UNIQUENESS FOR ACTIVE SCALAR EQUATIONS IN A ZYGMUND
SPACE

ELAINE COZZI

ABSTRACT. We consider a class of active scalar equations which includes, for example, the
2D Euler equations, the 2D Navier-Stokes equations, and various aggregation equations
including the Keller-Segel model. For this class of equations, we establish uniqueness of
solutions in the Zygmund space C?. This result improves upon that in [1], where the authors
show uniqueness of solutions in BMO. As a corollary of our methods, we establish the
uniform in space vanishing viscosity limit of Holder continuous solutions to the aggregation
equation with Newtonian potential.

1. INTRODUCTION

In this paper we investigate uniqueness of solutions for a class of active scalar equations

of the form

Op+ V- (pVp) = vAp, (1.1)
where v > 0 is a fixed constant, V' is, broadly speakly, a linear smoothing operator of order
one, and p : R¥x [0, T] — R is the unknown scalar-valued function of space and time variables.
Examples of PDE in this class include the two-dimensional Euler equations or Navier-Stokes
equations, where p denotes the scalar vorticity, and some aggregation equations, including
the Keller-Segel model [3, 4] and the inviscid aggregation equation with Newtonian potential
[8, 5], where p typically denotes the density of some population.

Our goal is to show uniqueness of weak solutions to (1.1) in the Zygmund space C?(RY),
with d = 2 or 3. This is, to our knowledge, the strongest uniqueness result for this class
of equations, improving upon a recent result of Azzam and Bedrossian [1], who establish
uniqueness in the space BM O(Rd). To prove our result, we use Littlewood-Paley theory
and Bony’s paraproduct decomposition to estimate the difference of two solutions to (1.1)
in a homogeneous Besov space B(; L, with ¢ < co. Our methods are similar to those in
[1] in that our uniqueness proof utilizes energy methods in a homogeneous space (in [1] the
authors use the space H~1). Unlike [1], however, we make use of Littlewood-Paley operators
to prove estimates which are localized in Fourier space, allowing for a sharper result. Our
techniques are motivated by those in [11], where Vishik applies Littlewood-Paley methods to
prove uniqueness of solutions to the Euler equations in a Besov type space which contains
o,

As a corollary of our uniqueness theorem, in Section 4 we establish the uniform-in-space
vanishing viscosity limit of the aggregation equation with Newtonian potential for weak solu-
tions in a Holder space C®, « > 0. This result is an improvement of a result in [8], in which
the authors establish the vanishing viscosity limit for strong solutions in C* with @ > 1. Our
strategy is to first apply methods from the uniqueness proof to establish a B; L estimate for
the difference of the solutions of the viscous and inviscid equations, respectively. We then use
interpolation and Holder regularity of the solutions to derive an estimate in the L°°-norm.
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The paper is organized as follows: in Section 2, we introduce the Littlewood-Paley op-
erators and useful function spaces. We also state a few useful lemmas. We then introduce
properties of solutions to the aggregation equation with Newtonian potential. In Section
3, we prove uniqueness of solutions to (1.1) in C?. In Section 4, we apply estimates from
Section 3 to establish the vanishing viscosity limit of solutions to the aggregation equation
with Newtonian potential.

2. BACKGROUND AND PRELIMINARY LEMMAS

2.1. Littlewood-Paley Operators and Function Spaces. We first define the Littlewood-
Paley operators. We let ¢ € S(R?) satisfy supp ¢ C {£ € R? : % < gl < %}, and for every
j € Z welet p;(&) = p(279€) (so pj(z) = 2793(27x)). Observe that, if |j — j'| > 2, then supp
@j N supp @jr = 0. We define ¢, € S(R%) by the equality

n(§) = 1= ¢;(¢)

j>n

for all ¢ € RY. For f € S'(R?) and j € Z, we define the inhomogeneous Littlewood-Paley
operators A; by

07 ] < _17
Ajf: ¢—1*f7 ]:_1>
Sb] * f7 J > _17
and for all j € Z, we define the homogeneous Littlewood-Paley operators Aj by
Ajf = Sbj * f
Note that Ajf = Ajf when j > 0.
Finally, for f € S’(R?) we define the operator S, f by

Suf =tnxf= Y Af

j=—o00

It is well known that for all f € S’(R?), S,,f converges to f in the sense of distributions (see,
for example, [7]).

