EXISTENCE OF SOLUTIONS TO FLUID EQUATIONS IN
HOLDER AND UNIFORMLY LOCAL SOBOLEV SPACES
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ABSTRACT. We establish short-time existence of solutions to the surface quasi-
geostrophic equation in both the Hélder spaces C™(R?) for 7 > 1 and the uniformly
local Sobolev spaces H?,(R?) for s > 3. Using methods similar to those for the
surface quasi-geostrophic equation, we also obtain short-time existence for the three-
dimensional Euler equations in uniformly local Sobolev spaces.
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1. INTRODUCTION

1.1. Background. We study non-decaying solutions of two fundamental models of
fluid motion, the two-dimensional surface quasi-geostrophic equation (SQG) and the
three-dimensional incompressible Euler equations (F). Classically, these equations
(without forcing) can be written

0 +u-VO=0 in[0,T] x R?
(SQQ) uw=V*t(=A)"20 in [0,T] x R?,
€|t:0 = 00 in R2
and, in velocity formulation,
du+u-Vu+Vp=0 in|0,T] x R?
(E) divu =0 in [0, 7] x R3,
uli=o = u’ in R3.

In (SQG), the scalar field 6 is transported by the velocity field u, with u recovered
from @ via the constitutive law u = V+(—A)~26 (making u divergence-free). In (E),
the velocity field u is, in effect, transported by itself under the constraint that it
remain divergence-free, which introduces the pressure gradient.

The parallels between these two equations become clearer when (F) is written in

vorticity form:

Ow+u-Vw=w-Vu in[0,T] x R?,

(E,) u=K *w, in [0,7] x R3,

Wli=o = w° in R3.
Here, w = curlu is the vorticity, K is the Biot-Savart kernel, and v = K * w is the
constitutive law. Rather than just being transported as @ is in (SQG), the vorticity
field is stretched as it is being transported. Moreover, though both constitutive laws,
(EL)2, (SQG)s, yield divergence-free vector fields, they differ sharply in that u gains
one more spatial derivative of regularity over that of w for (£, ), while it has the same
spatial regularity as 6 for (SQG).

Each of (SQG) and (E) are well-posed when the data is sufficiently smooth and
sufficiently decaying. Insufficient smoothness motivates various weak formulations of
the equations, a long tradition in PDE. Such weak formulations leave the constitutive
law alone or integrate it into the weak formulation, but generalize or weaken what it
means for the PDE itself to hold (that is, (SQG)1, (E)1, or (E,)1). Studying PDEs
when the data lacks sufficient decay has a shorter history, but focuses on extending
or weakening the constitutive law. (Of course, both can be done at the same time.)

In this work, we study (SQG) and (F) for non-decaying, but sufficiently smooth
solutions, which requires us to adapt the constitutive law while leaving the PDE
itself unchanged. We will work with (E) primarily in vorticity form, though will also
use the velocity form, which requires us to obtain estimates on the pressure p. The
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constitutive law u = K x w will enter (in adapted form) in the process of closing our
estimates, as we shall see.

Our methodology for adapting the constitutive law follows that first employed by
Serfati in [18] for the 2D Euler equations. He obtained an identity by applying a cutoff
function to the Biot-Savart kernel K to separate the near-field and far-field effects of
the convolution. The far-field term is then integrated by parts twice—when the PDE
and constitutive law permit this, as they do for (SQG) in 2D as well as (F) in any
dimension—which allows the integrated form of it to be controlled for non-decaying
data. The resulting identity then forms, in effect, a replacement constitutive law.
This can be seen clearly in the form of these identities in Lemmas A.1 and B.1.

Even for decaying data, obtaining the existence of weak solutions to 3D Euler is
beyond current technology, so we work with solutions having sufficient smoothness.
We work, then, in Holder-Zygmund spaces, which differ from Holder spaces for integer
indices—see Section 2.2—and in uniformly local Sobolev spaces H?, (see Section 2.3).

We prove existence for both (SQG) and (F) in HZ, by applying the existence
theory in Holder-Zygmund spaces to construct an approximation sequence, developing
bounds uniform with respect to the approximation parameter, and passing to the
limit.

1.2. Main results. We state our main results in Theorems 1.1 and 1.2, more com-
pletely stated in Theorems 3.1, 4.2, and 5.2. See Sections 2.2 and 2.3 for the definitions
of the function spaces C”, C", and H;,.

Theorem 1.1. Let 8° € C"(R?), r € (1,00), and let v’ € C"(R?) satisfy u’ =
VEH(=A)"120° in C"(R?). There exists T > 0 and a unique solution (u,0) to (SQG)
with the constitutive law in the form

u(t) = u’ + (a®) * V(0(t) — 0°) — /Ot(VVL((l —a)®))x-(Ou)

satisfying, for any v’ € (0,r),
0 € L>(0,T;C"(R*) N Lip([0, T]; C"'(R*)) N C([0, T]; C"' (R?)),
w e L®(0,T;C"(R?) N C([0,T]; C" (R?)).
f 0° € H?(R?) and u° € H?,(R?) for some s > 3 satisfy u® = V+(—A)~Y20° in
C*(R?), where a > 1 satisfies the embedding H?,(R?) — C*(R?), then
0 € L(0,T; Hy(R?)) N Lip([0, T); Hy ' (R?)),
u € L=(0,T; HE (R?)).
Theorem 1.2. Let u® € HS(R?) for some s > 3, and let w° =V x u®. There exists
T >0 and a unique classical solution (u,p) to (E) satisfying
u € L0, Hyy(R%)) N Lip([0, T]; Hy ™ (RY)).
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1.3. Prior work. There are a number of approaches to studying non-decaying solu-
tions of nonlinear systems of partial differential equations, one of which is to focus on
rough solutions, while another is to study more regular solutions.

For rough data, there is prior work on non-decaying solutions of the two-dimensional
Euler equations under the assumption that the initial velocity and initial vorticity are
only in L. This approach was pioneered by Serfati [18], and extended to contexts
such as exterior domains by two of the authors and collaborators [2].

Wu has previously developed existence theory for (SQG) in Holder spaces [23],
with the restriction that the initial data is not only in a Holder space but also in an
L7 space for some g < oo. In the present work, by incorporating estimates which stem
from the Serfati identity, we remove this assumption that the data are in L9, finding
existence of non-decaying Hélder solutions for (SQG).

In recent work, Cérdoba and Martinez-Zoro [8] have shown non-existence of so-
lutions for (SQG) with data in Hélder spaces C* for integer k > 2. This is not a
contradiction to the present work, for although Holder-Zygmund spaces coincide with
Holder spaces for non-integer exponents, they are larger than Hoélder spaces for inte-
ger indices. This is discussed in more detail in Section 2 below. The same situation,
non-existence of solutions in classical Holder spaces but existence instead in Holder-
Zygmund spaces, has been shown to hold for the incompressible Euler equations as
well [5, 6].

Majda sketches a proof of existence for the compressible Euler equations in uni-
formly local Sobolev spaces in [14]; Majda remarks that the approach of [14] does
not work for the incompressible case. Other work for existence of fluid equations in
the uniformly local Sobolev spaces includes a series of papers by Zelik, Anthony and
Zelik, and Chepyzhov and Zelik on the Navier-Stokes equations, the damped Euler
equations, and the damped Navier-Stokes equations, all in two spatial dimensions [3],
(7], [24], [25]. Alazard, Burq, and Zuily have proved well-posedness of the gravity
water waves system (i.e. the incompressible, irrotational Euler equations with the
fluid region bounded above by a free surface, subject to gravity) in uniformly local
Sobolev spaces [1]; of course the water waves system is dispersive, and is thus of a
different character than the systems studied in the present work. Uniformly local
solutions of the water waves system were then further studied by Nguyen [16].

1.4. Organization of the paper. We define Holder -Zygmund spaces and uniformly
local Sobolev spaces in Section 2, and introduce notation and provide some key lem-
mas. In Section 3, we obtain existence of solutions to (SQG) in Holder spaces, and
then employ this result in Section 4 to construct an approximation sequence to ob-
tain existence to (SQG) in uniformly local Sobolev spaces. In Section 5 we obtain
existence of solutions to the 3D Euler equations in uniformly local Sobolev spaces.

In the appendices, we establish Serfati-like identities for (SQG) and 3D Euler, a
constitutive relation for (SQG), and a pressure identity for 3D Euler akin to one used
in 2D in [19].
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2. DEFINITIONS AND PRELIMINARY LEMMAS

In this section, we state some notation, definitions, and lemmas that will be useful
in what follows.

We let a : RY — R, d > 2, denote a radially symmetric, smooth, compactly
supported cutoff function which is identically 1 in a neighborhood of the origin and
which vanishes outside of the ball of radius 2. For each A > 0 and each z € R?, we
let ay(z) = a(z/N).

Define G' on R? by

(2.1) Glz) = —

" Az
the fundamental solution to the Laplacian in R3, meaning that AG = 6, the Dirac

delta function. We use ® to denote the fundamental solution of the fractional Lapla-
cian (—A)Y2 on R?; that is,

C
d(x) = —
|z
for a constant C' > 0. Finally, we have the simple estimates,
(22) Ha)\q)”Ll(R?) < >‘7 HVVJ_<<1 - a/\)q)>HL1(R2) < C)\il-

2.1. The Littlewood-Paley operators. In Section 3, we establish existence of so-
lutions to (SQG) in the spaces C"(R?) for r > 1, where C"(R?) is defined using the
Littlewood-Paley decomposition. We therefore begin this section with an overview
of the Littlewood-Paley operators and some of their properties. It is classical that
there exists two functions x, ¢ € S(R?) with supp ¥ C {¢ € R?: [¢] < 3} and supp
¢ C{€eR?: 2 <€ < 2}, such that, if for every j € Z we set ;(z) = 279p(27z),
then
R+ Gi=x+) e =1

Jj=0 Jj=0

For n € 7Z, define x,, € S(R?) in terms of its Fourier transform x,, where ¥,

satisfies
(&) = R(E) + ) #i()
Jj<n
for all £ € RY. For f € 8'(R?), define the operator S, by
Snf =xn*f.

