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A Small-Gain Theorem for Motone Systems With
Multivalued Input-State Characteristics

Michael Malisoff and Patrick De Leenheer

Abstract—We provide a small-gain theorem for feedback interconnec-
tions of monotone input-output systems with multi-valued input-state char-
acteristics. This extends a small-gain theorem of Angeli and Sontag for
monotone systems with singleton-valued characteristics. We prove our the-
orem using Thieme’s convergence theory for asymptotically autonomous
systems. We also provide an illustrative example.

Index Terms—Asymptotic equilibria, monotone control systems,
set-valued input-state characteristics.

I. INTRODUCTION

The recent extension [1] of the theory of monotone dynamical sys-
tems to monotone input–output (I/O) systems has proven to be very
useful in analyzing the global behavior of many important dynamics;
see, for example, [1]–[6], and see Section II below for the relevant def-
initions. (See also [11] for a detailed account of monotone dynamical
systems.) Of particular interest in this literature are feedback intercon-
nections of subsystems–or “modules”–that are monotone and that pos-
sess a unique globally asymptotically stable equilibrium, obviously de-
pending on the particular (constant) input applied. This has lead to the
introduction of the notion of input-state (I/S) characteristics, which
are maps assigning to each constant input value the particular equi-
librium point to which solutions converge. In many applications, this
assignment is exactly the type of quantitative information that is avail-
able from experiments (such as gene expression levels, for instance).
Monotonicity, on the other hand, may be considered as a qualitative or
structural property of an I/O system; see the graphical tests for mono-
tonicity in [2], for example. These two ingredients, monotonicity of
the subsystems and existence of characteristics, are key to proving the
small-gain theorems in [1]–[4]. (For small-gain theorems for nonlinear
but not necessarily monotone systems, see [9].)

In practice, however, many monotone I/O systems subject to con-
stant inputs possess several equilibria and all solutions converge to one
of them, although distinct solutions may converge to distinct equilibria.
Such systems are sometimes called multistable. In fact, since mono-
tone I/O systems subject to constant inputs are monotone dynamical
systems, this type of global behavior is to be expected (see [11]). This
suggests that the notion of an I/S characteristic ought to be generalized
to a multivalued map which assigns to each constant input value the set
of all possible equilibria to which solutions converge.

This naturally leads to the question of whether the known small-gain
theorem for monotone systems in [1] remains valid if instead of the
original notion of I/S characteristics, one assumes the existence of mul-
tivalued characteristics for the subsystems. The purpose of our note is
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to show that such an extension is indeed possible. In our main result, we
prove that a negative feedback interconnection of monotone I/O sub-
systems with multivalued characteristics is itself multistable, provided
that all the solutions of a particular discrete-time inclusion (which is
typically of much lower dimension than the subsystems) converge.

Our work provides a significant extension of the Angeli–Sontag
monotone control systems theory [1] because [1] requires sin-
gleton-valued characteristics and therefore globally asymptotically
stable equilibria. For other approaches to proving multistability,
see [2] (where positive feedback interconnections of monotone I/O
subsystems are considered and the trajectories converge for almost all
initial values) and [10] (which is based on density functions and also
concludes convergence for almost all initial values). This earlier work
does not include ours because, for example, a) our results provide
global stabilization from all initial values, b) we do not require any
regularity such as singleton-valuedness, differentiability, or nonde-
generacy for the I/S characteristics, and c) our results are intrinsic
in the sense that we make no use of Lyapunov or density functions.
For an alternative approach to negative interconnections of monotone
systems based on a symmetric embedding into a higher dimensional
space, leading to an alternative small gain theorem under an additional
injectiveness assumption on the the output map and a more restrictive
boundedness assumption on the trajectories of the embedded system,
see [7].

In Section II, we provide the necessary definitions and background
for monotone control systems, multi-valued characteristics, weakly
nondecreasing set-valued maps, and asymptotically autonomous
systems. In Section III, we state our small-gain theorem and discuss
its relationship to the small-gain theorems in [1]–[3]. In Section IV,
we prove our theorem and we illustrate our theorem in Section V. We
close in Section VI with some suggestions for future research.

II. BACKGROUND AND MOTIVATION

A. Monotonicity and Characteristics

We next provide the relevant definitions for monotone control
systems and input-state characteristics. While our monotonicity def-
initions follow [1], our treatment of characteristics is novel because
we allow discontinuous multivalued characteristics and unstable
equilibria. Our general setting is that of an I/O system

_x = f(x; u) y = h(x); x 2 X ; u 2 U ; y 2 Y (1)

where X � n is the closure of its interior and partially ordered, U
and Y are subsets of partially ordered Euclidean spaces BU and BY
respectively, and f and h are locally Lipschitz on some open set X
containing X . We refer to X as the state space of (1), U as its input
space, andY as its output space. In general,X will not be a linear space,
since, for example, we often takeX = n

�0 := fx 2 n : xi � 08ig.
We use� to denote the partial orders on all our spaces, bearing in mind
that the partial orders on our various spaces could differ.