In the proof of the main theorem we use the paraproduct decomposition introduced by
J.-M. Bony in [6]. We recall the definition of the paraproduct and remainder used in this
decomposition.

Definition 2.1. Define the paraproduct of two functions f and g by
oo
Trg= Y AifDjg=> SiafAjg.

Y Jj=1

i<j—2
We use R(f,g) to denote the remainder. R(f,g) is given by the following bilinear operator:

R(f,9)= > AifhAg.

ji-jl<1

Bony’s decomposition then gives

fg="Trg+Tyf + R(f,9).
We now define the homogeneous and inhomogeneous Besov spaces.
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Definition 2.2. Let s € R, (p,q) € [1,00] X [L,00). The inhomogeneous Besov space Bj ,(RY)
is defined to be the space of tempered distributions f on R?® such that

00 q

115, = | D 2UA L | < oo

j=—1
When q = oo, write
1fl|Bs o = sup 2°[[A; [ -
j>—1

Let s € R, (p,q) € [1,00] x [1,00). The homogeneous Besov space B;Q(Rd) is defined to be
the space of tempered distributions f on R% such that
o .
g
£y, = | Do 2NN | < oo
Jj=—00

When q = oo, write
[ fllgs == sup2”®(|A; fl[ -
D,00 jez

We also define the Zygmund spaces.

Definition 2.3. Let s € R. The Zygmund space C2(R?) is the set of all tempered distributions
f on R¢ such that

os = sup 25| A fl|L= < 0.
j>—1

171

It is well-known that C?(R%) coincides with the classical Holder space C*(R?) when s is
not an integer and s > 0.

2.2. Useful Lemmas. We will make frequent use of Bernstein’s Lemma. We refer the reader
to [7], chapter 2, for a proof of the lemma.

Lemma 2.4. (Bernstein’s Lemma) Let r1 and ro satisfy 0 < r; < ro < 0o, and let p and q
satisfy 1 < p < q < oo. There exists a positive constant C such that for every integer k, if u
belongs to LP(RY), and supp @ C B(0,71)\), then

1_1
sup ||0%ul|ra < CENFTG | 1o (2.1)
o=k

Furthermore, if supp @ C C(0,71 X\, r2\), then

C NF||ul| e < sup [|0%]|zr < CEXF||ul|Le. (2.2)
la|l=k

We also make use of the following positivity lemma. A proof of the lemma can be found
in [9].

Lemma 2.5. Assume [ satisfies f, Af € LP(RY) for some p € [2,00). Then

—/yﬂ%%Aﬂmzo
]Rd

Finally, Osgood’s Lemma will be useful in what follows. A proof of the lemma can be
found in [7].
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Lemma 2.6. (Osgood’s Lemma) Let p be a positive borelian function, let v be a locally
integrable positive function, and let u be a continuous, increasing function. Assume that for
some number > 0, the function p satisfies

p(t) < B+/ v(s)u(p(s)) ds.

to

If 8 >0, then
—p(p(t)) + 6(8) < / 7(s) ds,

to

where ¢(x) = f; ﬁ dr. If 8 =0, and i satisfies
/ A
o m(r) 7

2.3. Properties of the smoothing operator V. In what follows, we assume that V is a
linear operator satisfying the following properties:

then p is identically zero.

P1) For each p € (1,00) and f € LP(R?), |[VV f||» < C )| fllLe-

P2) V commutes with the Littlewood-Paley operators, and for all f € S’(R?), there ex-
ists C' > 0 such that for all j € Z, [[VV A f||re < C||A; f| L.