Finally, for f € S'(R?) and j € Z, define the inhomogeneous Littlewood-Paley oper-
ators A; by

0, j<-—1
go]*fa JZO)



6 DAVID M. AMBROSE, ELAINE COZZI, DANIEL ERICKSON, AND JAMES P. KELLIHER

and, for all j € Z, define the homogeneous Littlewood-Paley operators Aj by
Note that A;f = A, f when j > 0.
We will make use of Bernstein’s Lemma in what follows. A proof of the lemma can

be found in [6], Chapter 2. Below, C,;(0) denotes the annulus with inner radius a
and outer radius b.

Lemma 2.1. (Bernstein’s Lemma) Let r1 and o satisfy 0 < r; < ry < 0o, and let p
and q satisfy 1 < p < q < o0o. There exists a positive constant C' such that for every
integer k, if u belongs to LP(RY), and supp 4 C B,,(0), then

(2.3) sup 110%u|| e < CENHIG=D || .

Furthermore, if supp @ C Cy xr,1(0), then

(2.4) C N |u|» < |Sl|1p 10%u|| o < CFN¥||u| L.
al=k

Lemma 2.2. Let U(z) = C|z|'™® on RY. There exists C > 0 such that for every
JEL,

(2.5) 1A; (VW % )| zo@ay < CIA;fll oo meay.

The result holds with V¥ replaced by V(a¥).

Proof. The proof of (2.5) follows from an argument identical to the proof of Lemma
8 in [10]. To see that the result holds for V(aV) in place of VW, first note that the
equivalent of this lemma for a Calderén-Zygmund operator 7" is well-known [20]. We
note, however, that 7" = V(aW)x is not quite a Calderén-Zygmund operator; rather
(see, for instance, Proposition 6.1 of [4]),

V(aw)« f(@) = pv. | VW) =) f@)dy + CF ()],

where the principal value integral does represent a Calderén-Zygmund operator. The
result then follows immediately. O

Remark 2.3. The convolution V(a¥) % f in Lemma 2.2 is that of a compactly sup-
ported distribution with a distribution. As in Theorem 6.37(e) of [17], we can move
derivatives on and off each factor, so

V(av)* f = (aV)* Vf =V((aV) * f).

2.2. Holder-Zygmund spaces. We now introduce the Littlewood-Paley-based ver-
sion of Holder (more properly Holder-Zygmund ) spaces.

Definition 2.4. For 7 € R, we define C"(R?) to be the set of all f € &'(R?Y) such
that '

sup 277 ||A; fl|zee < 0.

i>—1
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We set 4
[ fllor = sup 27" ||A; | e
j=-1

It is well-known that when 7 > 0 is a non-integer, the space C"(R?) defined above
coincides with the classical Holder space C"(R?), with norm

(26) HfHC‘T — Z HDaf“LOO + Szily) |f(x> — f(y)|

—_ qylr=1Ir]
0<lal<r] [z =yl

However, when r is an integer, C"(R?%) does not coincide with the space C"(R%) of
bounded functions with bounded derivatives up to and including order r. In this case,
we have the inclusion

(:W(Rd) c C"(RY).
Finally, we define the homogeneous Hoélder spaces.

Definition 2.5. For 7 € R, we define C"(R%) to be the set of all f € S'(R%) such
that

sup 27| A f| e < 00.
JEZ
We set

1fller = sup 277 | A; | .
JEZ

The homogeneous Littlewood-Paley operators and Holder-Zygmund spaces C” (R%)
will be useful in our analysis of nondecaying solutions to (SQG) and (£). In par-
ticular, the operators Aj allow us to make sense of the Riesz transforms applied to
non-decaying functions by defining, for f € L>°(RY),

(27) Ajou(=0) V2 = F (w% ) =7 (w%) ‘.

The following lemmas will be useful when proving estimates on (SQG) in the C”
spaces.

Lemma 2.6. Let s > 1. If for every j >0, f € L®(R?) and g € C*(RY) satisfy
Ajf = A VH(=A)"2g

almost everywhere on R?, then f belongs to C*(R?), and there exists an absolute
constant C' > 0 such that

/]

cs S C([|fllz + gl

o).



8 DAVID M. AMBROSE, ELAINE COZZI, DANIEL ERICKSON, AND JAMES P. KELLIHER

Proof. Young’s inequality gives
1flles < ClIALf]lL= + sup 27| A | =
J>

< O fllze + Sup 28| V(= A) 2N ]|
J1=
< C| fllze + Csup 2| Asg]| o
>0

< C|fllz= + Cllg|
where we used Lemma 2.2 to get the third inequality. 0

Cs,

The following Lemma is Proposition 2.2 of [23].

Lemma 2.7. Let k be a nonnegative integer and let s € (0,1). For f € C*5(R?),
there exists a constant C', depending only on s, such that

[fller < Clifllenses.
Moreover, C'— o0 as s — 0.
Lemma 2.8. Let s > 0, and assume f € C*(R?). Then
IV (ax®) * fllz= < C||f|
where C' depends only on \ and s.
Proof. Write

IV5(@x®) * fllze < ) 1AV (@r®) * f)]| 2

j>=1
= 1A (VH(ax®) * )= + Y 227 A;(VH (ar®) * f)] 1
j>0

< laa® * (A V)|~ + nglg 2%V (ax®) + A f | o
J]=Z

Cs,y

<O fllpe + CS,1>1E>2js||AijL°° < Cflles,
V-

where we used Young’s inequality, Bernstein’s Lemma and Lemma 2.2 to get the third
inequality. This proves the lemma.
O

2.3. Uniformly local Sobolev spaces. We now define the uniformly local Sobolev
spaces and mention some of their properties. We refer the reader to [12] for further
details. We begin with a definition of L?,(R?).

Definition 2.9. For p € [1,00), we define L?,(R?) to be the set of all functions f on
R? such that

1/p
(25) Il = s ([ s ay) <o
x—y|<

r€R4
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Definition 2.10. For a nonnegative integer s, we define the space H?,(R?) to be the
set of all functions f € L?2,(R?) such that all distributional derivatives D®f, with
la] < s, also belong to L2, (RY). We set

(2.9) 1l = D 1D Fllz2,-
jal<s

In what follows, we make use of an equivalent norm to (2.9), as given in Proposition
2.11 below. For this purpose, throughout the paper we let ¢ € C>°(R?) be a standard
bump function, identically 1 on B;(0), with support contained in By(0), and we set

¢.(y) = oy — ).

We have the following proposition (see, for example, [12]).

Proposition 2.11. One can define an equivalent norm to (2.8) on LP,(RY) by
sup [[@q f| -

zeR4

Moreover, if for A > 0 fized,

(2.10) ot =0 (157).

then for any pair Ay, Ay > 0, the two norms

Sup [|gz ., fllze,  sup [|ge, fllze

zeR4 z€R4
are equivalent. Therefore, for any A > 0, the norm
(2.11) 7, = 37 sup 90a D fl1
kﬂgsmeR

is equivalent to that in (2.9). Finally, the norm

sup ”¢z,/\fHHS
zER4

is equivalent to that in (2.11) and can also be used as a norm on H?(R?).

We now state a few useful lemmas regarding H?, spaces. Several of these lemmas
demonstrate that many properties of H® spaces extend to the H;, spaces. We begin

with the following Calculus inequalities. Parts (i) and (éi7) below can be found in
[14].

Lemma 2.12. Assume s > 1 is an integer.
(i) Given f, g € H:, N L>®(R?) and |a| < s,

I1D*(f9)lr2, < Cslllfllzoellglms, + Ngllzoe 1 az,)-
(ii) Given f € C*(RY), g € H*(R?),
Folae < Cllen Ny 16l < ClF e ol -
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(iii) Given f € H3, N CYRY) and g € H7' 0 L2(RY), for |a| < s,
I1D%(fg) = FDgllr2, < Cslll flleallgll s + llgllz= £

Lemma 2.13. (112]) Let j and m be nonnegative real numbers. If 2m > d, then

HI™(RY) — CI(RY).

Lemma 2.14. Let p € [1,00), and assume f belongs to LE,(RY). There exists C' > 0

such that for alln € N,

H51>‘

15n e, < Cllflze,-
Proof. By Minkowski’s inequality,

1/p
p
1nf 1z, = sup ( /] / 0-(2) (@ = y)xaly)dy] dx>
2€R4
Rd

< sup / 16:()FC = 1) xa (@) oy = sup / 162 FC — ) 2o xn ()

2€R4

< Wl |, o)l < €Lz,

Lemma 2.15. With U as in Lemma 2.2, for any f € H?,(R?), r >0,
V(@) )l < CM Ll

Proof. This follows for H" in place of H, from a Littlewood-Paley decomposition or
by using the expression in Lemma 2.2. It then follows for the H,, norm by taking
advantage of the identity, ¢,V ((ax¥)* f) = ¢.(V(arxV)* f) = ¢o(V(a\V)* ¢, sf). O

Definition 2.16. For v, w vector fields, we define v+-w = v* * w’, where we sum over

the repeated indices. Similarly, for A, B matrix-valued functions on R? we define
Ax-B = AY x BY,

In Lemma 2.17, we obtain a stream function for i, but it is not the classical
stream function in that it is not divergence-free. It can be written in the form of a
one-dimensional integral, however, as in (2.13), which makes it amenable to localized
estimates.

Lemma 2.17. For any divergence-free u € H?,(R3) there exists a (non-divergence
free) stream function v € HE™M(R®) with the properties that curly = u, ¥(0) = 0.
For any bounded convex U C Bg(0),

(2.12) 14]

where the constant C' depends upon the Lebesgue measure, |U|, of U.

Uy = CR HUHHSZ(]IN)a
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Proof. Tt is sufficient to prove the result for u € C*(R3) N HE,;(R?), as the result then
follows from the density of this space in H?(R3). We can then define the stream
function as

1
(2.13) Y(z) = —/ Tz X u(tz)dr.
0
Using curl(Ax B) =divBA—divAB+B-VA—A-VB, div(u(tz)) =0, dive = 3,

Vz = I, we have
curl(x x u(rx)) = —3u(rz) + u(tz) - Vo — 72 - Vu(r)
= —3u(rz) + u(tz) - I — 12 - Vu(re) = —2u(rz) — 7z - Vu(rz).

