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Abstract. We consider solutions to the two-dimensional incom-
pressible Navier-Stokes and Euler equations for which velocity and
vorticity are bounded in the plane. We show that for every T > 0,
the Navier-Stokes velocity converges in L∞([0, T ];L∞(R2)) to the
Euler velocity generated from the same initial data as viscosity
approaches 0. This result improves upon the work of [7], where
we prove that the vanishing viscosity limit holds on a sufficiently
short time interval, and upon [8], where we assume decay of the
velocity vector field at infinity.

1. Introduction

In this paper, we study the vanishing viscosity limit of solutions
to the two-dimensional incompressible Navier-Stokes equations. Recall
that the Navier-Stokes equations modeling incompressible viscous fluid
flow on Rn are given by

(NS)

∂tuν + uν · ∇uν − ν∆uν = −∇pν
div uν = 0
uν |t=0 = u0

ν .

When ν = 0, the Navier-Stokes equations reduce to the Euler equations
modeling incompressible inviscid fluid flow on Rn:

(E)

∂tu+ u · ∇u = −∇p
div u = 0
u|t=0 = u0.

We consider solutions to (NS) and (E) with bounded velocity and
vorticity which do not necessarily decay at infinity. We show that such
solutions to (NS) converge to solutions of (E) with the same initial
data in the L∞-norm, where convergence is uniform over any finite
time interval. This result builds upon and is a continuation of work
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in [7] and [8]. For this reason, we will often refer to [7] and [8] for
background information and useful estimates.

The existence and uniqueness of solutions to (NS) without any decay
assumptions on the initial velocity is considered by Giga, Inui, and Mat-
sui in [9]. The authors establish the short-time existence and unique-
ness of mild solutions vν to (NS) in the space C([0, T0];BUC(Rn))
when initial velocity is in BUC(Rn), n ≥ 2. Here BUC(Rn) denotes
the space of bounded uniformly continuous functions on Rn. In [10],
Giga, Matsui, and Sawada prove that when n = 2, the unique solution
can be extended globally in time. Existence and uniqueness of solu-
tions to (E) with bounded velocity and vorticity with n = 2 is due to
Serfati [14]. We briefly discuss these results in Section 2.

In this paper we prove that solutions uν to (NS) of [10] converge
uniformly on R2 to Serfati solutions to (E) as viscosity approaches 0,
where convergence is uniform over any finite time interval (see Theo-
rem 3). To establish the result, we apply Littlewood-Paley theory and
Bony’s paradifferential calculus [2] and follow the general strategy of
[7] and [8]. Specifically, we consider low and high frequencies of the
difference between the the solutions to (NS) and (E) separately. We
first show that for fixed t and for any positive integer n,

(1.1) ‖uν(t)−u(t)‖L∞ ≤ n‖uν(t)−u(t)‖B0
∞,∞ + 2−n‖ων(t)−ω(t)‖L∞ .

(See [7] for a definition of the Besov space B0
∞,∞.) Letting n be a

function of ν so that as ν approaches 0, n approaches infinity, we show
that the right hand side of (1.1) approaches 0 and n approaches in-
finity. Since the second term on the right hand side of (1.1) can be
bounded above by 2−n(‖ων(t)‖L∞ + ‖ω(t)‖L∞), we have essentially re-
duced the problem to proving that the vanishing viscosity limit holds in
the B0

∞,∞-norm. Since L∞ embeds continuously into B0
∞,∞, we expect

this problem to be easier than proving that the vanishing viscosity limit
holds in the L∞-norm; however we must establish a rate of convergence
sufficiently fast to combat the growth of the factor of n in front of the
Besov norm.