The set of control functions (also called inputs) for (1), which we
denote by U1, consists of all locally essentially bounded Lebesgue
measurable functions u : ! U , and we let t 7! �(t; xo;u) denote
the trajectory of (1) for any given initial value xo 2 X andu 2 U1. We
always assume our dynamics f are forward complete andX -invariant,
which means that �(�; xo;u) is defined on [0;1) and valued in X for
all xo 2 X and u 2 U1. Since we will be considering more than one
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dynamic, we often use sub- or superscripts to emphasize the state space
variable or dynamic, so for example �f is the flow map for the dynamic
f and Yz is the output space for an I/O system with state variable z.

We always assume that our partial orders � are induced by distin-
guished closed nonempty setsK (called ordering cones) and we some-
times write KU to indicate the cone inducing the partial order on the
input space U and similarly for the other partial orders. We always
assume K is a pointed convex cone, meaning: aK � K 8a � 0,
K + K � K , and K \ (�K) = f0g. When we say that a cone K
induces a partial order�, we mean the following: x � y if and only if
y� x 2 K . This induces a partial order on the set of control functions
U1 as follows: u � v if and only if u(t) � v(t) for Lebesgue almost
all (a.a) t � 0. A function g mapping a partially ordered space into
another partially ordered space is called monotone provided: x � y

implies g(x) � g(y). We say that (1) is single-input–single-output
(SISO) provided BU = BY = , taken with the usual order, i.e., the
order induced by the cone K = [0;1).

Definition 2.1: We say that (1) is monotone provided: i) h is mono-
tone and ii) the following holds for all p; q 2 X and u; v 2 U1:

(p�q and u�v)) (�(t; p;u)��(t; q;v) 8t�0):

We let Equil(f) denote the set of all equilibrium pairs for our
dynamic f , namely, the set of all input-state pairs (�u; �x) such that
f(�x; �u) = 0. For each (�u; �x) 2 Equil(f), we let Df (�u; �x) denote the
domain of attraction of _x = f(x; �u) to �x, namely, the set of all p 2 X
for which �(t; p; �u)! �x as t! +1, where � is the flow map for f .
Since we are not assuming our equilibria are stable, the sets Df(�u; �x)
are not necessarily open and could even be singletons; see below for
an example whereDf(�u; �x) is not open. Given (�u; �x) 2 Equil(f), we
say that f is static Lyapunov stable at (�u; �x) provided the following
condition holds for all " > 0: There exists � = �(�u; �x; ") > 0 such
that for all xo 2 Df (�u; �x) \ B�(�x)(= radius � open ball centered at
�x), we have j�(t; xo; �u)� �xj � " for all t � 0.

Recall the following notions from [13], in which we let f �u denote
the constant input system f(�; �u) for each �u 2 U . Given �u 2 U , we
say that two nonempty (but not necessarily distinct) sets M1;M2 � X
are f �u-chained provided there exists a value y 2 X n (M1 [M2) and
a trajectory x : ! X for f �u satisfying x(0) = y whose �-limit
set �(x) := fx((�1;�t]) : t � 0g lies in M1 and whose !-limit
set !(x) := fx([t;+1)) : t � 0g lies in M2. We say that a fi-
nite collection of nonempty sets M1;M2; . . . ;Mr � X is f �u-cycli-
cally chained provided the following holds: If r = 1, then M1 is
f �u-chained to itself; and if r > 1, then Mi is f �u-chained to Mi+1 for
i = 1; 2; . . . ; r � 1 and Mr is f �u-chained to M1. In this case, we call
fMig an f �u-cycle. An f �u-equilibrium is defined to be any point �x 2 X
such that f(�x; �u) = 0. A set M � X is called f �u-invariant provided
the flow map � for f satisfies M = f�(t; x; �u) : t � 0; x 2 Mg.
A compact f �u-invariant set M � X is called f �u-isolated compact in-
variant provided there exists an open set U � X such that there is no
compact f �u-invariant subset ~M � X satisfying M � ~M � U except
M . We use the symbol to denote a set-valued map (also called a
multifunction), e.g., F : Z1 Z2 means that F assigns each p 2 Z1
a nonempty set F (p) � Z2.