Hence,
1
curl(z) = / [27u(T2) + T2 - Vu(rz)] dr.
0

Integrating the first term by parts, we have

1 1
/ 2ru(rz)dr = T2U(TZ‘)|(1) - / 7’z - Vu(rx) dr
0 0

=u(z) — /01 7%z - Vu(rr) dr.

It follows that curlvy = w.
For estimates, it is perhaps easier to write (2.13) in indices, as

(2.14) Vi(z) = /0 [T2ipou™ (T2) — TH T (1)) dr,

where if ¢ +1 or 7 + 2 > 3 we subtract 3 from it.
In (2.14), we have |z| < R on U, so
1

1

-

[l 20y < CR/ T\|u(T) || L2y dT = CR/ T—%||u||L2(TU) dr.
0 0

But, [tU| < |U| for all T € [0,1], so ||ul|r2¢-vy < C(JU])[ul 12, and

1
’WHLZ(U) < CR/O Tﬁi”“”%, dr = CR.

Let a = (aq, ag, a3) be a multi-index. Then
D* [ijug(rx)} = Txﬂ"a'Do‘uZ(m:) + TT'O“’lD“/ue(Tx),

where o/ has the j index decreased by one, with the second term absent if o; = 0.
Arguing as for [[¢|| 12, we conclude from this that

|81‘17pk |’DQ¢HL2(U) < CR ||u||H’7jl +C “uHH:fl )

from which (2.12) follows by summing over k < s.
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Finally, using div(A x B) = (curl A) - B — (curl B) - A, we have

divp(z) = —/0 7 [eurlz - u(rx) — 7(curlw)(rz) - 2| dr

_ /0 " (curl) (ra) dr

Because curlu € L2, curly and dive lie in L2, this is enough to conclude that
Y € HE ™ (R3). As we use only H, regularity, we do not include further details. [0

3. EXISTENCE OF SOLUTIONS TO (SQG) IN HOLDER SPACES

In this section, we prove the following theorem.

Theorem 3.1. Forr € (1,00), let 0° be a function in C™(R?), and let u® in C"(R?)
satisfy '
u’ = VE(=A)"20° in CT(R?).
There exists T > 0 and a unique solution (u, ) to
| (u,0)] =0 = (u",60"),
satisfying, for any r' € (0,r),
0 € L0, T;C7(R?)) 1 Lip([0, T); 7 (B2)) 1 C([0, T € (B),
we 1%(0,T; C(R%) N (0, T]; €7 (R2)).
Moreover, there exists C' > 0 such that (u,0) satisfies the estimate

Ol +6°)cr)
3.2 00 (0.7 L% O\l roo0.1:0my <
(32)  lerores TPl onen < TERST 160

and the equality (see Definition 2.16)
(3.3) u(t) = u® + (a®) * V=(0(t) — 0°) — /0 (VVH((1 = a)®))*(0u)

for each t € [0,T].
Before proving the theorem, we make a few remarks.

Remark 3.2. For r > 0 a non-integer, a pair (u°, 6°) satisfying the conditions of
Theorem 3.1 can be easily generated from any function ¢ € C™(R?) by setting u® =
V44 and w® = (—A)Y24. Note that w® belongs to C"(R?) by the classical Schauder
estimates for the fractional Laplacian (see for example [21]). By the containment
C"(R?) ¢ C"(R?) and Lemma 2.2, both u® and 6° belong to C"(R?). Moreover, we
have for every j € Z,

Al = AjVH(—A)~1290

almost everywhere on R2.
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Remark 3.3. Since (3.3) holds for ay in place of a for any A > 0, and 0 and u lie in
L>([0,T] x R?), by (2.2) we have

u(t) = u’ + )}LIEO(GACI)) «* VE(0(t) — 0%,
the limit holding pointwise. This gives a form of the constitutive law for (3.1) and is

the analog for (SQG) of the renormalized Biot-Savart law of [2, 13] that applies to
non-decaying solutions to the 2D Euler equations.

Proof of Theorem 3.1. We adapt the general strategy used in the proof of Theo-
rem 4.1 in [23]. In particular, we construct an approximating sequence of solutions
and pass to the limit in the appropriate norm. To obtain uniform bounds on the
approximating sequence, the proof in [23] relies heavily on the estimate

(3.4) [Bfller < Cllfllernre

for ¢ < oo and r > 1, where R denotes a Riesz transform. Since our approximating
sequence must converge to a solution lacking spatial decay (and hence not belonging
to LI(R?) for any ¢ < o), we utilize Lemma 2.6 and a Serfati-type identity (see (3.6)
below) in place of (3.4).

Approximating sequence. We define sequences (6™)7°; and (u")$2, as follows:
01 (t, ) = S20°(x),
(3:5) ul(t,z) = Syu’(z),
for all ¢ > 0, while, for n > 1,
OO +u - VO =0,
0" (2,0) = S, y20°, u" T (2,0) = S, 0u’,

(3.6) ut (1) =t (0) + (a®) x VO™ (L) — 0 (0))

—/0 (VVE((1 = a)®))*- (6" u™).

Note that with (u") and (") as in (3.6), Lemma A.2 gives that for all j € Z, n € N,
and t € (0,77,

Aju(t) = AVH(=A)"20%(1)
almost everywhere on R?, which will allow us to apply Lemma 2.6 repeatedly in what
follows.
Uniform Bounds. The proof of Proposition 4.2 in [23] yields the following estimate:

[ @)l < 116 (0)ller

an OO / (196" ($)ll e () e + 1V (3) 12107 (3) ) s

t
< [10"7H(0) |- +C(7“)/0 10" ()l [l ()l s
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We now use (3.6)3 to estimate ||u""!(¢)||z~. In particular, one can write
[ (@) < [ FH0) [z + CIVO™ (#)]] 2
(38) n+1 ' n+1 n
+ CIIVO"(0)] +C/O 1677 ()l oo [ (5) || v dis.
Adding (3.7) and (3.8) gives
[ ()= + 10" (B)ller < ([ 0) [z + CEIO" () ]|cr + C(r)[10"F(0) |-

+C(7“)/0 0" () o llw ()] 2w + 16" ()l [[u” ()| e ) ds,

where we used Lemma 2.7. The term C(r)||0""!(t)||c- appearing on the right hand
side can again be estimated using (3.7). Then we have

(@l + 16" @ lor < [ Ol + O™ 0o

+C(T’)/O 1™ () e 1w (s)ll e s
< " (0) [z + C ()07 (0) [l

+C(r)/0 (™ ()l + 10" () e ) [[u” () | e ds.

Gronwall’s Lemma gives

(3.10)

[ (@) + (167 (2)]
By (3.10) and Lemma 2.6,
[ @)z + 110" (@)l

< OO ) -+ 87 (0)or )R Ol 10 errie

where we can assume C(r) > 2.
We use induction and (3.11) to show that there exists M > 0 and 7" > 0 such that,
forall t < T, and for all n > 1,

(3.12) [ (@) o= + 10" )]l or < M.

To prove the case n = 1, first note that by properties of Littlewood-Paley operators
and Young’s inequality, there exists a constant C5 such that, for all n > 1,

(3.13) S0’ | e + 1| Sps28°llor < Collu’|[ e + [16°)]
In particular, we have
[utl|ze + 108 |cr < Colllu’llz + 16°]]cr).

Set M = 2C(r)Cy(||ul]|z + [|6°||c+), where C(r) is as in (3.11), and choose T such
that exp(C'(r)T'M) < 2. Then

[z + 110 < Collu’llzee + 16°%]lcr) < M.
This proves (3.12) for n = 1.

(3.9)

or < C(T)(HunJrl(O)HLoo + ||9n+1<0>||0r)60(r) I lu™(s)ller

(3.11)

o).
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Now assume, for fixed k € N, |[u*(s)||z= + [|0%(s)||cr < M for each s € [0,T]. By
(3.11) and (3.13),
[ @l + 16 Oler < O™ 0) 2= + 165 (0) e )M
< 2C(r)Co([[u(0) [ o + [[0(0)ler) = M.

Thus (3.12) holds for all n.
From (3.12) and Lemma 2.6, it follows that, for r > 1, there exists C' > 0 such that
for all n € N, ||u"||cr < CM. Therefore, for each n € N,

Haten+1| Ccr—1 S ||un : v9n+1||c771
(3.14) < C([ullor— VO™ oo + [u" ||z [VO™ | o)
< Ol e 10" e < C(r) M2

From this we conclude that for each n € N, 90" € L*°(0,T7;C™') and 6" €
Lip([0,T]; C™=1), with norms uniformly bounded in n.

(u™) and (6™) are Cauchy. We now show (0") is Cauchy in C([0, T]; C"~1(R?)) and
(u™) is Cauchy in C([0, T; L>=(R?)). Asin [23], let n™ = 0" —6""! and v™ = u™ —u""!.
From (3.5) and (3.6), we have the system

771 — 5200 _ 00’

0

3.15
( ) vt = Syu’ — P,

and for n > 1,
o™ -Vt =" VO,
(3.16) 7 (@,0) = 7 (@) = Ayl (@),
" (2, 0) = i () = Aol (2).
Moreover,

V() = 0" (0) = (ax®) * V(0" (t) — n"(0))
(3.17) — /0 (VVE((1 = a))®))+ (n"u"" 4 0" ).