Working in the Besov space B0
∞,∞ has several advantages over work-

ing in L∞. Recall that for two-dimensional fluids we can express
the Euler velocity gradient in terms of its vorticity by the relation
∇u = ∇∇⊥∆−1ω. We can also express the Euler pressure in terms of
velocity by the equality p(t) =

∑2
i,j=1RiRjuiuj(t), where Ri denotes

the Riesz operator (similar relations hold for the Navier-Stokes veloc-
ity, vorticity, and pressure). The main mathematical obstacle when
studying solutions to fluid equations in L∞ is the lack of boundedness
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of the Calderon-Zygmund operators ∇∇⊥∆−1 and RjRi on L∞. How-
ever, if we let ∆j denote the Littlewood-Paley operator which projects
in frequency space onto an annulus with inner and outer radius of order
2j, then for any j ≥ 0, f ∈ S ′, and Calderon-Zygmund operator A, we
have

(1.2) ‖∆jAf‖L∞ ≤ ‖∆jf‖L∞ .
Therefore, when proving estimates in the B0

∞,∞-norm, we can local-
ize the frequencies of (NS) and (E) by applying the Littlewood-Paley
operator ∆j to the equations. We can then estimate the difference
∆j(uν−u) in the L∞-norm using (1.2). The presence of the Littlewood-
Paley operator thus facilitates estimates for velocity gradients and pres-
sure terms.

In [7], we prove that when u, uν , ω, and ων belong to L∞loc(R+;L∞(R2)),
there exists T > 0 such that

(1.3) ‖uν − u‖L∞([0,T ];L∞(R2)) → 0 as ν → 0.

To show (1.3), we reduce the problem to showing that the vanishing
viscosity limit holds in the homogeneous Ḃ0

∞,∞-norm, but we are only
able to show convergence in this norm for short time. In this paper, we
show that (1.3) holds for every T > 0 by showing that the vanishing
viscosity limit holds in the inhomogeneous B0

∞,∞-norm on any finite
time interval [0, T ].

We remark that this improvement of our previous result is not a con-
sequence of using the inhomgeneous norm in place of the homogeneous
norm. In fact, we are able to prove the same convergence result regard-
less of which Besov norm we use (the proof using the inhomogeneous
norm is cleaner). Rather, in this paper we are able to improve upon
the results in [7] because we change our approach when estimating the
commutator resulting from an application of the Littlewood-Paley op-
erator to the nonlinear terms in (NS) and (E). Our approach here is
similar to those in [16], [1], and [15]. As a result of our methods, we
are able to prove the estimate

‖(uν − u)(t)‖B0
∞,∞ ≤ C(T )2−nα

+

∫ t

0

C
(

2−p + p‖(uν − u)(s)‖B0
∞,∞

)(1.4)

for any p ∈ [2,∞). By choosing p as a logarithmic function of ‖uν −
u‖B0

∞,∞ , we are able to apply Osgood’s Lemma, yielding a rate of con-

vergence. In [7], our methods only allow us to prove an estimate similar
to (1.4) with n in place of p. Since n is a function of viscosity, we must
apply Gronwall’s Lemma and introduce a factor of ent on the right
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hand side, which prevents us from proving that the inviscid limit holds
on any finite time interval.

The paper is organized as follows. In Section 2, we review properties
of nondecaying solutions to the fluid equations. In Section 3 and Sec-
tion 4, we state and prove the main result; we devote Section 4 entirely
to showing that the vanishing viscosity limit holds in the B0

∞,∞-norm.
For background information on Littlewood-Paley theory, Bony’s para-

product decomposition, Besov spaces, and technical lemmas used through-
out the paper, we refer the reader to Section 2 of [7].

2. Existence and Uniqueness of Nondecaying Solutions to
the Fluid Equations

In this section, we briefly summarize what is known about nonde-
caying solutions to (NS) and (E). We begin with the mild solutions
to (NS) established in [9]. By a mild solution to (NS), we mean a
solution uν of the integral equation

(2.1) uν(t, x) = etν∆u0
ν −

∫ t

0

e(t−s)ν∆P(uν · ∇uν)(s)ds.

In (2.1), eτν∆ denotes convolution with the Gauss kernel; that is, for

f ∈ S ′, eτν∆f = Gτν ∗ f , where Gτν(x) = 1
4πτν

exp{−|x|
2

4τν
}. Also, P

denotes the Helmholtz projection operator with ij-component given by
δij + RiRj, where Rl = (−∆)−

1
2∂l is the Riesz operator. In [9], Giga,

Inui, and Matsui prove the following result regarding mild solutions in
Rn, n ≥ 2.