Definition 2.2: We say that (1) is endowed with a static input-state
(I/S) characteristic kx : U X provided

1) Graph(kx) = Equil(f);
2) [fDf(�u; �x) : �x 2 kx(�u)g = X for all �u 2 U ;
3) f is static Lyapunov stable at each (�u; �x) 2 Equil(f);
4) For each �u 2 U , kx(�u) consists of f �u-isolated compact in-

variant f �u-equilibria and contains no f �u-cycles.

In this case, we also call ky := h � kx an I/O characteristic for (1).

This definition reduces to the usual singleton-valued I/S character-
istic definition in [1] when Cardfkx(�u)g = 1 for all �u 2 U . We
will not use the static Lyapunov stability property in the proof of our
small-gain theorem per se, but we still include it to make our definition
of I/S characteristics include the singleton-valued characteristic defini-
tion in [1]. Condition 3 in our definition is not implied by the other con-
ditions in the definition, even if f has no controls, since it is well-known
that f could admit an unstable globally attractive equilibrium; see for
example [8, pp. 191-194]. Condition 2 in the definition says for each
�u 2 U and each initial state, the corresponding f �u-trajectory asymp-
totically approaches some state �x 2 kx(�u) (where �x can in principle
depend on the initial state of the trajectory). The stipulation in the static
Lyapunov stability definition that xo 2 Df (�u; �x)\B�(�x) is motivated
by the fact that our domains of attraction Df(�u; �x) may or may not be
open, even if there are no controls. Condition 4 is needed to apply the
theory of asymptotically autonomous systems; see Section II-C for the
relevant definitions and details.
Remark: Condition 4, in particular the “no cycles” part, may be

hard to check in practice, at least if the system dimension is higher
than 2, but can often be checked using monotonicity arguments. Con-
sider for instance a monotone system _x = f(x) having two f -iso-
lated compact invariant equilibria p and q and assume that p �� q

(where the latter means that q � p belongs to the interior of the order
cone K , which is assumed to be nonempty). Then there exist neigh-
borhoods Np and Nq of p and q, respectively, such that np �� nq

for all np 2 Np and nq 2 Nq . We show that fp; qg cannot be an
f -cycle. Suppose it was a cycle. Then, there exist points y and z such
that �(y) = fpg, !(y) = fqg and �(z) = fqg, !(z) = fpg. It
follows in particular that there exists T > 0 large enough such that
np := �(�T; y) 2 Np and nq := �(�T; z) 2 Nq . Consider the
strictly ordered initial conditions np �� nq for the monotone system
_x = f(x). Since !(np) = fqg and !(nq) = fpg, there exists
~T > 0 large enough so that �( ~T ; np) 2 Nq and �( ~T ; nq) 2 Np and
thus �( ~T ; nq) �� �( ~T ; np), which contradicts monotonicity of the
system. The same method can be used to rule out cycles containing
more than two equilibria, if we assume that the equilibria are totally
ordered by �� (that is, either p �� q or q �� p whenever p and q

are distinct equilibria).

B. Weakly Nonnecreasing Set-Valued Maps

A basic property of singleton-valued I/S characteristics kx is that the
following holds for all u; v 2 Ux : u � v implies kx(u) � kx(v);
see [1] for the elementary proof. It is therefore natural to inquire about
whether set-valued I/S characteristics posses some analogous (but more
general) order-preserving property. This motivates the following defi-
nition and lemma.
Definition 2.3: LetZ1 andZ2 be partially ordered Euclidean spaces

and F : Z1 Z2 be any set-valued map. We say that F is weakly
nondecreasing provided the following holds for all p; q 2 Z1 such that
p � q: For each kp 2 F (p) and kq 2 F (q), there exist rp 2 F (p) and
rq 2 F (q) such that rp � kq and kp � rq .
Lemma 2.4: If kx is an I/S characteristic for (1) and (1) is monotone,

then kx is weakly nondecreasing.
Proof: Let p; q 2 Ux be such that p � q, let kp 2 kx(p) and

kq 2 kx(q), and let � denote the flow map of f . The corresponding
trajectories for the constant inputs satisfy �(t; kq; p) � �(t; kq; q) =
kq for all t � 0, and �(t; kq; p) ! rp for some rp 2 kx(p) as t !
+1, so rp � kq follows because ordering cones are closed. The other
order inequality is proved similarly.

Definition 2.3 reduces to nondecreasingness in the relevant orders
when F is singleton-valued.
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C. Asymptotically Autonomous Systems

We will be especially interested in dynamics for which the asymp-
totic behavior under constant inputs is known. We will then obtain
information about the trajectories for not-necessarily constant inputs
using the theory of asymptotically autonomous systems. Before turning
to this theory, first recall the following “converging-input converging-
state” (CICS) property. This property was shown in [12] and was used
in [1] to study the stability of interconnected monotone systems. We
use the CICS property at the very end of the proof of our main result.