P3) Given p and ¢ with 1 < p < ¢ < oo and 1 —|—% = d%dl + %, for all f € LP(R?), there exists
C > 0 such that ||V f|lLe < C|fllLe-

Note that P1 is motivated by the boundedness of Calderon-Zygmund operators on LP,
p € (1,00), while P3 is motivated by the Hardy-Littlewood-Sobolev inequality.

2.4. Definition of weak solution to (1.1). We will use the following definition of a weak
solution to (1.1) in Section 3.

Definition 2.7. We say that p : [0,T] x R? — R is a weak solution to (1.1) on [0,T] if p
belongs to L?(0,T; L*(R?)) and if for all ¢ € C([0,T] x R%),

T
/ / p(oe +Vp-Vo+ vAg)dxdt.
0o Jrd

Equivalently, to say that p is a weak solution to (1.1) means that (1.1) holds in the sense of
distributions.

2.5. The Aggregation Equation with Newtonian Potential. The aggregation equation
with Newtonian potential is given by
Op” + V- (p"0") = vAp",
(AG,) v¥ ==V xp¥,
p”(0) = po-
Here ® denotes the Newtonian potential, p¥ is the density, and v” is the velocity. The system

(AG,) represents a limiting case of the Keller-Segel equation modeling chemotaxis. Note also
that (AG,) is a special case of (ASE) with Vp” = —V® % p”.
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In Section 4, we establish the vanishing viscosity limit of C* solutions to (AG,) for any
fixed @ > 0. The vanishing viscosity limit for (AG,) is addressed in [8], where the authors
establish the limit under the assumption that the solutions belong to C¢ for o > 1.

The solutions under consideration in Section 4 are weak solutions, satisfying Definition
2.7 above. We will assume in addition that the limiting solution p° to (AGy) is a so-called
Lagrangian solution. Properties of Lagrangian solutions to (AGp) are discussed at length in
Section 5 of [8]. We define Lagrangian solutions here and state a few properties that will be
useful in Section 4. We refer the reader to [5] and Section 5 of [8] for further details.

Definition 2.8. Fiz T > 0. Let X : [0,T] x R? — R? with X(t,-) a homeomorphism for all
t €10,T] and let py € L= (R%). Define p°: [0,T] x R — R by

_ po(X Mt )
pl(t,2) = 1 —OtPO(Xfl(t’ 7))

(2.3)

and let v° ;= —V®xp°. Here, X1 is defined by X ' (t, X (t,z)) = x for all (t,x) € [0, T] xR%.
Then (X, p°,v%) (or more simply p°) is a Lagrangian solution to (AGq) with initial density
po if X is the flow map for v°; that is, if

t
X(t,x):x+/0 (s, X (s,z)) ds

for allt >0, z € RY,

We remark that a Lagrangian solution p® to (AGp) is also a weak solution to (AGy); see,
for example, Theorem 5.4 of [8] and its proof.

The short-time existence of C* Lagrangian solutions to (AGy) in dimensions 2 and 3 with
compactly supported initial density was first established in [5], with an alternate proof given

in [8]. It follows from the equality (2.3) that, for each t € [0, m), Lagrangian solutions
satisfy
ol o>

1P° @)L < 7 =, (2.4)

(A T P
and for all g € [1, 00),

1_
1° @)l zs < llpollza (1 = llpollz=t) . (2.5)

Moreover, if the support of the initial density pg is contained in a ball of radius Ry, then for
each fixed ¢t € [0,T), p°(t) has compactly support in R, and the support of p°(t) is contained
in a ball of radius

R(t) = Ro + (leollr + llpoll o). (2.6)

1—Tlpol Lo~

Finally, for C* Lagrangian solutions to (AGp), a € [0,1), the following inequality holds for
each t € [0,7):

IVX ()]l zoo, [VX (B[l < C(T [lpollzr llpolica)- (2.7)
If, in addition, pg is in C*(R?), then by the quotient rule, for each t € [0,7),

IV ()l < (1 + Ctllpollze) |1 = tp0) M Zoe [ Vool VX TH ()] Lov- (2.8)
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3. STATEMENT AND PROOF OF UNIQUENESS
In this section we prove the following theorem.