Theorem 1. Let BUC denote the space of bounded, uniformly contin-
uous functions, and assume uν

0 belongs to BUC(Rn) for fixed n ≥ 2.
There exists a T0 > 0 and a unique solution to (2.1) in the space
C([0, T0];BUC(Rn)) with initial data uν

0. Moreover, if we assume
div uν

0 = 0, and if we define pν(t) =
∑2

i,j=1RiRjuνiuνj(t) for each

t ∈ [0, T0], then uν belongs to C∞([0, T0]× Rn) and solves (NS).

Remark 2.2. For the main theorem of this paper, we assume that ω0

is bounded on R2, which implies that u0
ν belongs to Cα(R2) for every

α < 1 and is therefore in BUC(R2) (see, for example, Lemma 4 of [7]).

In [10], Giga, Matsui, and Sawada show that when n = 2, the solu-
tion to (NS) established in Theorem 1 can be extended to a global-in-
time smooth solution. Moreover, in [13], Sawada and Taniuchi show
that if u0

ν and ω0
ν belong to L∞(R2), then the following exponential

estimate holds:

(2.3) ||uν(t)||L∞ ≤ C||u0
ν ||L∞eCt||ω

0
ν ||L∞ .
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For ideal incompressible fluids, Serfati proves the following existence
and uniqueness result in [14].

Theorem 2. Let u0 and ω0 belong to L∞(R2), and let c ∈ R. For
every T > 0 there exists a unique solution (u, p) to (E) in the space
L∞([0, T ];L∞(R2)) × L∞([0, T ];C(R2)) with ω ∈ L∞([0, T ];L∞(R2)),

p(0) = c, and with p(t,x)
|x| → 0 as |x| → ∞.

Serfati also proved an estimate analogous to (2.3) for his solutions:

(2.4) ||u(t)||L∞ ≤ C||u0||L∞eC1||ω0||L∞ t.

Finally, we recall that we have a uniform bound in time on the L∞-
norms of the vorticities corresponding to the solutions of (NS) and
(E). For fixed ν ≥ 0, we have that

(2.5) ||ων(t)||L∞ ≤ ||ω0
ν ||L∞

for all t ≥ 0. One can prove this bound by applying the maximum
principle to the vorticity formulations of (NS) and (E). We refer the
reader to Lemma 3.1 of [13] for a detailed proof.

3. Statement and Proof of the Main Result

We are now prepared to state the main theorem.

Theorem 3. Let uν be the unique solution to (NS) and u the unique
solution to (E), both with initial data u0 and ω0 belonging to L∞(R2),
and with pν and p satisfying the conditions of Theorems 1 and 2, re-
spectively. Then there exists a constant M , depending only on ‖uν‖L∞,
‖u‖L∞, ‖ων‖L∞,and ‖ω‖L∞, such that the following estimate holds for
any fixed T > 0 and for any α ∈ (0, 1):

(3.1) ||uν − u||L∞([0,T ];L∞(R2)) ≤ C1(2− log(
√
ν)αe

−C2 )(
√
ν)αe

−C2 .

Proof. Throughout the proof of Theorem 3, we letM denote a constant,
dependent on T , which satisfies

(3.2) M ≥ 1 + sup
t∈[0,T ]

(‖uν(t)‖L∞ + ‖u(t)‖L∞ + ‖ων(t)‖L∞ + ‖ω(t)‖L∞).

We note that the value of M will change throughout the proof but will
always satisfy (3.2). The existence results in Section 2 imply that M
will be finite for any T > 0.

Let u be the unique Serfati solution to (E), and let uν be the unique
solution to (NS) given by [10]. We fix n to be a positive integer, and
we fix T > 0. We will eventually choose n = −1

2
log2 ν so that, as ν

approaches 0, n approaches infinity.
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We begin with the following inequality:

‖uν − u‖L∞([0,T ];L∞) ≤
n∑

j=−1

‖∆j(uν − u)‖L∞([0,T ];L∞)

+
∞∑

j=n+1

‖∆j(uν − u)‖L∞([0,T ];L∞).

(3.3)

We can estimate the second term on the right hand side of (3.3) using
Bernstein’s Lemma and the estimate

(3.4) ‖∆j∇u‖L∞ ≤ ‖∆jω‖L∞ for j ≥ 0.