We have the following estimate from [23]:
I ) ller- < [ln" (0|

(3.18) +W”£ﬂWm@WmﬂW%mm+Wﬂ@MHWW$%&%

t
< ™ 0)ller + C(T)M/O (I () llerr + ([0 () ler-1) ds,
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where we applied the uniform bounds on ||u"||c- and [|6™]|c to get the second in-
equality. We apply the L*-norm to (3.17), which gives

(3.19)
[0"H(#) [ o < 0" (0)] 2 + [[(a®@) % V"1 (#)[| L + [[(a®@) % V7" (0)|| 1o
+/0 (™ () e lu™ ()| oo + 10741 (8)] Lo [0 (8)[| <) dis

< " 0) |z + [[(a®) = Vo (@) [0 + [[(@®) + Vo™ (0) ]| 2

t
+CM/O (" () 1z + 10" ()| =) ds.
Adding (3.18) and (3.19) gives
" @l + " Oller— < 0" 0) [z + 7™ (0) o

(3.20) + [V (a®) 5 " 0) || Lo + [[V(a®) % ™ (2) || oo

t
+MC(7“)/0 (" Hlzoe + ™ () ller=r + 0" ()l + 1" (5) 1) s,

where we applied Lemma 2.6. To estimate the terms ||[V*(a®) x "+ (¢)||r~ and
V4 (a®) * 7" 1(0) ||, we apply Lemma 2.8, giving

IV=(a®) 0" (1)l < Cr)lln™ (1) ller1,
IV=(a®) % 7" (0) | < C(r)lIn"(0)ller1

We then bound the resulting term || "1 (¢)||cr—1 using (3.18) and again apply Lemma
2.6. Substituting the resulting estimate into (3.20) gives

(3.21)
o™ @) e + 107 Ol < CLr) (o™ Ol + 177 (0) or-r)

# M [ (0 ) + 1 o) + (6 + ) o)) s
Set D, (t) = [[v"(t)||z + |n"(t)]|c+—1. Then (3.21) gives
322 Dusd) < CrIDuns(0) + G [ (D) + D) ds.
Let
B(r) = f%DnH(t),

noting that F(0) is finite because #° and " lie in C"(R?). Summing (3.22) over n
and using (3.12), we have that

E(t) < CE(0)+ CMt+ C’M/tE(s) ds.
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By Gronwall’s lemma,
E(t) < (CE(0) + CMT)eCM.

It follows that for any fixed time ¢t € [0,7], the sequences (u"(t)) and (6"(t)) are
Cauchy in L>*(R?) and C"~!(R?), respectively.

Now let € > 0. From (3.14), we also have uniform-in-time control on (9;0"(t)) in
C™1(R?), so we can choose a § > 0 such that for any sy, sy € [0, 7],
€
5.
Let N; be an integer greater than 7'/§, and let t, = kT/Ny, k = 0,..., N;. Choose
an integer Ny (which we note depends upon Nj) such that for all &,

51— 82| <0 = [|0"(s1) — en(SQ)HCT—l(RQ) <

€
m,n > Ny = [|0"(tx) — 0™ (tx)l| cro1 2y < 3

Then by the triangle inequality, for all ¢ € [0, T,
o> Ny = 07(0) ~ 67Ol cr ey < 10°(0) — 0" ()l o1
+ ||9n(tk) - Qm(tk>||cr71(R2) + ||‘9m(tk) - Hm(t)||cr,1(R2) <6
where we choose k so that |t — ¢ < . This is enough to conclude that (") is Cauchy
in C([0,T]; C""H(R?)).
Similarly, taking the time derivative of (3.6)3 gives uniform-in-time control on
(Opu™(t)) in L°(R?), and we can conclude that (u") is Cauchy in C([0,T]; L*>°(R?)).

Limit of the sequence solves (3.1). We conclude that the sequence (") converges
to some 6 in C([0,T]; C""'(R?)), and (u") converges to some u in C([0, T]; L°°(R?)).
Moreover, we have
0 € L>(0,71; C"(R%)) N Lip([0, T1); C"~(R?)),
u € L>(0,Ty; C"(R?)).
Interpolation between C™* and C" shows that (6") converges to @ in C ([0, T]; C™' (R?))
for all v € [r —1,r), and interpolation between C° and C” shows that (u™) converges
to w in C([0,T]; C*(R?)) for all & € (0,7). Having established convergence in these
spaces, we can then pass to the limit in (3.6); and (3.6)2. Note also that, for »' €
[r—1,r) and « € (0,7),
0 € L=(0, T); C"(R%) N Lip([0, T; ™ (R*)) N C([0, T]; C (R?)),
u € L=([0,T); C"(R*) N C([0, T); C*(R?)).

Solution (u,0) satisfies (3.2). We now show that the resulting solution (u,#) of
(3.1) satisfies (3.2). Set W, (1) = ||[u™(7)||z= + [|0"(7)||cr, T € [0,T]. From (3.11), it
follows that

U,y (7) < O,y (0)eCJo Pnie)ds,
so that

U, (1) Cls ¥n9ds < 0w (0).
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By the chain rule,

1 d —C [ Un(s)ds
- [ < .
cdr (6 ) < C¥a(0)

For t € [1,T], integrating both sides from 0 to t gives
—eClo¥n@)ds 1 < OF,,(0)t,
which implies

¢ 1
3.23 Cf U, (s)ds < - -
(3:23) o =100, (0)

The inequality C\I]"n(a))) < ¢C o nls) s combined with (3.23), imply that
Cv,(0) C(||u®||z= + [|0°||cr)
O + 18" Ol U= T Gw, 0 = 7= Ct(lulo + [0cr)

where we used that ¥,,(0) < C(||u®|| e~ +|6°]
It follows that for each fixed ¢ € [0, T7,

or) for all n to get the second inequality.

Cllullze + 116°llcr)

ul(t oo + 0 t << .
)l + 100l < =g e

This yields (3.2).

(u,0) satisfies (3.3). It remains to prove (3.3). We have that (6") converges
to 6 in C([0,T]; O (R?)) for all 7' < r, and (u™) converges to u in C([0, T]; L®(R?)).
We claim that this is enough to pass to the limit in (3.6)3. For n € N, we subtract
the right-hand side of (3.6); as satisfied by (u, #) from the right-hand-side as satisfied
by (u",6™). Taking the L>°-norm of the resulting difference and applying Young’s
inequality gives

I — w1

<" = w)(0)[z= + [ (@®) % V(0" = 0)(t)l|ze + [[(a®) + V(0" = 0)(0) ]| 1

- / V(1= @)®) s (16" — )(s)u " (s) | = + 10(5) (™" = w)(s)l| =) ds.

It is clear that
[(u" = u)(0)| = — O,

/0 (116" = ) (s)u" " (s)llzo= + 10(5) ("™ — u)(s)]| L) ds — 0

as n approaches infinity, for all ¢ € [0, T.
We now show that [|(a®) * V(0™ — 0)(t)|| 1 = ||V (a®) * (0™ — 0)(t)]| 1 — O for
all t € [0,7] as well. We utilize that V+(a®) integrates to 0. Surpressing the time
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variable, and setting " = 6™ — @ for each n, we have, for any a € (0, min{1,r — 1})
and any = € R?,

[V (a®) * (0" = 0) ()] < 'p- v. | VHa®)(y) (8"(z —y) = 8"(2)) dy| + |Cé,(x)]]

R2
o (1M —y) =" (x "
< [ it (=0 dy v ics, @) < Qs o,
R2
since (6™) converges to 6 in C([0,T]; C*(R?)). This implies (3.3) and completes the
proof of the theorem.

Uniqueness An argument similar to the demonstration above that (u™) and (6") are
Cauchy gives uniqueness of solutions. OJ

4. (SQG) IN UNIFORMLY LOCAL SOBOLEV SPACES

4.1. A priori estimates. In this section, we establish a priori estimates on smooth
solutions to (SQG) in uniformly local Sobolev spaces. We prove the following theo-
rem.

Theorem 4.1. Assume d = 2 and s > 3 is an integer. Let (u,0) be a solution to
(SQG) on [0,T] as given in Theorem 3.1 with Héolder exponent r = s+ 2. Then

(o) b, 050 (C [ (u(r)les + 1900 ) ).

Proof. Set W = D*6 with 0 < |a| < s and s > 3. Apply D to (3.1); to get
(4.1) oW +u-VW = F,

where

e < 60

F=u-VW —D%u-V0).
Multiplying (4.1) by ¢, gives
(4.2) O(GaW) +u-V(gW) = (u- V)W + ¢, F.
After multiplying (4.2) by ¢,W and integrating, we conclude that

2 ¢xwat(¢xw> + 2 (bxW(u : V(¢wW))

= GeW (u- Ve )W + W, F.
R2 R2

Now observe that 1 d
_la 2
[ 6 Woio.w) = S 20V .

Moreover, one can show using the divergence-free property of u and integration by
parts that

- ¢ W (- V(g W)) = 0.
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By properties of ¢, and Hélder’s inequality, we also have

. W (u- Vo )W = - G W (u - Vor)d oW

< e oW lZ2llu - V| e < Cllullz< 6]
Finally, another application of Holder’s inequality gives
oW ouF < [0.W . F

We apply Lemma 2.12 to ||¢, F||z2 with f = u and g = V6. This gives

162 F 2 < C (llullcallOllas, + VOl ool s, ) -

Combining the above estimates and integrating in time gives
6 W (®)]I72 < CllgaW (0)]7

t
+€ [ (Iello=l6l, + e ) dr.
0 u.

We now take the supremum of both sides of the inequality over € R%. We conclude
that

2
HS, -
ul

Jull 116

wz, + VO] o [|uf

3, (

Jote)
w0 [ (e elom )

It remains to close the estimate and apply Gronwall’s lemma. To do this, note
that, for each fixed t € [0, 7], the approximating sequences (6,(t)) and (u,(t)) from
the proof of Theorem 3.1 converge to 6(t) and u(t), respectively, in L>°(R?). This
convergence, along with Lemma 2.2, allow us to pass to the limit in Lemma A.2. This
gives, for all j € Z,

B < C)16°]

2
HS
ul

(4.3)

VO(T)|zee [[u(T)]

2. +)6(r)

S
Hul

Aju=A;(VE(=A)"1/29).
Applying a differential operator D7 with 1 < |y| < s gives
A;D7u = A;DY(VH(=A)29).
This implies that, for |y| > 1,
D'u= D7 P+ (a®) * VD0 + [DV(VH((1 — a)®))] % 0

for almost every z € R? where P is a polynomial. But Du and D6 are in
C([0,T]; L>(R?)) for each |y| < s, which implies that P is a constant. We conclude
that for 2 < |y| < s, DYu and D70 satisfy

(4.4) D7y = (a®) * VD0 + [D7(VH((1 — a)®))] % 0
for almost every x € R% Applying Lemma 2.15, for any multi-index 8 with |3| = 2,
(4.5) ID"ull == < C(|01 5, + [10]] =) < C|16)]

S
H?
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where we applied the Sobolev embedding theorem to get the last inequality. This
estimate, combined with [[uf|z2 < Cllu|r~ and [[Vul|z2, < [[Vu|[r, gives

(4.6) [l < CC10]]az, + llulle)-
Substituting this estimate into (4.3) gives
(4.7)

105, < 16°117,

0 [ (1Nl o ), + 10 190 = (10, + ()

< 1|6°]

e +C / (la(r)llgs + V6 =) 16(7)]

vo [ o)

o d
-
H,

1z, IVO(T) | L= [[u(T) | o dT

t
< !IGO\IZ;lJrC/O (lu()ller + VO 1) 10352, d,

where, to get the last inequality, we applied the Sobolev embedding theorem to con-
clude that [|[VO(7)||r~ < C||0(7)| us,- By Grénwall’s Lemma,

t
160)13: < 16°), exp (c e+ Hvemnm)dr) .