Lemma 2.5: Let �u 2 U , and let �x be an asymptotically stable
equilibrium point for f �u. Let K be a compact subset of Df(�u; �x). If
x : [0;1) ! X is a K-recurrent trajectory of f for some continuous
input u : [0;1) ! U , and if u(t) ! �u as t ! +1, then x(t) ! �x
as t ! +1.

Here, K-recurrent means for each T > 0, there exists t > T such
that x(t) 2 K. One of the requirements of asymptotic stability of �x (in
addition to the convergence condition) is the following stability prop-
erty: For each " > 0, there exists � > 0 such that j�(t; �; �u)� �xj � "

for all � 2 B�(�x) and t � 0. The proof of the CICS property in [12]
uses the fact thatDf (�u; �x) is open, which follows from the assumption
that �x is a stable equilibrium.

However, in our more general setting where the I/S characteristics
are multivalued, the domains of attraction will not necessarily be open,
so the CICS property does not apply. Instead, we use the theory of
asymptotically autonomous systems [13]. We first note that Condition
2 from our definition of I/S characteristics implies the following equi-
librium condition (EC) from [13].

(EC) For each �u 2 U , the !-limit set of any pre-compact f �u-tra-
jectory on [0;1) consists of an f �u-equilibrium.

By an asymptotically autonomous system, we mean a system _x =
H(t; x) that admits a second dynamic _x = �H(x) (called a limiting
dynamic) such that H(t; x) ! �H(x) as t ! +1 locally uniformly
in x. For example, if u 2 U1 is continuous and �u 2 U is such that
u(t) ! �u as t ! +1, then for our locally Lipschitz dynamic f ,
we know _x = H(t; x) := f(x; u(t)) is asymptotically autonomous
with limiting dynamic _x = �H(x) := f(x; �u). Using this observation,
the following is then immediate from [13, Corollary 4.3] and our I/S
characteristic definition.

Lemma 2.6: Assume (1) is endowed with an I/S characteristic. Let
�u 2 U and u : [0;1) ! U be any locally Lipschitz function for
which u(t) ! �u as t ! +1. Let x : [0;1) ! X be any bounded
trajectory for (1) and this input u(t). Then x(t) converges toward an
f �u-equilibrium as t ! +1.

If one drops the “no cycle” part of condition 4 in Definition 2.2, then
the conclusion of the pevious lemma does not necessarily hold; see [13]
for an example.

III. STATEMENT AND DISCUSSION OF SMALL-GAIN THEOREM

We turn next to our small-gain theorem, which generalizes [1, Th. 3].
The main novelty of our result lies in its applicability to cases where one
of the interconnected systems has a multivalued I/S characteristic, but
see Remark 3 for a further extension for cases where both subsystems
have multivalued I/S characteristics. In what follows, an equilibrium
of a discrete inclusion wk+1 2 F (wk) is defined to be any value �w
such that �w 2 F ( �w); the set of all equilibria for this inclusion is de-
noted by E(F ). A multifunction F is called locally bounded provided
it maps bounded sets into bounded sets. We say that a continuous time
dynamics F has a pointwise globally attractive set S provided each
maximal trajectory �(t) for F asymptotically approaches some point
in S (which could in principle depend on the specific trajectory) as
t ! +1.

Theorem 1: Consider the following interconnection of two SISO
dynamic systems:

_x = fx(x; w) y = hx(x) _z = fz(z; y) w = hz(z) (2)

with Ux = Yz and Uz = Yx. Assume the following.

1) The first system is monotone when its input w and output y
are ordered by the “standard order” induced by the positive
real semi-axis.

2) The second system is monotone when its input y is ordered
by the standard order and its output w is ordered by the op-
posite order (induced by the negative real semi-axis).

3) The respective static I/S characteristics kx and kz exist with
kx singleton-valued and kz locally bounded.

4) Each trajectory of (2) is bounded; and each solution sequence
fvkg of vk+1 2 (ky � kw)(vk) converges.

Then (2) has the pointwise globally attractive set [ffkx( �w)g � (kz �
ky)( �w) : �w 2 E(kw � ky)g. In this setting, ky = hx � kx and kw =
hz � kz .