(Both (3.4) and Bernstein’s Lemma can be found in Section 2 of [7].)
We obtain the inequality

∞∑
j=n+1

‖∆j(uν − u)‖L∞([0,T ];L∞)

≤
∞∑

j=n+1

2−j‖∆j(∇uν −∇u)‖L∞([0,T ];L∞) ≤M2−n.

(3.5)

To estimate the first term on the right hand side of (3.3), we use the
definition of B0

∞,∞ to observe that

(3.6)
n∑

j=−1

‖∆j(uν − u)‖L∞([0,T ];L∞) ≤ Cn‖uν − u‖L∞([0,T ];B0
∞,∞).

After substituting (3.6) and (3.5) into (3.3), we conclude that

(3.7) ‖uν − u‖L∞([0,T ];L∞) ≤ Cn‖uν − u‖L∞([0,T ];B0
∞,∞) +M2−n.

We must estimate the difference of uν and u in the B0
∞,∞-norm. We

temporarily assume that the following estimate holds for all α ∈ (0, 1):

(3.8) ||uν − u||L∞([0,T ];B0
∞,∞) ≤M(T + 1)(2−nα)e

−MT

.

Assuming that (3.8) holds, we see from (3.7) and (3.8) that

‖uν − u‖L∞([0,T ];L∞) ≤M(T + 1)(2−nα)e
−MT

.

The estimate (3.1) follows after setting ν = 2−2n. Therefore, to com-
plete the proof of Theorem 3, it remains to prove (3.8).
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4. Proof of (3.8)

We begin with some notation. We let un = Snu, ωn = Snω(u),
ūn = uν − un, and ω̄n = ων − ωn. Throughout most of the proof of
(3.8), the time t is fixed and suppressed in the calculations.

Fix p ∈ (1,∞) (to be chosen later). We apply Bernstein’s Lemma
and (3.4) to establish the estimate

‖uν − u‖B0
∞,∞ ≤ sup

−1≤l≤2
‖∆−1(uν − u)‖L∞ + sup

3≤l≤p
2−l‖∆l(ων − ω)‖L∞

+ sup
l>p

2−l‖∆l(ων − ω)‖L∞ .

(4.1)

The separation of frequencies at l = 2 will simplify estimates in what
follows.

We will first consider the difference sup3≤l≤p 2−l‖∆l(ων−ω)‖L∞ . We
will eventually need to estimate the viscosity term ν‖∆ω‖L∞ . To fa-
cilitate this estimate, we smooth out the Euler vorticity and write

sup
3≤l≤p

2−l‖∆l(ων − ω)‖L∞ ≤ sup
3≤l≤p

2−l‖∆lω̄n‖L∞

+ sup
3≤l≤p

2−l‖∆l(ωn − ω)‖L∞
(4.2)

≤ sup
3≤l≤p

2−l‖∆lω̄n‖L∞ + sup
l≥n

2−l‖∆l(ωn − ω)‖L∞

≤ sup
3≤l≤p

2−l‖∆lω̄n‖L∞ +M2−n,

where we used properties of the Fourier support of ωn to get the second
inequality. We now estimate sup3≤l≤p 2−l‖∆lω̄n‖L∞ . We note that ων
and ωn satisfy the following two equations:

(4.3) ∂tων + uν · ∇ων − ν∆ων = 0,

and

(4.4) ∂tωn + un · ∇ωn = ∇ · τn(u, ω),

where
τn(u, ω) = (u− un)(ω − ωn)− rn(u, ω),

and

rn(u, ω) =

∫
ψ̌(y)(u(x− 2−ny)− u(x))(ω(x− 2−ny)− ω(x))dy.

The equation (4.4) was utilized by Constantin and Wu in [6] and by
Constantin, E, and Titi in a proof of Onsager’s conjecture in [5]. We
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subtract (4.4) from (4.3) and, for fixed l, we apply the Littlewood-
Paley operator ∆l to the difference of the two equations. After adding
(Sl−2uν) · ∇∆lω̄n to both sides of the resulting equation, we obtain

∂t∆lω̄n + (Sl−2uν) · ∇∆lω̄n − ν∆∆lω̄n = (Sl−2uν) · ∇∆lω̄n −∆l(uν · ∇ω̄n)

−∆l(ūn · ∇ωn) + ν∆∆lωn −∆l∇ · τn(u, ω).