Theorem 3.1. Let T > 0 and let py and py satisfy 1 < py < d < p; < co. Assume p*
and p? are weak solutions of (1.1) in C([0,T); LPo N LP N C2(R?)) such that p§ = p2. Then
pt(t) = p%(t) for every t €[0,T).

Proof. To prove Theorem 3.1, we estimate the difference between p' and p? in the homoge-
neous Besov space B L for ¢ sufficiently large.
Assume that p!' and p? solve (1.1). Let p = p* — p?. Then p satisfies

Op+V - (pVp1)+ V- (p2Vp) = vAp. (3.1)
For fixed [ € Z, we apply the A, operator to (3.1). This gives
atAlﬁ — I/AAlﬁ = —(AN . (ﬁVpl) -+ AN . (pQVﬁ)) = —(Al + Bl). (3.2)

We must manipulate 4; = A;V - (5V p1) further. By the product rule,
A=AV - (V1) =V - [A(Vpip) — Si—2Vp1Aip] + V- (Si—aVp1 Ayp)
= R/(Vp1,p) + V- (SieaVp1 A, p)
= Ri(Vp1,p) + VA p-SioVp1 + A pV - Si_2V
= Ri(Vp1,p) + Al + A,
where
Ri(Vp1,p) =V - [A(Vp1p) — SiaVprAipl,
Al =VA; p-Si_sVp1, and
A} =A; pV - S5V py.
In order to utilize Property P3 of V in what follows, we assume s satisfies 1 + % = % +

and we fix ¢ € [2,00) sufficiently large to justify the calculations. We multiply (3.2)
A;p|A;p|9~2 and integrate to obtain

1d . ) ) )
- A2, — AplApIT2AA B
7t Jon 14170 V/Rd 10| APl 1P

= —/Rd AplAplT ARV p1, p) + Al + A7 + By).

)

(3.3)

It follows from Lemma 2.5 that
—v /R CAplAplT? AL > 0.
Moreover, it follows from integration by parts that
/R AiplAipl? AL de < © /R 1812 VV | Aupl? da < ClIS-2VV pr| e | A
Then (3.3) reduces to
%HAzﬁH%q < q(Apll T 1RV prs p) oo + 1Al 50 | A7 o
+ 1Al T 1 Billza + CllSi-2VV pi o<l Aupll ).
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After taking the time derivative of the left hand side and dividing through by qHAlﬁHqul, we
conclude that

d. . _ _ Lo
@HAZPHLQ < |[Ri(Vp1, p)llze + [|AF || ze + | Billze + ClSi—2VV pill e[| Aipl| Lo (3.5)

We now estimate the terms on the right hand side. In what follows, we assume p > 2 is fixed
(to be chosen later).

We begin with ||S;_oVV p1||e||Aip||ze. First note that S;_sVVp; = 0 when [ < 0, so we
may assume that [ > 1. For the case [ > 1, Bernstein’s Lemma and property P2 of V' imply
that

-2
1S1-2VV il < A1V il + D 1AV V 1| Lo
k=0
. (3.6)
< CIA_1VVpr|Le + Z [Axp1llLee < Cllprllzer + (I = 1) p1llco-
k=0

This gives

swp 27|82 YV il Al e < Cllorlleos + (0= Dllorlleo) ol 5y
—oco<I<p ’ (37)
< Clp—=Dllprllize + lerlleo)lloll g1, -

We now estimate || By|ze = [|A/V - (p2V p)||za. Following [10], we define
T = O A ((Vﬁ)km) :
and we use Bony’s paraproduct decomposition to write
TR =AY S (V) Ajpa+ OA Y Aj(VD) Sjap
l7—1<3,j>1 l7—1<3,5>1
l7—3'1<1,max{j,j'} >1-3
= VR TR TR

We first estimate J{’k in the L9-norm. By Bernstein’s Lemma and properties P1 and P2 of
v,