Our theorem differs from the small-gain theorem [1, Th. 3] mainly
in that: a) we replaced the single valuedness of kz with local bounded-
ness of kz , b) we replaced the discrete system wk+1 = (kw � ky)(wk)
from [1] with a discrete inclusion, and c) we conclude that (2) is at-
tracted to a set of equilibrium points rather than a single point as in [1].
Moreover, in contrast to [2], our theorem gives global convergence of
the interconnection from all initial values.
Remark 2: Assumption 4 of our theorem is equivalent to the fol-

lowing: 4’: Each trajectory of (2) is bounded; and fky(wk)g converges
for each solution sequence fwkg of wk+1 2 (kw � ky)(wk). In fact, if
Assumption 4 holds and wk is any solution of wk+1 2 (kw �ky)(wk),
then ky(wk) converges because vk = ky(wk) is a solution sequence
for vk+1 2 (ky � kw)(vk). Conversely, if Assumption 4’ holds, and
if vk is any solution sequence of vk+1 2 (ky � kw)(vk), then we
can inductively find a new sequence rk such that vk+1 � ky(rk) and
rk+1 2 (kw � ky)(rk) for all k, so vk converges. On the other hand, it
could be that Assumption 4 holds but that there exists a divergent se-
quence wk for wk+1 2 (kw � ky)(wk). See Remark 4 for an example
where this occurs. However, if all trajectories of (2) are bounded, and
if each solution of wk+1 2 (kw � ky)(wk) converges, then Assump-
tion 4’ (or equivalently Assumption 4) holds because ky is continuous
(by the arguments from [1, Prop. V.5] and our assumption that kx is
singleton valued).

IV. PROOF OF SMALL-GAIN THEOREM

The following key lemma generalizes [1, Prop. V.8] to systems with
multivalued characteristics. In it, we set uinf := lim inft!+1 u(t)
and usup := lim supt!+1 u(t) for any continuous scalar function u

on [0;1).
Lemma 4.1: Under the hypotheses of Theorem 1, if (x(t); z(t)) is

any trajectory of (2) and � 2 !(z), then there exist k� 2 kz(yinf) and
k+ 2 kz(ysup) such that k� � � � k+.

Proof: We only prove the existence of k� since the proof of the
existence of k+ is similar. Set � = yinf and let � be the initial value
for z(t). Let tj ! +1 and �j ! � be sequences such that �j 2 Uz
and y(t) � �j for all t � tj and all j. We have the following for all
t � tj and j 2 :

z(t) =�(t; �; y) = �(t� tj ; �(tj ; �; y); y(�+ tj))

��(t� tj ; �(tj ; �; y); �j) (3)

where � is the flow map for fz and the last order inequality follows
from the monotonicity of the z-subsystem. Therefore, if z(sl)! � for
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some sequence sl ! +1, then we can set t = sl in (3) and use the
closedness of order cones to find values vj 2 kz(�j) such that

� � lim
l!1

�(sl � tj ; �(tj ; �; y); �j) = vj 8j 2 : (4)

Since kz is assumed to be locally bounded and has a closed graph (by
the continuity of the dynamic fz in all arguments), we can find k� 2
kz(�) such that � � vj ! k�, possibly by passing to a subsequence
without relabeling. This proves the desired inequality.

Returning to the proof of our theorem, notice that since the output
w is ordered by the negative real semi-axis, and since kz is weakly
nondecreasing (by Lemma 2.4), it follows that

max
k 2k (p)

min
k 2k (q)

(kp � kq)(p� q) � 0 8p; q 2 Uz: (5)

In other words, for each p; q 2 Uz and kp 2 kw(p), we can find
kq 2 kw(q), such that kp�kq and p�q have opposite signs. Also, ky is
continuous and nondecreasing, as shown in [1, Prop. V.5 and V.8] and
Lemma 2.4. Choose any initial value � for the interconnection (2), and
let (x(t); z(t)) denote the corresponding trajectory for (2) starting at �.
This trajectory is defined on [0;1) since we are assuming our trajec-
tories are bounded. Set w+ = wsup, w� = winf , and similarly define
y�. Let z+ (respectively, z�) 2 !(z) be such that w� = hz(z+) (re-
spectively,w+ = hz(z�)). These limits exist because hz is continuous
and z(t) is bounded in the closed set Xz . By Lemma 4.1, we can find
k+ 2 kz(y+) and k� 2 kz(y�) such that k� � z� and z+ � k+.
Setting r

(0)
+ = hz(k+) and r

(0)
� = hz(k�) and recalling that w re-

verses order gives

kw(y+) 3 r
(o)
+ � w� � w+ � r

(o)
� 2 kw(y�): (6)

Since we are assuming kx is singleton-valued, the proof of [1, Th. 3]
gives

ky(w�) � y� � y+ � ky(w+): (7)

Combining (6) and (7) and recalling that ky is nondecreasing gives

(ky � kw)(y+) 3 ky(r
o
+) =: s

(1)
+ � ky(w�) � y�

� y+ � ky(w+) � s
(1)
� := ky(r

(o)
� ) 2 (ky � kw)(y�): (8)