This completes the proof of Theorem 4.1. 0

4.2. Existence of solutions. In this section, we prove the following theorem.

Theorem 4.2. Let s > 3. Let 6° be a function in H:(R?), and let u® in HE(R?)
satisfy

u’ = VEH(—A)~/29° in C*(R?),
where o > 1 satisfies the embedding H?,(R?) — C*(R?). There exists T > 0 and a
unique solution (u,0) to
00 +u-VO=0,

e (,6) o = (u, °)
satisfying

0 € L*(0,T; Hy(R?)) N Lip([0, T]; Hy ' (R?)),

u € L>(0,T; HE (R?)).

Moreover, (u,0) satisfies

(4.9) u(t) = u’ + ((a®)) * V- (0(t) — 0°) — /Ot(va(u —a)®))*-(Au) ds.
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Proof. For the proof of Theorem 4.2, we will construct an approximation sequence of
smooth solutions (u,, d,) given by Theorem 3.1 on [0, 7]. We will then use Theorem
4.1 to establish uniform bounds on (u,,#,) in the H}, norm, which will allow us to
pass to the limit to obtain (4.8).

Approximation Sequence and Uniform Bounds. Consider the sequences u’ =
Spu? and 02 = S,,6°. We see that for each n, u) and 6° belong to C"(R?) for every

n

r > 0. Moreover, by Lemma 2.14, there exists C' > 0, depending only on s, such that
Jup s, < Cllu’|
1601155, < C16°]

We claim there exists a single 7' > 0 such that both (u,) and (6,,) are uniformly
bounded in L>®(0,T; H:(R?)). To see that such a T exists, note that Lemma 2.13
and construction of u? and 69 give an o > 1 such that both (u!) and (6°) are uniformly
bounded in C*(R?). Thus, by Theorem 3.1, a solution (u,,0,) exists in C*(R3) at
least on [0, 7,,], with (u,,6,) satisfying (3.2). Choose T' > 0 such that, for every n,
T <T, and

S
b )

(4.10)

Hs, -
ul

1 1
— <7, O oo 00 o) <T Ol oo 90 a) < —=
50 < Tnlllunllze + 118llee) < T(lullze +[167ce) < =,
where C' is as in (3.2). We have that for every n, (un,,) is a solution satisfying
Theorem 3.1 on [0,77]. In particular, by (3.2),

Cl[u’llz= + [10°llc=)
4.11 n Lo 0, cay < ,
(4.11) lunlleo i) + [1nllooricn) < 1 — CT(|[u®]| oo + [|6°]]c)

and ||un||c(o,;2%), |0nllc(o,1];0+) are therefore uniformly bounded in n.
To establish a uniform bound on ||u,||¢(o,m;ce) in 7, note that by Lemma 2.6,
(4.12) [unllcqoricy < Clllunllcqorysze) + 10nllcorce))-

Then the uniform bound on |[u,||c(o,r;ce) again follows from (4.11).

Theorem 4.1, (4.10), and an application of the uniform bound on |[u, | c(o,m;ce)
imply that there exists a constant C' > 0, depending only on the initial data and T,
such that

(4.13) 10nllco.ry:as,) < C-

This bound, combined with the estimate (4.6), imply that there exists a constant
C > 0, depending only on the initial data and 7', such that

(4.14) lunllcqorym,) < C

as well.
To simplify notation in what follows, we set ¢ = ¢ r, Where ¢g g is as in (2.10).

(¢rO,) is Cauchy. We now show that (¢rf,) is a Cauchy sequence in the space
C([0,T]; H*~Y(R?)) for every R > 0. For some a > 1 and for each n, we know that
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Up, 0, € C([0,T]; C*(R?)), and that our solutions satisfy

(4.15) 8,0, + 1wy, - VO, = 0.

Multiplying (4.15) by ¢g for some fixed R > 0, we have

|¢ROn || -1 < [|@RUs - VO, [[ge1 < C(R)||un - VOy|
C(R)unll e[V 001 < C(R),

where the third inequality follows because H?,;'(R?) is a Banach algebra, and the
last inequality follows since ||V, | et and || wn | w1 are uniformly bounded in n by

s—1
Hul

(4.16)

a quantity depending only on the initial data.

Via Rellich’s theorem, since for each ¢ € [0,T7], [|0,(t)| s, is uniformly bounded
over n, we can conclude that for each R and ¢ € [0, T, there exists a subsequence of
(¢rO,(t)) which converges in H*~'(R?). A diagonalization argument shows that for
each t € [0,T7], there is a subsequence of (6,(t)) (relabeled to (6,(t))) such that for
every R > 0, the sequence (¢grb,(t)) converges in H* (R?)

It remains to find a subsequence which converges for all ¢t € [0, T]. From (4.16), it
follows that given € > 0, there exists § > 0 such that for all n and for all s,¢ € [0, T
such that |t — s| < 4,

(4.17) 9RON(t) — PROW(S)|| o1 < €/3.

Consider a partition of [0,7],0 =ty < t; < ... < tpy = T such that t; —¢;_; < . Since
there are finitely many elements in the partition, we can find a further subsequence of
(prO,) (relabeled as (¢gh,)) such that for each ¢; in our partition, (¢rb,(t;)) converges
in H*~*(R?) for all R > 0. Let N be such that for all m,n > N and for all ¢; in our
partition,

||¢R9n<tz> — ¢R‘9m(tz)| Hs—1 < 6/3
It follows that for all pairs m,n > N and for each ¢ € [0, T], with ¢; chosen to satisfy
|t — t1| <0,

||¢R9n(t) - ¢R9m(t)| Hs—1 S ||¢R9n(t) - ¢R9n(tz)| Hs—1
+ ||¢R6n(tz) - ¢R9m(tz>| Hs—1 + H(bRem(tz) - ¢R0m(t>HHS*1 <e.

Therefore, (¢rb,) is a Cauchy sequence in C([0,T]; H*~'(R?)), and thus converges
in C([0,T); H*7'(R?)). We conclude that there exists 6 such that ¢rf, — @6 in
C([0,T]; H~Y(R?)) for all R > 0.

(¢pruy) is Cauchy. The proof that for all R > 0, (¢ru,) is also Cauchy in
C([0,T]; H*~%(R?)) is similar. Indeed, for each t € [0,7], the uniform bound on
|un(t)||zs, over n and a diagonalization argument, as above, allow us to conclude
that there exists a subsequence of (¢ru,(t)) which converges in H*~2(R?) for every
R > 0. Tt remains to find a single subsequence which converges for all ¢ € [0,T]. We
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observe that by Theorem 3.1, for s,t € [0, 7],

U (t) = un(s) = (a®) * V(0 (t) — Oa(s)) — / (VVH((1 = a)®))% (Onun),

so that for each R > 0,

[run(t) = Grtn(s)|[ o2 < C(R)||dsrbn(t) — PsrOn(s)| s + C(R)/ 16| oo [[ten | oo
S C(R)|t = s| + C(R)[t — s sup [|0,(7)]| o [[un(T)]| o<,

TE[s,t]
where we used the equality ¢r((a®)* ) = dr((a®) x (dsrf)) to get the first inequal-
ity, and we used (4.16) to get the second inequality. Since ||0,||r~ and ||lu,||=~ are
uniformly bounded in n, given € > 0, there exists § > 0 such that for all R > 0,
whenever s,t € [0, 7] satisfy |s — t] <,

[@rUn(t) — drUn(S)]
Following an argument identical to that used to show (¢g6f,,) is a Cauchy sequence in

C([0,T]; H*"*(R?)), we can conclude that (¢ru,) is Cauchy in C([0,T]; H*~%(R?)),
and there exists u with ¢ru, — ¢ru in C([0,T]; H**(R?)) for all R > 0.

Hs—2 < €.

(u,0) satisfies Theorem 4.1. We now pass to the limit in the H* ?(R?) norm.
Given R > 0, if we multiply (4.15) by ¢g, then for n,m € N,

Rr(010n, — 010m) = Gr(Un — Um) + VO, + QR - V(0 — O,)
= Or(tn — tm) - (G2V0n) + Ortn - G2rV (0n — ).
Hence, at each t € [0, 7],
160 (0n — 010l re-2 < |PR(Un — Um) - (d2rVOn) || 112
+ [@rUn - P22V (0r, — O) || rs—2
< |or(un — tm )|l 1122|028V Omlloc + (|0 (un = tm) ool 25V Om|| o
+ |@runll o202V (On — Om )l + |9 RUR] ool G2RV (Or — On)]

Since ||p2rVOm oo, |02V O0m | ms-2, ||@rU|| 15-2, and ||pru, || are uniformly bounded
innon [0,7], as N — oo, we have

sup || ¢r(un — )|

mn>N

sup || ¢r(Un — Um)|sol| P28V 0|

mmn>N
sp (|90 (6 = ) =

Hs—2.

Hs—2 ||¢2Rv0m||oo — 07

Hs—2 — 0,

SuSN PR 0o ||P2rV (0 — Om) || s—2 — 0.

From these estimates, it follows that (¢rd;6,,) is Cauchy in C([0, T|; H*~%(R?)).
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Since ¢rb, — ¢rf in C([0,T] x R?), we also have ¢rf, — ¢rf in D'([0,T] x R?).
This implies that ¢rd.0,, — ¢rd0 in D'([0,T] x R?), so by the uniqueness of limits,
for all R > 0, ¢r0:0, — ¢rd:0 in C([0,T]; H*2(R?)).

We multiply (4.8), as satisfied by (u,,6,), by ¢r, and we pass to the limit in
C([0,T); H**(R?)). This gives ¢ = —¢ru - VO for all R > 0.