(4.5)

Borrowing notation from [15], we define

I l,k = (Sl−2u
k
ν)∂k∆lω̄n − ∂k∆l(u

k
νω̄n),

J l,k = −∂k∆l(ū
k
nωn).

(4.6)

From (4.5), we see that

∂t∆lω̄n + (Sl−2uν) · ∇∆lω̄n − ν∆∆lω̄n

=
2∑

k=1

(I l,k + J l,k) + ν∆∆lωn −∆l∇ · τn(u, ω).
(4.7)

Since Sl−2uν belongs to L1
loc(R+;Lip(R2)) and is divergence-free, we

can apply the following lemma for the transport diffusion equation
from [11].

Lemma 1. Let p ∈ [1,∞], and let u be a divergence-free vector field
belonging to L1

loc(R+;Lip(Rd)). Moreover, assume the function f be-
longs to L1

loc(R+;Lp(Rd)) and the function a0 belongs to Lp(Rd). Then
any solution a to the problem{

∂ta+ u · ∇a− ν∆a = f,
a|t=0 = a0

satisfies the following estimate:

||a(t)||Lp ≤ ||a0||Lp +

∫ t

0

||f(s)||Lpds.

An application of Lemma 1 to (4.7) yields

‖∆lω̄n(t)‖L∞ ≤ ‖∆lω̄n(0)‖L∞ +

∫ t

0

(
2∑

k=1

(‖I l,k(s)‖L∞ + ‖J l,k(s)‖L∞
)
ds

+

∫ t

0

(ν‖∆∆lωn(s)‖L∞ + ‖∆l∇ · τn(u, ω)(s)‖L∞) ds.

(4.8)

Our goal is to establish an upper bound for sup3≤l≤p ‖∆lω̄n(t)‖L∞ . In
what follows, we will estimate each term on the right hand side of
(4.8), multiply by 2−l, and take the supremum over l satisfying 3 ≤
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l ≤ p. Estimates for the last two terms on the right hand side of
(4.8) follow from work in [7]. Indeed, in [7] we use boundedness of the
Euler vorticity and membership of the Euler velocity to Cα(R2) for any
α ∈ (0, 1) to show that for such α,

(4.9) sup
l≥0

2−l‖∆l∇ · τn(u, ω)‖L∞ ≤ ‖∇ · τn(u, ω)‖L∞ ≤M2−nα.

We also showed in [7], using Bernstein’s Lemma and properties of the
Fourier support of ωn, that

(4.10) sup
l≥0

2−lν‖∆l∆ωn‖L∞ ≤ 2nν‖ωn‖L∞ ≤M2−n,

where we set ν = 2−2n. To estimate the initial data, we utilize the
Fourier support of ω0

n = Snω
0 to write

(4.11) sup
3≤l≤p

2−l‖∆lω̄n(0)‖L∞ ≤ sup
l≥n

2−l‖∆lω̄n(0)‖L∞ ≤M2−n.

Multiplying (4.8) by 2−l, taking the supremum of (4.8) over l satisfying
3 ≤ l ≤ p, and applying the estimates (4.9), (4.10), and (4.11) gives

sup
3≤l≤p

2−l‖∆lω̄n(t)‖L∞ ≤M(t+ 1)2−nα

+ sup
3≤l≤p

2−l
∫ t

0

(
2∑

k=1

(‖I l,k(s)‖L∞ + ‖J l,k(s)‖L∞
)
ds.

(4.12)

It remains to estimate I l,k and J l,k. We begin with J l,k. We again
borrow notation from [15] and use Bony’s paraproduct decomposition
to write

J l,k = −∂k∆l

∑
|j−l|≤3,j≥1

Sj−2ū
k
n∆jωn

− ∂k∆l

∑
|j−l|≤3,j≥1

∆jū
k
nSj−2ωn

− ∂k∆l

∑
|j−j′|≤1,max{j,j′}≥l−3

∆jū
k
n∆j′ωn

= J l,k1 + J l,k2 + J l,k3 .