In summary

(ky � kw)(y+) 3 s
(1)
+ � y� � y+ � s

(1)
� 2 (ky � kw)(y�): (9)

Since y+ � s
(1)
� and r

(0)
+ 2 kw(y+), we can use (5) to find r

(1)
+ 2

kw(s
(1)
� ) � kw(ky � kw)(y�) such that r(1)+ � r

(0)
+ . Since ky is

nondecreasing, (8) therefore gives

y� � ky(r
(0)
+ ) � ky(r

(1)
+ ) =: s

(2)
� 2 (ky � kw)

2(y�): (10)

Similarly, since y� � s
(1)
+ and r

(0)
� 2 kw(y�), we can use (5) to find

r
(1)
� 2 kw(s

(1)
+ ) � kw(ky � kw)(y+) such that r(o)� � r

(1)
� . Hence,

(8) also gives

y+ � ky(r
(0)
� ) � ky(r

(1)
� ) =: s

(2)
+ 2 (ky � kw)

2(y+): (11)

Combining (10) and (11) gives (ky � kw)2(y�) 3 s
(2)
� � y� � y+ �

s
(2)
+ 2 (ky �kw)

2(y+). Recalling (9) and proceeding inductively gives
sequences fs(r)� g satisfying the following for all j 2 :

(ky � kw)
2j(y�) 3 s

(2j)
� � y� � y+

� s
(2j)
+ 2 (ky � kw)

2j(y+) (12)

(ky � kw)
2j�1(y+) 3 s

(2j�1)
+ � y� � y+

� s
(2j�1)
� 2 (ky � kw)

2j�1(y�):

(13)

Notice that

s
(j)
� 2 (ky � kw)

j�1(s
(1)
� ) 8j 2 : (14)

Therefore, Assumption 4 from our theorem provides �r� such that
s
(j)
� ! �r� as j ! +1. Letting j ! +1 in (12) shows that
�r� � �r+. On the other hand, letting j ! +1 in (13) gives �r+ � �r�.
Thus, �r+ = �r� = y+ = y� =: �y. Applying Lemma 2.6 to the z-sub-
system f = fz and the input u(t) = y(t) ! �y shows that z(t) ! �z
for some �z 2 kz(�y). Since hz is continuous, w(t) converges as well,
i.e., w+ = w� =: �w. Therefore, �w = hz(�z) 2 kw(�y) and (7) gives
�y = ky( �w). It follows that �w 2 (kw � ky)( �w), so �w 2 E(kw � ky).
Therefore, our theorem will follow once we show that (x(t); z(t))
converges to some point in fkx( �w)g � (kz � ky)( �w) as t! +1. To
this end, first note that x(t) ! kx( �w) as t ! +1 as a consequence
of the CICS property (namely Lemma 2.5 above) applied to the
x-subsystem f = fx and the input u(t) = w(t)! �w, because we are
assuming that kx is singleton-valued. Since �z 2 kz(�y) = kz(ky( �w)),
this completes the proof of the theorem.
Remark 3: One can extend our theorem to cases where kx and kz

are both multivalued. For example, our theorem remains true if we re-
place its Assumption 3 by

3’) The respective I/S characteristics kx and kz exist and are
locally bounded.

In this case, the conclusion of the theorem is that our interconnection
(2) has the pointwise globally attractive set [fkx( �w)� (kz �ky)( �w) :
�w 2 E(kw � ky)g. The proof of this alternative formulation is similar
to the proof we gave previously and proceeds by a repeated application
of

min
k 2k (p)

max
k 2k (q)

(kp � kq)(p� q) � 0 8p; q 2 Ux: (15)

Condition (15) follows because hx is monotone and kx is weakly non-
decreasing. We leave the details of the proof of this more general ver-
sion of our theorem to the reader.

V. ILLUSTRATION

We next illustrate our theorem using the interconnection

_x = �x+ 5 + w y = x _z = �P (z) + y w =
1

1 + z2
(16)

evolving on [0;1)�[0;1), whereP (z) = z(2z2�9z+12).We order
x and z by the usual cone [0;1). This dynamic satisfies Conditions 1-2
from Theorem 1. Replacingw with 1=(1 + w2) in (16) gives the planar
positive feedback system

_x = �x+ 5 +
1

1 + w2
y = x _z = �P (z) + y w = z: (17)

