ2 =
−1/l} is called the switching surface of the Hamilto-
nian system. It can be shown that an optimal solution
(u∗(x), v∗(x), λ∗

1(x), λ
∗
2(x)) cannot belong to the part of the

switching surface where u = 0, other than at the initial and
final locations x = ±l/2. Notice that this fact, combined with
(16) and the transversality condition (15), also shows that

h
∗(x) = h̄ for all x near x = −l/2 and x = l/2. In addition,

since u
∗
> 0 in (−l/2, l/2), the optimal control h∗(x) takes

the form:

h
∗(x) =

�
0, if λ∗

2(x) < −1/l

h̄, if λ∗
2(x)) > −1/l

(17)

The question is whether the state (u∗(x), v∗(x), λ∗
1(x), λ

∗
2(x))

of the Hamiltonian system ever crosses, or remains on the
(smaller) switching surface

S = {(u, v, λ1, λ2)|λ2 = −1/l} (18)

If the state remains on S for x in some subinterval of
[−l/2, l/2], then the value of h∗(x) is not determined by (16).
The control is then said to be singular and a more detailed
analysis would be required to determine h

∗(x). However, it
can be shown that optimal controls cannot be singular. If an
optimal control requires a switch from h̄ to 0, and hence a
crossing of S , then it must necessarily switch back to h̄ at least
once later during in the interval [−l/2, l/2], since it must equal
h̄ for all x near −l/2. We will calculate a bound for q, such
that below this bound, there is no switch. If, on the other hand,
q exceeds this bound, no switches occur if l falls below some
threshold, and exactly two switches occur when l is above it.

If h(x) = h̄ or h = 0 for all x, then the adjoint system is
a linear time-invariant system of the form

λ
�
1 = −aλ2 −

b

l
(19)

λ
�
2 = −λ1 (20)

for suitable a > 0 and b > 0.

Lemma 1. System (19)−(20) has a unique equilibrium point
E = (0,−b/(al)) which is a saddle. The stable and unstable
manifold have slope 1/

√
a and −1/

√
a respectively.

A. The case 0 < q ≤ 1.
It is first shown that switches in the value of h(x) are

not possible in this case. Consider Figures 1 and 2, which
depict some orbits of the adjoint system (12) − (13) when
h(x) = h̄ and 0 respectively. Notice that the steady state has
coordinates (0,−(h + q)/(h + 1)l), and thus it does not lie
below the switching line {(λ1, λ2)|λ2 = −1/l}. The problem
is to determine whether or not there are solutions starting on
the λ1-axis at x = −l/2 which reach the horizontal switching
line {(λ1, λ2)|λ2 = −1/l} at some xs < l/2. As it turns out,
there are no such solutions, and a proof is briefly sketched
next: (i) If λ1(−l/2) ≤ 0, this is impossible, as the solution
will remain in the second quadrant because it is forward
invariant. Notice also that the transversality (15) at x = l/2
cannot hold for such solution. (ii) If 0 < λ1(−l/2) ≤ λs,
where λs := (h̄+ q)/(

�
h̄+ 1l) is the intercept of the stable

manifold (the straight line with positive slope -in red- in Figure
1), this is also impossible. Indeed, this follows because the
region that lies above the stable and unstable manifold (the
straight line with negative slope -in red- in Figure 1) is forward
invariant, and because the lowest point of this region -the
steady state- does not lie below the switching line. (iii) If
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λ1(−l/2) > λs, the solution may reach the switching line at
some xs < l/2. Assume it happens and denote the state of
the adjoint system at x = xs by (λ1(xs),−1/l). Note that
necessarily λ1(xs) ≥ 0 because the region which is part of
the fourth quadrant which lies below the stable manifold and
above the unstable manifold, is forward invariant. When the
solution reaches the switching line, it will cross it, and thus the
control variable h now switches from h̄ to 0. Thus the adjoint
system becomes (12) − (13) but now with h(x) = 0, whose
orbits are depicted in Figure 2. From the orbits it is clear that
for all x > xs, the solution will remain below the switching
line λ2 = −1/l. This follows from the fact that the region
{(λ1, λ2)|λ1 ≥ 0, λ2 ≤ −1/l} is forward invariant. Thus, the
possibility that an optimal control exhibits a switch, has been
ruled out.

Fig. 1. Phase portrait of system (12) − (13), with l = 2, q = 0.5 and
h = h̄ = 1. Stable manifolds are the straight lines with positive slope (in
red), whereas unstable manifolds are straight lines with negative slope (also
in red). The dashed curve (in green) is the switching line where λ2 = −1/l.