To see that 6 belongs to L>(0, T'; H?,(R?)), we use (4.13) and a weak-* compactness
argument. Note that by (4.13), for every x € R*, n € N, and ¢t € [0, T1,

H@cen(t)’ e < C.
Therefore, up to a subsequence which depends on ¢ and z, ¢.0,(t) converges weak-*
in H*(R?). Note, however, that for every R > 0 and ¢ € [0,7T], ¢r0,(t) — or0(t)
in H5'(R?). Given z, since we can always choose R large enough to ensure that
br = QpPr, we have ¢.0,(t) — ¢.0(t) in L*(R?). By uniqueness of limits, ¢,0,(t)
converges weak-* in H*(R?) to ¢,0(t), and

1620()|| = < C.

This holds for all ¢ € [0, 7] and for all z € R?, so 6 belongs to L>(0,T; H:,(R?)). The
argument showing that u belongs to L>(0,T; H,(R?)) is similar.

(u, 0) satisfies (4.9). Note that (4.9) follows from Theorem 3.1 since, by the Sobolev
Embedding Theorem, u and 6 belong to C([0, T]; C*(R?)) for some o > 1. This com-
pletes the proof of Theorem 4.2.

Uniqueness Applying a cutoff function ¢ to two solutions and making the same
argument that showed (¢ru,) is Cauchy gives uniqueness of solutions. U

5. (F) IN UNIFORMLY LOCAL SOBOLEV SPACES

5.1. A priori estimates. We now prove an analogous theorem to Theorem 4.1 for
the Euler equations.

Theorem 5.1. Assume s is an integer satisfying s > 3, with d = 2 or 3. Let u
be a solution to (E) in C([0,T]; H*(R?)) for all k € N. Then there exists C > 0,
depending on s, such that the following estimate holds for each t € [0,T]:

61 () e (€ [l + 1ar).

Proof. The proof is similar to that of Theorem 4.1. We prove the theorem for d = 3.
The proof clearly extends to the case d = 2.

Set W = D% with 0 < |a| < s—1and s > 3. Apply D* to the vorticity equation
to get
(5.2) OW +u-VW = D¥(w - Vu) + F,

where

et < (1 1)

F=u-VW —D%u-Vw).
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For x € R3 fixed, multiply (5.2) by ¢, to get
(5.3) O(p W) +u- V(W) = (u-Vo )W + ¢, Dw - Vu) + ¢, F.
After taking the dot product of (5.3) with ¢, W and integrating, we conclude that

- ¢1W : at(¢mW) + s ¢mW : (u ’ V(QEW)) = s ¢xW : ((u : V¢$)W)
+ ¢$W : <¢$DQ(W : vu)) + Qb:cW : ¢1F
R3 R3

Now observe that
oW a0 = L0V .

Moreover, one can show using the divergence-free property of u and integration by
parts that

R
By properties of ¢, and Hoélder’s inequality, we also have
W (0 ToIW) = [ 6V (- V,)0,W)
R
< e o Wizellu - Voo | oo < Cllul| e |lw]?

s—1,
Hul

and, again from Holder’s inequality,
GW - (¢aD%(w - Vu) < CllgaW 12| doD%(w - V)2
R

< [l

e (] V|-,

where we used Lemma 2.12 to get the second inequality. Finally, another application
of Holder’s inequality gives

GW 0o < 0o W 2|60 F | 2.
R

w1Vl + wllzee [ Vulleo1) < Cllullf

S
Hul

Since u is divergence free, we can write
F =u-VW — D*div(uw),
which allows us to apply Lemma 2.12 to ||¢,F'||r2 with f = v and g = w. This gives
[6:Fllze < € (Nullen o] i) <

Combining the above estimates gives
) < Clulllul

SN I < Cllulln (I 2

After integrating in time and taking the supremum over x € R? of both sides, we
conclude that

(54) o) o1 < N’ 17 1+C/ ()l ()1

s dT.
ul

wop [, + [lul
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It remains to close the estimate and apply Gronwall’s lemma. To do this, we use the
Biot-Savart law.

Let K3 = VG, with G as in (2.1), be (one form of) the Biot-Savart kernel in
dimension 3. Setting wi = (Vu — (Vu)T)} = dpu’ — d;u*, since u and w are smooth
and decaying, for 1 < ¢ < 3, using implicit sum notation,

u' = K¥xwl = (aK¥) xwl + (1 — a)K¥) x wi
= (aK3) *wi + (Ou((1 — @) K3)) % u' — (8i((1 — a) K3)) * u”.
Applying a differential operator D?, with 0 < |3] < s — 1, to both sides of (5.5) gives
Dy = (aK¥) x DPwl + [DPO0p((1 — a) K5)] % u' — [DPO;((1 — a) K5)] % u”.
Setting D7 = 9;D” and applying 0; then gives

(5.5)

(5.6) D' = 0;((aK%) * DPwi) 4+ [D70;((1 — a) K5)] * u'.
Applying Lemma 2.15 gives
Iullgs s < CQlwll o1 + ).

This estimate, combined with [ul| 2 < Cllul|re=, gives
(5.7) [l zrs, < C(J|e]
We use (5.7) and (5.4) to write

Jeo(t) b +C [ Tt

o+ ).

2 < [l e+ u(r) )2 dr
t
< 1Ol + € [ )l (o + ) ),
u. O u.

< [l

ner 0/0 lu(m)llea (lu() 1T + D (llw(r)]

where we used that for A, B > 0, (A+ B)?* < C(A%+ B?) to get the second inequality.
Setting h(t) = 1 + [|w(t)] we have

i]zl—l + 1) dT,

h(t) < h(0) + C/O lu(T) e (lu()|Zee + Dh(T) dr.

An application of Gronwall’s Lemma gives

0] e (€ [ el + ar).

This completes the proof of Theorem 5.1. ([l

et < (1 1)
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5.2. Existence of solutions. We prove the following theorem.

Theorem 5.2. Let s > 3. Let u® be a function in H(R?), and let w° = V x u°.
There exists T' > 0 and a unique classical solution (u,p) to (E) satisfying

w e L(0,T: Hy (R) 1 Lip(0, T ' (RY)).

Moreover, p satisfies

Vp(z) = — / a(r —y)VG(x — y) divdiv(u @ u)(y) dy
(5.8) R
+ [ o)) YV - ale — ) VG — )] dy

To prove the theorem, we construct an approximation sequence of smooth, decaying
solutions to (E), and we pass to the limit in (£). The construction of the sequence
of initial velocities is slightly more tedious in the three-dimensional setting than in
two dimensions, as we must make use of a more complicated explicit formula for a
three-dimensional stream function.

Because we are seeking a strong solution to (F) in Hf,, we are forced to consider
the meaning of the pressure for such solutions. We are able to make sense of the
pressure by passing to a certain limit of the sequence of smooth pressures generated
from the smooth velocity solutions.

To prepare the initial velocity, we adapt the classical strategy employed in [2]
and [9] of cutting off and smoothing the stream function associated with the initial
velocity u°. Some additional care is required because of the lack of inherent decay of
the velocity field.

Lemma 5.3. Let v’ € H5(R?) and let s be a nonnegative integer. There exists

a sequence (ul) of Schwarz-class, divergence-free vector fields uniformly bounded in

HE(R?) for which ¢prul — ¢pru’ in H*(R?) for any fized R > 0.

Proof. Let (my)5, be a sequence of positive integers that we will specify later. We
define u? by

(5~9) U?z = Smn<v X (¢n¢)) = Smn(gbnuo) + Smn (V¢n X ¢)7

where v is the stream function for u° given in Lemma 2.17. Observe that u? is
Schwarz-class and divergence-free.
Using Lemmas 2.12 and 2.14,

1S, (@) 1z, < Cllnu|
Again by Lemmas 2.12 and 2.14,

ul —

iy, < Clu’|

ul —

u0|

uz, < Cl|on]

ul —

cs Hy

s, = Csup [0V, x |

z€R3

2z€R3 2€R3

HS

1
a2 ¥llm=w),
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where U = DB5,(0) N By(2). But by Lemma 2.17, [|¢]| o (i) < Cnfju’]

1 1
hence ||p24)]|gs(y < Cn. Since Ve, (-) = n~'Vo(n~'-), we have |2V, |
Cn~'. Tt follows that

He, = Cn and

Cs(U) <

C
HSmn(VCbn X w)‘ HE, S Ecn = C

This shows that (u) is uniformly bounded in H?,(R?).
We now show that ¢pul — ¢ru’ in H*(R?). Because S,,, commutes with Vx,

Or(ty — ") = OR [, (V X (¢01))) = V X 9] = ¢V X (S, (601)) — ).
But,

S (On) — b = S, (n) — Gpth + (dn — 1)1
For n > 2R, ¢, — 1 =0, so gV X ((¢p, — 1)) = 0, leaving

¢R(u —u ) Qva X ( mn(éﬂd’) - ¢n¢))

It is now time to choose m,. Because V x (¢,1) € H*(R?), we know that V x
(Sk(dpth) — Pptp) — 0 in H*(R?), as k — oo, so choose m,, > n sufficiently large that

1
HV X (Sk(¢nw) - ¢nw>HH9(R3) S 5 for all k& 2 my.

It follows that
C(R)
0.0
||¢R(“n u )} Hs(R3) < N
This gives ¢pru’ — ¢ru’ in H*(R3) for any R > 0. O

Proof of Theorem 5.2.
Uniform time of existence. From the sequence of initial velocities in Lemma 5.3,
we generate a sequence (u,) of solutions to (E) in H*(R?) for all k, where the time
interval of existence in H*(R?) for each u,, may vary with n. We claim, however, that
there exists a single 7" > 0 such that u, solves (E) with (u,) uniformly bounded in
L(0,T; Hy (R

To see that such a T exists, note that Lemma 2.13 gives an « > 1 such that u2
belongs to C*(R?) for each n. Thus, a solution u, will exist in C*(R?) at least on
0, T,], with w,, satisfying the estimate (see [5] and chapter 4 of [6])

[ Clluplla
1—-CT,||W0lce — 1-CT, ||u
Choose T' > 0 such that, for every n, T' < T,, and satisfies

<1
H C,a

(5.10) [unllcgorom <

1 0 0

< Tl < T

where C'is as in (5.10). We have that for every n, u, is a solution to (F) in C*(R?) on
[0, T]. Moreover, by (5.10) and Lemma 5.3, ||u,||c(o,75;c+) is uniformly bounded in n.
But this implies that for every n, ||Vuy,|| Lo (0.1;100r3)) < 00. From this and classical
theory we can conclude that u, belongs to C([0,T]; H*(R?)) for every k. Thus, for
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every n, u, satisfies Theorem 5.1 on [0,7]. Theorem 5.1, Lemma 5.3, and another
application of the uniform bound on ||u,||¢(o,7);ce) imply that there exists a constant
C > 0, depending only on the initial data and 7T, such that for all n,

(5.11) lonll oo gpemsy < C-

Moreover, by (5.7), (5.11), and (5.10), there exists a constant C' > 0, depending only
on the initial data and T', such that for all n,

(5.12) [unlleqorymg,) < C.