If we use superscripts o to label the characteristics of our original inter-
connection (16), and if we use kx and so on to denote the characteristics
of (17), then kox(1=(1 + w2)) � kx(w) and koz � kz . Also, if uk+1 2
(kow � k

o
y)(uk) with uk > 0 for all k, then wk+1 2 (kw � ky)(wk) for

all k when the wk’s are chosen to satisfy

1

1 + w2
k

= uk
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for all k 2 . Moreover, since the output w in (16) is always positive,
(kow � koy)(0) � (0;1), so uk > 0 for all k � 1 along all solution
sequences fukg of uk+1 2 (kow � k

o
y)(uk). Therefore, if each solution

sequence fwkg for wk+1 2 (kw � ky)(wk) converges, then each solu-
tion sequence fukg foruk+1 2 (kow�k

o
y)(uk) converges as well, which

implies the required convergence of solutions of vk+1 2 (koy �k
o
w)(vk)

by Remark 2. The fact that Condition 3 will also hold for the original
interconnection (16) will then follow because (16) has the same trajec-
tories as (17).

Therefore, it remains to show that (17) satisfies Condition 3 from
our theorem, that all its trajectories are bounded, and that each solution
of wk+1 2 (kw � ky)(wk) converges. To this end, first note that since
the outputs of both subsystems in (17) are also their states, I/S and I/O
characteristics coincide for (17)—if they exist—so we can define

k1 = kx = ky k2 = kz = kw

wherever the characteristics exist. The characteristic of the first sub-
system in (17) is the singleton-valued function

k1(w) = 5 +
1

1 + w2
; w 2 +

while the characteristic for the second subsystem is multivalued and
only determined implicitly as follows: k2(y) = fz 2 : P (z) = yg
for y 2 +. A bifurcation analysis of the scalar system _z = �P (z)+
y, treating y 2 + as a bifurcation parameter, shows that k2(y) is a
characteristic which is

1) single-valued if y 2 [0; 4) or if y 2 (5;1);
2) triple-valued if y 2 (4; 5);
3) double-valued if y = 4 or 5: k2(4) = f1=2; 2g and k2(5) =

f1; 5=2g.

There are two saddle-node bifurcations, one at y = 4 and the other at
y = 5. The four defining properties of a characteristic (see Definition
2.2) can indeed be readily verified: For each y 2 +, the system _z =
�P (z) + y has a finite number of isolated compact equilibria and no
cycles (since the system is scalar), and every solution converges to one
of the equilibria. It is also not hard to see that k2 is locally bounded.
In order to apply Theorem 1, we only need to verify that (17) satisfies
Condition 4 of our theorem.

To check that the trajectories of (17) (or equivalently of (16)) are
bounded, it suffices to verify the following: Claim (G): If (x(t); z(t))
is any trajectory of (16) defined on some interval [0; T ], then there is a
compact setD depending only on (x(0); z(0)) (and not onT ) such that
(x(t); z(t)) 2 D for all t 2 [0; T ]. Boundedness will follow from (G)
by standard results for extendability of solutions of ordinary differential
equations (ODEs). To prove (G), first note that the boundedness of
w on [0; T ] and the variations of parameters formula gives jy(t)j =
jx(t)j � jx(0)j + 6 for all t 2 [0; T ]. Pick ~z > 5=2 such that ~z =
P�1(jx(0)j + 6) which exists because P is one-to-one above 5/2. It
follows that if t 2 [0; T ) is such that z(t) > ~z, then P (z(t)) �
P (~z) = jx(0)j+ 6 � y(t), so _z(t) � 0. Therefore, z(t) stays below
maxfz(0); ~zg on [0; T ]. Since ~z depends only on x(0), Claim (G)
follows.

Next, consider the discrete inclusion wk+1 2 (k2 � k1) (wk) and
notice that it reduces to a discrete equation wk+1 = (k2 � k1) (wk)
because k1(w) > 5 and k2(y) is single-valued when y > 5. Notice
also that for all w0 2 +, the discrete equation gives wk > 5=2 for all
k � 1. In particular, the interval (5=2;1) is forward invariant for the

Fig. 1. Characteristics k , k , and R from Section V.

discrete equation. Finally, since jk01(w)j is decreasing for w � 5=2,
elementary calculus shows that

k02(k1(w))k
0

1(w) �
jk01

5

2
j

P 0(k2 � k1(w))
�
jk01

5

2
j

P 0 5

2

=
5

1 + 25

4

2

2

9
< 1 8w �

5

2

so k2 � k1 is a contraction mapping on [5=2;1), hence the discrete
equation has a unique globally attractive fixed point �w. Therefore, we
know from Remark 2 that (17) satisfies Conditions 3-4 of our theorem,
as claimed. Since

E(kow � k
o
y) =

1

1 + �w2
: �w 2 E(k2 � k1)

we conclude that our original interconnection (16) has the unique glob-
ally attractive equilibrium