(4.13)

We estimate J l,k1 . Several applications of Bernstein’s Lemma give

‖J l,k1 ‖L∞ ≤ 2l
∑

|j−l|≤3,j≥1

‖Sj−2ūn‖L∞‖∆jωn‖L∞

≤ 2l
∑

|j−l|≤3,j≥1

‖∆jω‖L∞
∑
k≤j−2

‖∆kūn‖L∞ .
(4.14)
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Multiplying by 2−l and taking the supremum over l satisfying 3 ≤ l ≤ p,
we conclude that

(4.15) sup
3≤l≤p

2−l‖J l,k1 ‖L∞ ≤Mp‖ūn‖B0
∞,∞ .

We now estimate J l,k2 . We write

‖J l,k2 ‖L∞ ≤ 2l
∑

|j−l|≤3,j≥1

‖∆l(∆jūnSj−2ωn)‖L∞

≤ 2l
∑

|j−l|≤3,j≥1

‖∆jūn‖L∞‖Sj−2ωn‖L∞
(4.16)

so that

(4.17) sup
3≤l≤p

2−l‖J l,k2 ‖L∞ ≤M‖ūn‖B0
∞,∞ .

To estimate J l,k3 , we use properties of Littlewood-Paley operators to
observe that

‖J l,k3 ‖L∞ ≤ 2l
∑

|j−j′|≤1,max{j,j′}≥l−3

‖∆jūn‖L∞‖∆j′ωn‖L∞

≤ C2l
∑
j≥l−3

‖∆jūn‖L∞‖∆jωn‖L∞ ≤ C2l‖ω‖L∞‖ūn‖B0
∞,1
.

(4.18)

We estimate the B0
∞,1-norm of ūn as follows. We bound the low frequen-

cies using the definition of B0
∞,∞ and we estimate the high frequencies

using Bernstein’s lemma, (3.4), and boundedness of vorticity. We have
the series of estimates

‖ūn‖B0
∞,1
≤

p∑
j=−1

‖∆jūn‖L∞ +
∑
j>p

2−j‖∆jω̄n‖L∞

≤ Cp‖ūn‖B0
∞,∞ +M2−p.

(4.19)

Substituting this estimate into (4.18), multiplying by 2−l and taking
the supremum over l between 3 and p yields the estimate

(4.20) sup
3≤l≤p

2−l‖J l,k3 ‖L∞ ≤M
(

2−p + p‖ūn‖B0
∞,∞

)
.

Combining the estimates for (4.15), (4.17), and (4.20), we conclude
that

(4.21) sup
3≤l≤p

2−l
2∑

k=1

‖J l,k‖L∞ ≤M(2−p + p‖ūn‖B0
∞,∞).
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We now estimate I l,k for l satisfying 3 ≤ l ≤ p. We apply Theorem 6.1
of [16] to write

2∑
k=1

‖I l,k‖L∞ ≤ C
∑
|j−l|≤3

‖Sj−2∇ω̄n‖L∞‖∆juν‖L∞

+
∑
|j−l|≤3

‖Sj−2∇uν‖L∞‖∆jω̄n‖L∞

+ C2l
∑

j≥l−3,|j−j′ |≤1

2−j‖∆j∇uν‖L∞‖∆j′ ω̄n‖L∞

= X l
1 +X l

2 +X l
3.

To estimate X l
1, keeping in mind that l ≥ 3, we use Bernstein’s Lemma

and (3.4) to write∑
|j−l|≤3

‖Sj−2∇ω̄n‖L∞‖∆juν‖L∞ ≤ C2l
∑
|j−l|≤3

‖Sj−2ūn‖L∞‖∆jων‖L∞ .

The remainder of the estimate for X l
1 is identical to that for J l,k1 . Mul-

tiplying by 2−l and taking the supremum over l between 3 and p, we
conclude that

(4.22) sup
3≤l≤p

2−lX l
1 ≤Mp‖ūn‖B0

∞,∞ .

To estimate X l
2 for 3 ≤ l ≤ p, we again apply Bernstein’s Lemma

and (3.4) to write

X l
2 =

∑
|j−l|≤3

‖Sj−2∇uν‖L∞‖∆jω̄n‖L∞

≤ C2l
∑
|j−l|≤3

(‖uν‖L∞ + (j − 1)‖ων‖L∞)‖∆jūn‖L∞

≤Ml2l
∑
|j−l|≤3

‖∆jūn‖L∞ .