Fig. 2. Phase portrait of (12)− (13), l = 2, q = 0.5 and h = h̄ = 0.

The foregoing discussion shows that every solution of the
adjoint system (12) − (13) with h(x) = h̄ which satisfies
the transversality conditions (15), must be such that 0 <

λ1(−l/2) < λs. Such a solution always exists, and is unique.
Indeed, solving the adjoint system with h(x) = h̄ and initial
condition (λ0, 0) at x = −l/2, where the parameter λ0 takes

values in the interval (0, λs):

λ1(x) = −λs

sinh
��

h̄+ 1(x+ l/2− β)
�

cosh
��

h̄+ 1β
�

λ2(x) =
λs�
h̄+ 1




cosh

��
h̄+ 1(x+ l/2− β)

�

cosh
��

h̄+ 1β
� − 1



 , (21)

where β is uniquely defined by tanh
��

h̄+ 1β
�
= λ0

λs
. Let

T > −l/2 denote the location where the solution reaches the
λ1-axis again. Then λ2(T ) = 0, and thus

cosh
��

h̄+ 1(T + l/2− β)
�
= cosh

��
h̄+ 1β

�

or writing T explicitly as a function of λ0 using β:

T (λ0) =
2�
h̄+ 1

arctanh

�
λ0

λs

�
− l

2

Notice that limλ0→0 T = −l/2, limλ0→λs T = +∞ and T is
increasing. Hence, there is a unique λ

∗
0 such that

T (λ∗
0) = l/2. (22)

Plugging λ0 = λ
∗
0 in (21) and β yields the unique corre-

sponding (λ∗
1(x), λ

∗
2(x)) components of the solution of the

Hamiltonian system (10) − (13) that satisfy the boundary
conditions (15).

The (u, v) components corresponding to an optimal solution
of the Hamiltonian system (10)−(13) when h(x) = h̄ for all x
in [−l/2, l/2] can now be determined as well. Some orbits of
(10)− (11) are depicted in Figure 3. Arguing as was done for
the adjoint system, it is not hard to show that the only possible
solutions of (10) − (11) with h(x) = h̄ satisfying (14) must
be such that the initial condition (0, v0) at x = −l/2 is such
that 0 < v0 < 1/

�
h̄+ 1. This is because if v0 ≤ 0 or if

v0 ≥ 1/
�
h̄+ 1, then the boundary condition (14) at x = l/2

cannot be satisfied. If 0 < v0 < 1/
�

h̄+ 1, the solution is
given by:

u(x) = −
v0 cosh

��
h̄+ 1 (x+ l/2− α)

�

�
h̄+ 1 sinh

��
h̄+ 1α

� +
1

h̄+ 1

v(x) = −v0

sinh
��

h̄+ 1(x+ l/2− α)
�

sinh
��

h̄+ 1α
� , (23)

where α is uniquely defined by

cotanh
��

h̄+ 1α
�
=

1

v0

�
h̄+ 1

(24)

Let T0 > −l/2 be such that u(T0) = 0, then by (23) and (24)

cosh
��

h̄+ 1(T0 + l/2− α)
�
= cosh

��
h̄+ 1α

�
,

or, since T0 > −l/2, that T0 = 2α − l/2. Using (24) once
more, T0 can be written explicitly as a function of v0:

T0(v0) =
2�
h̄+ 1

arccoth

�
1

v0

�
h̄+ 1

�
− l

2
(25)
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Notice that limv0→0 T0 = −l/2, lim
v0→1/

√
h̄+1

T0 = +∞
and T0 is increasing. Hence, there is a unique v

∗
0 such that

T0(v∗0) = l/2, namely

v
∗
0 =

1
�
h̄+ 1 coth

��
h̄+ 1l/2

� . (26)

Plugging v0 = v
∗
0 in (23) and (24) yields the unique

corresponding (u∗(x), v∗(x)) components of the solution of
the Hamiltonian system (10)− (13) that satisfy the boundary
conditions (14). In summary,
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Fig. 3. Phase portrait of (10)− (11), l = 2, q = 0.5 and h = h̄ = 1.

Theorem 2. If 0 < q ≤ 1, then there is a unique optimal
control h

∗(x) = h̄ for all x in [−l/2, l/2] which maximizes
the scaled functional (4) for the steady state problem (5)−(7).
The corresponding optimal fish density u(x) = u

∗(x) is given
by (23)− (24) with v0 = v

∗
0 , where v

∗
0 is defined in (26).

B. The case q > 1.

Some orbits of the adjoint system (12)−(13) are depicted in
Figures 4 and 5, using h(x) = h̄ and 0 respectively. In view of
(17), solutions of the adjoint system follow orbits of Figure
4 as long as λ2 > −1/l, and those of Figure 5 whenever
λ2 < −1/l.