(u,,) converges to u. Note that for each n, u,, belongs to the space ([0, T]; H*(R?)).
Moreover, we have
(5.13) Oy, + uy, - Vu, = —Vp,,
where p, satisfies p, = A7'V(u,, - Vu,). For fixed R > 0, multiply (5.13) by ¢r.
Then

||¢Ratun|

ot < | Or(Un - V)l + |9r VP

Hsfl.
Note that

||¢R(un : vun)| Hs—1 < C(R>Hun ’ Vun|

+ C(R)[|Vun || oo [[un]

which can be bounded uniformly in n by (5.12).
To estimate the pressure term, observe that

(5.14) Vp, = —(aVG) x divdiv(u, @ u,) + [VV((1 — a)VG)] - *(up, @ uy).
Applying D” to this identity with 1 < |y| < s — 1 and applying Lemma 2.15,
Vo, e, [ tn @ up|| ) < Cllu, @ up|

it < C(R) o= Vi
it < C(R) s

s—1
Hul

2
H?»
ul

H;;l S C(||un®un| H? o
where we used the Sobolev embedding theorem. Thus,
(5.15) 162V pallie—s < CR)[Vpall o s < Cllually

which can be uniformly bounded in n.
Combining the above inequalities, we conclude that

(516) H(bR(?tunHHs_l < C,

with C' depending on the initial data and R, but not on n.

By Rellich’s Theorem and the uniform bounds on [|u,(t)||gs, for each t, we can
conclude that for each ¢ and each R, there exists a subsequence of (¢ru,(t)) which
converges in H*}(R3). Using a standard diagonalization argument, for each fixed
t, one can find a subsequence of (¢ru,(t)), relabelled (¢ru,(t)), which converges in
H*1(R3) for every R.

To find a single subsequence that works for all ¢, we use (5.16). Given € > 0, there
exists 0 > 0 such that for all n,

(5'17) ||¢Run(8) - ¢Run(t)|

Hs—1 < 6/3
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whenever |s — t| < §. Given this d, construct a partition of [0,7], 0 = ¢y < t; <
ty < ...... <ty = T such that t; — t;_1 < 6. Using the process above, one can find a
subsequence of (¢gu,), which we relabel (¢gu,), such that (¢pru,(t;)) converges, and
hence is Cauchy in, H*~! for each ¢;, i = 1,2, ..., M and for every R > 0.
Let N be such that for all n,m > N and for all ¢; in the partition,
||¢Run(tz) — ¢Rum(tl)| -1 < 6/3
Then for all pairs m, n > N and for each t € [0, T], there exists ¢; such that
[@run(t) = drUm ()| o1 < |ORUR(E) = Rt (ti)| 1o

+ [ orun(ti) = Grum(to)l|ao—r + [[orUm (L) — rUM(1)]
We conclude that (¢ru,) is Cauchy in C([0,T]; H*~'(R?)), and thus there exists u
such that (¢ru,) converges to ¢pru in C([0,T]; H¥"1(R?)) for all R > 0.

Hs—l < €.

(pn) converges to p. We now show that, up to subsequences, for all R > 0, (¢rVp,,)
is Cauchy (and thus converges) in C([0, T]; H*"2(R?)). The process is very similar to
that above. As above, using the uniform bound in (5.15) and Rellich’s Theorem, we
can conclude that for each fixed ¢, there exists a subsequence of (¢prVp,(t)), relabel
it (prVpn(t)), which converges in H572(IR?) for every R. To find a single subsequence
that works for all ¢, we must find a time modulus of continuity for (¢zVp,(t)) which
is uniform in n. To do this, first note that by Proposition C.1,

1Ol oo < [Jn| oo [[Vun][ oo + [ Vnl| L
< Cllunllgs < Clluallis, < €
for all n and for all ¢ € [0, 7). Thus there exists C' > 0 such that for all s,¢ € [0, 7]
and for all n,
(5.18) [un(t) = un(s)|lr= < Clt — s].
Applying (5.14) and Lemma 2.15, for s,t € [0, T,
[0rVDn(t) = 9rVDn(s)|| o2 < Clldar(un @ un(t) — un © un(s))|
+ Cllun @ up(t) — tn @ un(s)]| Lo

It follows from uniform bounds on ||uy, ||z~ and ||u,] gt i on, along with (5.18) and
(5.17), that given € > 0, there exists § > 0 such that for all n, whenever |s —t| < 4,

|‘¢Ran(t) - (vaPn(S”

With this uniform continuity in hand, we follow a process identical to that used to

show for all R > 0, (¢ru,) is Cauchy in C([0, T]; H*~'(R?)). We conclude that for all

R >0, (¢rVpy) is Cauchy in C([0,T]; H*~%(R?)), and thus there exists p such that
(6rVp,) converges to ¢rVp in C([0,T]; H*72(R?)).

Hs—1

Hs—2 < €.

(u,p) solve (E). For fixed R > 0, multiply (5.13) by ¢g. Then for any m,n,
QbR(@tun - atum) = gbR(“n - um) -V, + QbRun : V(Um - un) - ¢Rv(pn - pm)
= Or(Un — Um)P2r * Vi + ORrU, - G2V (U — Un) — ORV (Dn — D),
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so that, for each t,
[0 (Osun — Opti) || -2 < |OR(Un — i) P2RV | 1152
+ (| PRt - P22V (U — Un)|| 52 + ||GRV (P — D) || 752
< |or(un — wn) |z |92 Vm|| rs—2 + [|[@r(Un — wn) || g2l 28Vt || Lo
+ | 9rUn L |02V (Un — un)|[ g2 + |@RUA || o2 [|P2rV (U — wn) || Lo
+ l0rV (Pr — pm)|

Note that ||porVuy || gs-2, ||p2rVUn| L, [[OrU|L>, and |[¢ru,|
bounded in n. We conclude that as N — oo,

Hs—2.

pgs—2 are uniformly

mS;lfN @R (un — wm)| Lo | P2r VU || mrs—2 — 0,
mS:gN lpR(tUn — m) || o228 Viim || Lo — 0,
S ot~ 02 (1 = ) o2 = 0
mS:LlfN 1¢runllrre=2 (| @2V (tm — un )l =0,
qug)N 16RV (P = pm) || o2 = 0.

From the estimates above, it follows that (¢r0,u,,) is Cauchy in C([0, T]; H*2(R?)).
Since ¢pu, — ¢ru in C([0,T] x R3), ¢pu, — ¢pu in D'([0,T] x R3), which means
GrO, — PrOwu in D'([0,T] x R?). Thus, by uniqueness of weak limits, ¢rdu, —
drOwu in C([0,T); H*2(R?)) for every R. This, combined with convergence of (¢ru,)
to (¢ru) in C([0,T]; H*~1(R3)) for every R, allows us to conclude that for every
R >0,

RO, — PrOU,
OrUy - VU, — ¢ru - Vu
in C([0, T); H*-2(R%)).
It remains to take the limit of (¢xrVp,) in C([0,T]; H*%(R?)). To do this, first
note that by Proposition C.1, for every n,

Vpn(t,z) = — / a(x —y)VG(x — y) divdiv(u, @ u,)(t,y) dy

+ [ ® w)t0) - V(1 = alr = ) V6L = )]

Since (u, ® uy,) is uniformly bounded in C([0, T]; L>°(R?)), for each ¢ € [0,T], there
exists a subsequence (u,, (t) ® uy,, (t)) converging weak-* in L>(R?). Since (druy)
converges to ¢ru in C([0,T]; H*71(R?)) for each R, (¢ru, ® ¢ru,) converges to
dru @ ¢ru in C([0,T]; H71(R3)) for each R. Tt follows from uniqueness of weak
limits that for this fixed ¢ € [0,T], (up,(t) ® uy,(t)) converges weak-* in L*> to
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u(t) ® u(t). Since, for each x € R*, VV [(1 — a(z — y))VG(z — y)] is in L} (R?),
[ ® )00 VY (1 = ata = ) VGl = )] dy

- R3(u ®u)t,y)- VV[(1 —alz—y)VG(z —y)] dy
for each z € R3.

Similarly, since (divdiv(u, ® u,)) = (Vu, - (Vu,)T) is uniformly bounded in the
space C'([0, TT; L>=(R3)), for each t € [0, T], there exists a subsequence (div div(u,, (t)®
un, (t))) converging weak-* in L>®(R?). But again, since (¢ru, ® ¢ru,) converges to
dru @ ¢pu in C([0,T]; H1(R?)) for each R, for this fixed ¢ € [0, T}, (divdiv(u,, ®
Uy, )) converges to divdiv(u ® u) in D'(R?). By uniqueness of weak limits, the weak-
* limit of (div div(up,, (t) ® un, (t))) must be (divdiv(u(t) ® u(t))). Since, for each
z € R? a(z —y)VG(z —y) is in L, (R?),

/ a(z —y)VG(x —y) divdiv(u,, ® u,,)(t,y)dy
R3

— [ alz —y)VG(z —y)divdiv(u @ u)(t,y) dy
R3

for each = € R?.
We conclude that for each t € [0, 7], there exists a subsequence (Vp,, ) such that
Vpn, (t,x) = Vp(t, x) for every z € R?, where

Vp(t,x) = — / a(x —y)VG(x — y) divdiv(u @ u)(t,y) dy
(5.19) R
+ [ weu)(t.s) - VI - ale — ) VGG — )] dy

Finally, since (¢rVp,) converges in C([0,T]; H*%(R?)), by the above it must con-
verge to ¢pVp in C([0,T]; H*~%(R3)). Thus, (u, p) solves (E), where p satisfies (5.19).

u belongs to L>(0,T; H2,(R?)). By (5.12), for every + € R%, n € N, and ¢ € [0, 7],
||¢acun(t)| s < C.