(4.23)

To get the first inequality above, we bounded the term ‖Sj−2∇uν‖L∞
above by the sum resulting from the Sj−2 operator. We then applied
(3.4). After multiplying (4.23) by 2−l and taking the supremum over l
satisfying 3 ≤ l ≤ p, we find that

(4.24) sup
3≤l≤p

2−lX l
2 ≤Mp‖ūn‖B0

∞,∞ .
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The estimate for X l
3 is similar to that for J l,k3 . For l satisfying 3 ≤ l ≤ p,

we write

X l
3 = C2l

∑
j≥l−3,|j−j′ |≤1

2−j‖∆j∇uν‖L∞‖∆j′ ω̄n‖L∞

≤ C2l
∑
j≥l−3

‖∆jων‖L∞‖∆jūn‖L∞ ,
(4.25)

where we used Bernstein’s Lemma and (3.4) to get the last inequality.
We now use the same argument as that in (4.18) and (4.19) to conclude
that

(4.26) sup
3≤l≤p

2−lX l
3 ≤M

(
2−p + p‖ūn‖B0

∞,∞

)
.

Combining the above estimates for X l
1, X l

2, an X l
3, we have

(4.27) sup
3≤l≤p

2−l
2∑

k=1

‖I l,k‖L∞ ≤M
(

2−p + p‖ūn‖B0
∞,∞

)
.

Applying the estimates (4.21) and (4.27) to (4.12), we conclude that

sup
3≤l≤p

2−l‖∆lω̄n(t)‖L∞ ≤ C(t+ 1)2−nα +M

∫ t

0

(
2−p + p‖W (s)‖Ḃ0

∞,∞

)
ds

(4.28)

for any α ∈ (0, 1). We substitute (4.28) into (4.2). This gives

sup
3≤l≤p

2−l‖∆l(ων − ω)(t)‖L∞ ≤ C(t+ 1)2−nα

+M

∫ t

0

(
2−p + p‖ūn(s)‖Ḃ0

∞,∞

)
ds.

(4.29)

Inspection of (4.1) reveals that we must still estimate sup−1≤l≤2 ‖∆l(uν−
u)(t)‖L∞ and supl>p 2−l‖∆l(ων − ω)(t)‖L∞ . These two terms are more

straightforward. We estimate the term supl>p 2−l‖∆l(ων−ω)(t)‖L∞ by
observing that

(4.30) sup
l>p

2−l‖∆l(ων − ω)(t)‖L∞ ≤M2−p.

To estimate sup−1≤l≤2 ‖∆l(uν − u)(t)‖L∞ , we use the velocity formula-
tion. Setting p̄ = pν − p and ū = uν − u, we subtract (E) from (NS).
This gives

(4.31) ∂tū+ uν · ∇ū+ ū · ∇u− ν∆ū = −∇p̄+ ν∆uν .
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We apply ∆l to (4.31) for −1 ≤ l ≤ 2. This gives

∂t∆lū+ (∆luν) · ∇∆lū− ν∆l∆ū = (∆luν) · ∇∆lū

−∆l(uν · ∇ū)−∆l(ū · ∇u)−∆l∇p̄+ ν∆l∆uν .
(4.32)

Again by Lemma 1, we have

‖∆lū(t)‖L∞ ≤
∫ t

0

(‖(∆luν · ∇∆lū)(s)‖L∞ + ‖∆l(uν · ∇ū)(s)‖L∞

+ ‖∆l(ū · ∇u)(s)‖L∞ + ‖∆l∇p̄(s)‖L∞ + ν‖∆l∆uν(s)‖L∞) ds.

(4.33)

We have the following straightforward estimates, all which follow from
Bernstein’s Lemma and the divergence-free property of the velocity:

‖(∆luν) · ∇∆lū‖L∞ ≤ C‖uν‖L∞2l‖∆lū‖L∞ ≤M2l‖ū‖L∞ ,
‖∆l(uν · ∇ū)‖L∞ ≤ C2l‖uν‖L∞‖ū‖L∞ ≤M2l‖ū‖L∞ ,
‖∆l(ū · ∇u)‖L∞ ≤ 2l‖ū‖L∞‖u‖L∞ ≤M2l‖ū‖L∞ ,
ν‖∆l∆uν‖L∞ ≤ Cν22l‖uν‖L∞ ≤Mν22l.