5 +
1

1 + �w2
; k2 5 +

1

1 + �w2
:

Fig. 1 illustrates this.
Remark 4: In the preceding example, the inclusion wk+1 2 (kw �

ky)(wk) had a unique equilibrium, but our theory applies to examples
where E(kw�ky) has more than one element as well. One such example
is constructed by modifying the interconnection (17) in the following
way: Replace the x-subsystem with _x = �x+R(w)whereR consists
of the line segments in the wy-plane joining (0, 5) to (.5, 4.5), (.5,
4.5) to (2.5, 4.5), and (2.5, 4.5) to (3.5, 3). With this change we get
CardfE(kw � ky)g = 3, and the conclusion of our theorem remains
true because fky(wk)g converges for each solution sequence fwkg of
wk+1 2 (kw � ky)(wk); see Remark 2. In fact, if wo 2 [:5; 2:5], then
ky(wo) = 4:5, so wk 2 E(kw � ky) for all k 2 , which gives
ky(wk) = 4:5 for all k 2 . If wo 2 [0; :5], then ky(wo) 2 [4:5; 5],
which gives w1 2 [:5; 2:5], so ky(wk) � 4:5 for all k � 2 as before.
Finally, if wo > 5=2, then ky(wo) � 4:5, so w1 2 kw � ky(wo) 2
[0; 5=2], so ky(wk) = 4:5 for k � 3, by the previous two cases. On the
other hand, one can find nonperiodic divergent solution sequences of
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wk+1 2 (kw � ky)(wk) when wo 2 [1=2; 5=2]. The detailed analysis
of this more complicated example is similar to the analysis of (17) and
is left to the reader. Note that the convergence of the iterations in the
preceding remark follows because R(w) is a horizontal line, at least
locally where it meets the other characteristic.

VI. CONCLUSION

We presented a new small-gain theorem for interconnections of
monotone I/O systems with set-valued I/S characteristics. This cor-
responds to situations where the trajectory for a given constant input
can converge to several possible equilibria, depending on the initial
value for the trajectory. A key ingredient in the proof of our small-gain
theorem is the theory of asymptotically autonomous systems, which
requires in particular that the equilibria of the subsystems in the
interconnection contain no chains. This suggests the question of how
one might extend our theory to cases where the sets of equilibria of the
subsystems are more general, e.g., where they contain chains or limit
cycles. Research on this question is ongoing.
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Asymptotic Stability of Congestion Control Systems With
Multiple Sources

Mihail L. Sichitiu and Peter H. Bauer

Abstract—Congestion in computer networks is the main reason for re-
duced performance and poor quality of service; therefore, a good conges-
tion control system is essential. The basic property of any control system
is stability. We consider the problem of stability in computer network con-
gestion control systems with multiple sources, which is the most common
case in general purpose computer networks. The main result of the note is
the proof that for congestion control systems with linear controllers (e.g.,
ATM-ABR), the stability of the congestion control system with a single
source is equivalent to the stability of the one with multiple sources. In other
words, for the considered congestion control systems, if the system is stable
for a single source it will be stable for an arbitrary large number of sources.
The proof is based on a well-known necessary and sufficient stability test.

Index Terms—Congestion control, multiple sources, stability,
time-variant system.

I. INTRODUCTION

Congestion control in data networks usually refers to the problem of
controlling the sending rate of the source hosts such that the throughput
of the network is maximized under some additional constraints (e.g.,
fairness). The importance of congestion control schemes cannot be
overemphasized, as congestion can bring even a correctly operating
network to its knees [1]. When congested, the routers in the network
receive more packets than they can forward, their internal buffers over-
flow, and packets are dropped. If the congestion control scheme is not
well designed, the sources will try to push even more packets through
the network in response to packet drops, thus worsening the conges-
tion.

Over the years, many congestion control protocols have been pro-
posed, among them is also the one that forms the basis of the current
TCP congestion control in the Internet [2]. In time, several improve-
ments have been proposed and implemented [3]–[5]. In the last decade,
a large number of papers took a rigorous, control theoretic approach to
congestion control [6]–[8].

In these papers, either one or multiple data sources are throttled in
such a way that congestion in the network is eliminated after it occurs
or, even better, avoided altogether.

The main result of this work is that, for congestion control systems
with linear controllers, the stability of the system with one source is
equivalent to the stability of the system with multiple sources. The
applicability of the result is potentially very broad. If stability can be
shown for one source, the stability of the system with multiple sources
follows automatically.

II. MODEL

Fig. 1 depicts a typical congestion control system in a data network
with M sources transmitting data through a congested switch. The
sources send data through a congested switch to their corresponding
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