Therefore, up to a subsequence which depends on t and x, ¢, u,(t) converges weak-*
in H*(R?). Note, however, that for every R > 0 and t € [0,T], ¢ru,(t) — ¢ru(t)
in H*71(R?). Given z, since we can always choose R large enough to ensure that
b = Gp0r, we have dpu,(t) — dpu(t) in L*(R?). By uniqueness of limits, ¢ u,(t)
converges weak-* in H*(R?) to ¢,u(t), and

[fztu(t)]| s < C.
This holds for all ¢ € [0, 7] and for all z € R?, so u belongs to L>(0, T’; H?,(R?)).
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Uniqueness Applying a cutoff function ¢ to two solutions and making the same
estimates that showed (u,p) solve (F) yields uniqueness. Moreover, uniqueness also
follows from [22] or from [11]. O

APPENDIX A. A CONSTITUTIVE RELATION FOR (SQG)

Lemma A.1. Assume that (u,0) are smooth solutions on [0, T]| xR?, with 6 compactly
supported in space, to

00 +u-VO =0,
u(t) = VH(A)26(0),
(u,0)]i=0 = (u°,0°).
Then for allt € [0,T] and any X\ > 0, we have the Serfati-type identity,

u(t) = 10+ (ay®) = VE(O(t) — 6°) — /0 (VV((1 = ax)®)#-(0u(s)) ds.
In indices, this is
u'(t) = (u°)" + (a®) * (VH(0(1) — 6°))" — /0 0;(VH((1 = a)®@))" * (6u/(s)) ds.

Proof. Because 6 is compactly supported in space, we can write the constitutive law
in the form u(t) = V+(® x 0(t)). Taking the time derivative, we can introduce the
cutoff function to obtain

ou(t) = VH@ % 9,0(1)) = V((ar®) * 9,0(1)) + V(1 — a))®) * 9,0(t))
= 0y((ax®) * V1O(t)) — VE(((1 — ax)®) * (u- VO)(1)).
But u - VO = div(fu), so
(VA1 — a)®) * (u- V9)(.75))}1‘ = [VH((1 = ax)®)]" * (div(6u)(t))
=V [VEH((1 = a))®)]" +(0u)(t).
Integrating in time completes the proof. 0

Lemma A.2. Assume the sequences (u,) and (0,) are generated as in (5.5) and
(3.6). For every j € Z,n € N, and t € [0,T],

Aur(t) = AV (=) 200 0),
equality holding almost everywhere on R2.
Proof. Applying 0, to (3.6)3 gives, for every j € Z,
(ML) gy 0u(t) = g« (@) + BT40(1)) — 5 + (TLe-(u10) (1))

where L = V4((1 — a)®), which we note has the singularity at the origin removed
and which decays like C'|z|™* as # — co. We apply the Fourier transform to both
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sides of (A.1). This gives
P;F (Ou™) = 3 F (a®)F(0,V0") — o3 F (VL) F(u"” 19")
= ¢;(ax &) (") F(0,0") — ¢; (i€ ) (F(1 —a) » &) [i€ - F(u~'0")]
= ip6" [(ax B)F@0") — (F(1 — a) * d) i€ - }"(u”’lﬁn)]] .
But,
i€ - F(u™10") = F(div(0"u™ ™)) = F(u" ' - V") = —F(0,0"),
SO
B F (") = iF(08")356" | (ax ) + (F(1 - a) + @)| .
Note that & € S, and ® decays like |¢| 7", so that @ % ® = @ * (a®) 4+ a * (1 — a)d)
is in L' + L? for all p > 2, by Young’s inequality. Moreover, observe that
(A.2) 2i(F(L—a)x &) = ¢;((0 — ) x D) = ¢;& — @;(a x P).
Since géijD € S, we have that ¢;(F(1—a) *CfD) belongs to L'+ LP as well. In particular,

all three terms in (A.2) are defined almost everywhere as, then, are the products. This
allows us to write the following equality, which holds in the distributional sense:

(A3) P F (D) = (i€ DF (9,07).

Defining G € S(R?) by G = F'[@;(i€")®] and applying the inverse Fourier trans-
form to (A.3) gives

(A4) ; * Opu" = G * 00" in §'(R?).

Since both sides of the equality in (A.4) are convolutions of Schwarz functions with
bounded functions, both sides belong to L;,.(R?). Therefore, equality in (A.4) holds
pointwise almost everywhere on R2. Moreover, by (2.7), we can write

Ajatu"(t) = AjVL(—A)_1/28t0n,
which also holds almost everywhere. Integrating in time and using the identity Ajuo =
A;VEH(—A)"120° for all j € Z, we have that for all ¢t > 0,
Apu(t) = A;VEH(=A)20m,
proving the lemma. O
APPENDIX B. SERFATI IDENTITY FOR 3D EULER

We establish the 3D version of the Serfati identity of [19]. The key point of this
identity is not its precise form, but rather the order of the derivatives that appear on
its near and far field terms.
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Lemma B.1. Let
T

K(x) =

one form of the 3D Biot-Savart kernel. Any smooth solution to the 3D Euler equations
with velocity u and with vorticity w compactly supported in space satisfies, for any
A > 0, the 3D Serfati identity,

dh(t) = (uO)F + / (axK)( — y) x w(t,y) dy

R3

Ar |z

VV((1 —an) K" (@ —y)x(u@ u)(t,y) dy

RS

Vdiv((1 — a)) K)(z — y)*(u" u)(t,y) dy.

R3
Proof. Because w is compactly supported in space, we can write the constitutive law
in the form (see, for instance, Proposition 2.16 of [15])

u(t,z) = | Kz —vy) xw(t,z)dy.

R3
Proceeding as in the proof of (A.1), we have

o) = 5 [ (@E)a =) x (b dy+ [ Do =) x dult.a) dy

R3
where L = (1 — a))K. But dw = curl(Qu) = —curl(u - Vu) = — curldiv(u ® u).
Hence, the i** component of the second integral above, using Lemma B.2, becomes

k
- [/}1@3 L(z —y) x curldiv(u ® u)(t,y) dy]
= [ Bt = ) vt )t )] + 0, Lo — p)div(us w(e, ) dy
= [ BuLa = 00i @ w)(t) + 0, Lo — )y )t 0) dy

= / 0,0, LF (z — y) (v @ u')(t,y) + 0,0 L' (x — y) (v’ @ u¥)(t,y) dy.
R3
Integrating in time yields the result. 0

Lemma B.2. For u,v smooth with uv compactly supported,

/ u x curlv = / (=Vu-v+divuv) = / (—0uF vt 4 Ot vF)ey.
R3 R3 R3

Proof. We have,

i ; k
u X curlv = ut u? ud

821)3 — 831]2 (932)1 - 811)3 311)2 — 821]1
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Working only on the first component and integrating by parts, we have
/3(u x curlv)! = /3 u?(Ov? — Opvt) — ud (050" — 010°)
R R
- /3(—81u2v2 + Oy + Osuvt — Oyut?).
-
But dyu? + 05u® = divu — Oyut, so

/ (u x curlv)t = / (—01u*v® + (divu — Oyu' vt — d1u’e?)
R3

R3
= / (—01u - v+ divuv').
R3
Similar expressions for the other two terms give the result. 0

APPENDIX C. PRESSURE IDENTITY

We derive in this appendix the pressure identity for solutions to the Euler equations,
adapted from the 2D version due to Serfati [19], as derived in [13].

We work throughout with a sufficiently smooth decaying solution, (u, p), to the 3D
Euler equations in all of R3. It is classical in that setting that

(C.1) p(t,z) = —G * divdiv(u(t) @ u(t))(x),
where G is the fundamental solution to the Laplacian on R?, defined in (2.1).

Proposition C.1. Let a be as in Section 2. The identity,

Vp(z) = — / a(x —y)VG(x — y) divdiv(u @ u)(y) dy
(C.2) R

+ [ @oww) - VY0 - ale - 9)V6(a - )] dy.
R
holds independently of the choice of cutoff function, and Vp € L>([0,T] x R3) with
Vo) = < Cllu®)llé -
Proof. Applying 0; to (C.1) gives

Oip(x) = — g 0;G(x — y)div(u - Vu)(y) dy.

Here, we suppress the time variable to streamline notation. Applying a cutoff and
integrating by parts,

Oip(x) = — /]RB a(x —y)0;G(z — y) div(u - Vu)(y) dy
- [ (1= ate =906l = y)div(u- Vu)(s) dy

- / ale — ),G(x — y) div(u- Vu)(y) dy
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n /RS@L Vu)(y) - V(1 — alz — y)0G(x — )] dy.

Integrating as in Lemma C.2 gives

Oip(z) = — /RS a(x —y)0;G(x — y) div(u - Vu)(y) dy

+ /R3 (u(y) - Vy)Vy [(1 = a(z = y)0iG(x —y)] - uly) dy,

which we can write more succinctly as (C.2).
We conclude, since div(u - Vu) = Vu - (Vu)?, that

10:]| oo < [1a0iG 11 [Vl 3e + VYV [(1 = )0:G] |1 [|ee]) 7o -

Here, we are using that (in any dimension), VG is locally in L' and, away from its
singularity, V3G lies in L'. This gives the bound on Vp(t) in L*.

That the expression in (C.2) is independent of the choice of cutoff function a can
be seen by subtracting the expression for two different cutoffs then undoing the inte-
grations by parts. ([l

We used the following lemma above.

Lemma C.2. Let V € H'(R?). Then
/ (u-Vu)-V:—/ (u-VV)-u.
R3 R3

Proof. Using the vector identity, (v - Vu) -V =u-V(V -u) — (u-VV) - u gives

/Rs(”'v“)'V:ASU'V(V'“)_Ag(“'VV)‘“:_/RP,(U'VV)'U?

where the one integral vanishes since divu = 0. O
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