(4.34)

To estimate the pressure, we follow an argument in [15]. For 0 ≤ l ≤ 2,

‖∆l∇p̄‖L∞ =

∥∥∥∥∥∥
2∑

i,i′=1

RiRi′∇∆l(ū
iui
′

+ uiν ū
i
′

)

∥∥∥∥∥∥
L∞

≤ ‖RiRi′∇ϕ̌l‖L1‖ūiui
′

+ uiν ū
i
′

‖L∞ ≤M2l‖ū‖L∞ ,

(4.35)

where we applied the series of estimates ‖RiRi′∇ϕ̌l‖L1 ≤ ‖RiRi′∇ϕ̌l‖H1 ≤
‖∇ϕ̌l‖H1 ≤ C2l to get the last inequality. For the case l = −1, we apply
the same series of estimates as in (4.35) with ψ̌ in place of ϕ̌l.

Substituting the estimates (4.34) and (4.35) into (4.33) and taking
the supremum over −1 ≤ l ≤ 2 yields

sup
−1≤l≤2

‖∆lū(t)‖L∞ ≤M

∫ t

0

(‖ū‖L∞ + 2−2n),(4.36)

where we used the equality ν = 2−2n. We now apply the embedding
B0
∞,1 ↪→ L∞, along with (4.19) to conclude that

(4.37) sup
−1≤l≤2

‖∆lū(t)‖L∞ ≤Mt2−2n +M

∫ t

0

(p‖ū(s)‖B0
∞,∞ + 2−p) ds.
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We substitute the estimates (4.37), (4.29), and (4.30) into (4.1). We
conclude that

sup
l≥−1
‖∆lū(t)‖L∞ ≤M(T + 1)2−nα

+M2−p +

∫ t

0

M
(

2−p + p‖ū(s)‖B0
∞,∞

)
ds.

(4.38)

To complete the proof of (3.8), we will apply Osgood’s Lemma to (4.38).
We first note that by the embedding L∞ ↪→ B0

∞,∞,

‖ū(t)‖B0
∞,∞ ≤ ‖ū(t)‖L∞ ≤ ‖uν(t)‖L∞ + ‖u(t)‖L∞ ≤M

for all t ∈ [0, T ]. For each t ∈ [0, T ], set

(4.39) δ(t) =

∫ t
0
‖ū(s)‖B0

∞,∞

MT
≤ 1,

and set p = 2− log δ(t). Then (4.38) reduces to

‖ū(t)‖B0
∞,∞ ≤M(T + 1)2−nα

+M(T + 1)δ(t) +M2T (2− log2 δ(t))δ(t).
(4.40)

Integrating both sides over [0, t] and dividing both sides by MT yields
the inequality

δ(t) ≤ (T + 1)2−nα +

(
T + 1

T
+M

)∫ t

0

(2− log2 δ(s))δ(s) ds.(4.41)

We are now in a position to use Osgood’s Lemma. A proof of the
lemma can be found in [3].

Lemma 2. (Osgood’s Lemma) Let ρ be a positive borelian function,
and let γ be a locally integrable positive function. Assume that for
some strictly positive number β, the function ρ satisfies

ρ(t) ≤ β +

∫ t

t0

γ(s)µ(ρ(s)) ds.

Then

−φ(ρ(t)) + φ(β) ≤
∫ t

t0

γ(s) ds,

where φ(x) =
∫ 1

x
1

µ(r)
dr.
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We set
µ(r) = r(2− log r),

ρ(t) = δ(t),

β = (T + 1)2−nα, and

γ(t) =
T + 1

T
+M := C0(M,T ),

and we apply Osgood’s Lemma to obtain following inequality for any
t ≤ T :

− log(2− log δ(t)) + log(2− log((T + 1)2−nα)) ≤ C0(M,T )t.

Taking the exponential twice gives

(4.42) δ(t) ≤ e2−2e−C0(M,T )t

((T + 1)2−nα)e
−C0(M,T )t

.

The inequality (3.8) follows after substituting (4.42) into (4.40) and
letting ν = 2−2n. �
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