Fig. 4. Phase portrait of (12)− (13), l = 2, q = 2 and h = h̄ = 1.

Defining F1 and F2 as the (autonomous) vector field of the
adjoint system (12) − (13) when h(x) = h̄ and h(x) = 0

Fig. 5. Phase portrait of (12)− (13), l = 2, q = 2 and h = 0.

respectively, the adjoint system can be rewritten as an au-
tonomous system:

λ̇ =

�
F1(λ), if λ ∈ Sa

F2(λ), if λ ∈ Sb
(27)

where Sa := {(λ1, λ2)|λ2 > −1/l} and Sb := {(λ1, λ2)|λ2 <

−1/l} are the regions above and below the switching line
respectively. The objective is to find solutions of (27) that
satisfy (15). Actually, it can be shown that thanks to a
symmetry property of the adjoint system, it suffices to consider
solutions defined on just [−l/2, 0] (half of the control horizon
[−l/2, l/2]) that start on the λ1-axis at x = −l/2 and end
on the λ2-axis at x = 0. Consequently, solutions of (27)
satisfying

λ2(−l/2) = λ1(0) = 0 (28)

should be determined. A brief sketch to approach this problem
is given next. Consider all solutions of (27) starting on the
positive λ1-axis at x = 0 (rather than at x = −l/2; this is
easily achieved by a shift in x), by parametrizing them by
the λ1-coordinate of their initial condition. Concerning these
solutions, focus on the following two questions: 1. Which
solutions reach the λ2-axis? 2. For those solutions reaching
the λ2-axis, what is the first x-value larger than 0 for which
this happens? With respect to the first question, it will be seen
that only some solutions, namely those with corresponding
parameter values that are not too high, reach the λ2-axis.
Moreover, some -but not all- of these solutions cross the
switching line. With respect to the second question, it will
be seen that the first value of x for which solutions reach the
λ2-axis, is an increasing function of the parameter. It increases
from zero to infinity, and hence there will be a unique solution
for which it equals l/2. The solution corresponding to this x-
value, is the sought-after solution to problem (27) with (28).
Formally, we consider

λ̇ =

�
F1(λ), if λ ∈ Sa

F2(λ), if λ ∈ Sb
,

�
λ1(0)
λ2(0)

�
=

�
λ0

0

�
(29)

where λ0 > 0 is a parameter. Define the positive constants
a1 = h̄+1, b1 = h̄+q and a2 = 1, b2 = q, so that the vector
fields Fi, i = 1, 2, can be rewritten as Fi(λ1, λ2) = (−aiλ2−
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bi
l ,−λ1)T . Also define λ1-coordinates of the intercepts of the

stable manifolds of the adjoint system (12)−(13) with h(x) =
h̄, and with h(x) = 0 and the λ1-axis as

i1 :=
b1√
a1l

and i2 :=
b2√
a2l

(30)

respectively. Since q > 1, it can be verified by simple
calculations that

e1 := − b1

a1l
> − b2

a2l
=: e2, and

is1 :=

√
a1

l

�
b1

a1
− 1

�
<

√
a2

l

�
b2

a2
− 1

�
=: is2 (31)

The first inequality in (31) expresses that the λ2-coordinate of
the equilibrium point of the adjoint system (12) − (13) with
h(x) = h̄ is larger than the λ2-coordinate of the equilibrium
point of the adjoint system (12) − (13) with h(x) = 0.
The second inequality expresses that the λ1-coordinate of
the intersection of the switching line where λ2 = −1/l and
the stable manifold of the equilibrium point of the adjoint
system (12) − (13) with h(x) = h̄, is smaller than the λ1-
coordinate of the stable manifold of the equilibrium point
of the adjoint system (12) − (13) with h(x) = 0. These
geometrical observations are illustrated in Figures 4 and 5.
We define two important values for the parameter λ0:

λ
∗
0 =

√
2b1 − a1

l
and λ

∗∗
0 =

�
(λ∗

0)
2 + i

2
s,2

�1/2 (32)

Let λ(x), x > 0, be the (forward) solution of (29), and define

T0(λ0) = inf{x > 0|λ1(x) = 0}, (33)

the first instance where λ(x) hits the λ2-axis. If λ(x) never
hits the λ2-axis, then set T (λ0) = +∞. Since the system is
piecewise linear, it can be solved analytically, and thus T0 can
be calculated explicitly.

Theorem 3. T0 : (0,+∞) → (0,+∞] is continuous and
increasing, and limλ0→0 T0(λ0) = 0 and limλ0→λ∗∗

0
T0(λ0) =

+∞. There exists a unique λ̄0 ∈ (0, λ∗∗
0 ) such that T0(λ̄0) =

l/2 with corresponding solution λ(x) of (29), satisfying
λ2(0) = λ1(l/2) = 0 This solution hits the switching line
where λ2 = −1/l for some x ∈ (0, l/2) if and only if λ∗

0 < λ̄0,

or equivalently, by applying the increasing function T0, if and
only if

1
√
a1

arctanh

�
λ
∗
0

i1

�
<

l

2
(34)

Inequality (34) is of great practical relevance. It determines
the minimal coastal length

lmin :=
2

√
a1

arctanh

�
λ
∗
0

i1

�
=

2�
h̄+ 1

arctanh

��
(h̄+ 1)(h̄+ 2q − 1)

h̄+ q

�

that is required in order for the implementation of an MPA
to be optimal. For coastlines with a length below lmin, MPAs
should not be installed, and fishing should take place with
maximal harvesting rate h̄ everywhere along the coast. For
coastlines longer than lmin, the optimal solution requires the

placement of an MPA. Where this should occur is addressed
in the next result

Theorem 4. Assume that l > lmin, and consider the unique
value λ̄0 ∈ (λ∗

0, λ
∗∗
0 ) defined in Theorem 3. Denote the

corresponding solution of (29) by λ(x), and let Ts(λ̄0) be
the x-value at which the solution λ(x) hits the switching line
where λ2 = −1/l. Then

√
a1Ts(λ̄0) equals

arctanh

�
λ̄0

i1

�
− arccosh




b1/a1 − 1

b1/a1

1�
1−

�
λ̄0
i1

�2



 (35)

if λ∗
0 < λ̄0 < i1, and

arccoth

�
λ̄0

i1

�
− arcsinh




b1/a1 − 1

b1/a1

1��
λ̄0
i1

�2
− 1



 (36)

if i1 ≤ λ
∗
0 < λ

∗∗
0 .

The main result combines Theorems 3 and 4:

Theorem 5. Assume that q > 1. If l ≤ lmin, then there is
a unique optimal control h∗(x) = h̄ for all x in [−l/2, l/2]
which maximizes the scaled functional (4) for the steady state
problem (5) − (7). The corresponding optimal fish density
u(x) = u

∗(x) is given by (23)− (24) with v0 = v
∗
0 , where v

∗
0

is defined in (26). If l > lmin, then there is a unique optimal
control

h
∗(x) =

�
0, if x ∈ [−l/2 + Ts(λ̄0), l/2− Ts(λ̄0)]

h̄, otherwise

where Ts(λ̄0) is defined in Theorem 4. This optimal control
maximizes the scaled functional (4) for the steady state prob-
lem (5) − (7). There is a corresponding optimal fish density
u
∗(x), defined as the u-component of the unique solution to

(5)− (7), with h(x) = h
∗(x).

Stability of the optimal steady state A natural question is
whether the steady state corresponding to an optimal control
h
∗(x) is asymptotically stable for (3). Linearization yields an

eigenvalue problem:

λw = wxx − (1 + h
∗(x))w

w(−l/2) = w(l/2) = 0 (37)

The operator L[w] := wxx− (1+h
∗(x))w is self-adjoint with

respect to the inner product (w1, w2) :=
� l/2
−l/2 w1w2dx, hence

all eigenvalues λ are real. For any eigenvalue-eigenfunction
pair (λ,w(x)), an integration by parts yields:

λ

� l/2

−l/2
w

2
dx = −

� l/2

−l/2
w

2
x + (1 + h

∗(x))w2
dx,

from which λ < 0, providing evidence for local stability of
the optimal steady state.

!"#"$%&'(")(*+,$"-./'0-)')%1"%2'-.+3

4)%5)".$'6*7#"$$%&'$-'8999':),.6,($"-.6'-.';*$-#,$"('<-.$)-+/'=%(%"1%&>'?-1%#7%)'@A'BCDE'DD>DD>BF'4G:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TAC.2013.2292742

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 6, JUNE 2014 6

REFERENCES

[1] L. D. Berkovitz, Existence Theory for Optimal Control Problems. In
Optimal Control and Differential Equations. Eds: A.B. Schwarzkopf,
W.G. Kelley, and S.B. Eliason. Academic Press 1978.

[2] P. De Leenheer, Optimal placement of Marine Protected Areas,
http://arxiv.org/submit/753214.

[3] L.C. Evans. An Introduction to Mathematical Op-
timal Control Theory. Version 0.2. Download from
http://math.berkeley.edu/ẽvans/control.course.pdf.
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