Lk _ _
177 e <28 ) 1852V pllall Ajpalroe <28 D lpallce > 1AVl
li—Ul<3,521 i—1]<3,5>1 k<j—2

I+1
< C2pallco D ARV AL < C2'p2llco (HA—leHLq +)° IIAkVplqu>
E<l+1 k=0

I+1
< C2||p2llco (I!A—leHLq + ZQkHAkﬂHLq>
k=0
< C?llicy (IA-1Vallza + @ +2)lpl 51, )
Multiplying by 27! and taking the supremum over I < p gives

—1y 7Lk _ _
sup 2717110 < Cllally (I1A-1Vallza + (0 +2) 12l 5. ) -
—oo<I<p ’
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We now estimate Jé’k in the L9-norm. Again by Bernstein’s Lemma and properties P1 and
P2 of V,

1k _ . _
5% <28 > 11SjmapallrelAValle <28 > dllp2lloo| AV Le

li—1]<3,5>1 l7-11<3,5>1
<20 Y leellee2 1A VVallLe < C2 max{l+ 3,1} p2llcollpl 1. -
li—11<3,5=>1

Multiplying by 27! and taking the supremum over | < p gives

—1y 7Lk
sup 27137 e < Clp2]
—oo<I<p

co(p+3)ll g1 -

Finally, we estimate Jék. By Bernstein’s Lemma and properties of Littlewood-Paley opera-
tors,

1k
/3

w0 S 1Al AVl < Il eallVAlm, (5
j>max{l-3,—1}

By Bernstein’s Lemma and property P1 of V,

p—1
IVolpe, < 1AaVAlLe + D AVl + Y 1AV 7 Lo
j=0 Jj>p
pl . 'd(i l) .
<A VAL + > 27918, VVp| e + Y 2T @) 279 | AV V| o
j=0 Jjzp

_pd
< NAVpllze +pllpll g 1 +27  [lpllze

where we used that p; > d to get the last inequality. Substituting this estimate into (3.8),
multiplying by 27!, and taking the supremum over [ < p gives

—1y 7Lk
sup 27! J5" | e < Clp2]
—oo<lI<p

_pd
co (I1A-1Valle +ploll gy +2 5 llln ). (39)

Combining the estimates for J{’k, Jé’k, and Jé’k, we conclude that

sup 27 |Biflpa = sup 27Y|AV - (p2V )| La
—oco<I<p —oo<I<p

d
< sup > 27N (1 e + 15 e + 195" o) (3.10)

—oo<I<p k=1

< Cllpe|

_pd
co (I1A-1Vallze + (o + 3ol g1 +27 % e )

We now estimate R;(Vp1,p) = V - (A(Vp1p) — Si_2Vp1Ap). We follow techniques used
in [11] and [2]. Specifically, we write

R, = R} + R} + R} + R}, (3.11)
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where

Rl =V - (AT,V 1),

R} = =V - [Tv,,, Allp,

R} =V - (Tvp,-5_yvo AP,

R =V {AZR(Vplvﬁ) — R(S1-2Vp1, Azﬁ)} :

(3.12)

By estimating each of the four terms individually, we will show that

Sup_ 27| RillLa < Clllpallc + llorllzo + 1AV pr <)
—oo<t<p
7 7 o (3.13)
X ([[A-apllre + (0 +3)pll g1 +27 < [[pll o)

We begin with Rll. By Bernstein’s Lemma and property P2 of V,

IR e <28 > 11Sj-2pllLe |l AV pul oo
-1<3,5>1
<2 3 N 22 E A a2 VA Vil
li—1|<3,j>1 k<j—2 (3.14)
<2 3 2 Y oAl A p
G-11<3>1  k<j-2

< 2 prllos (A1l o + max{1,1+ 2} 7] 5.1)-

ool

Multiplying by 27 and taking the supremum over | < p gives

sup 27| Ry |2 < Cllpu
—oo<I<p

co(lA-1pllze + (p+ 2ol g1 )- (3.15)

We now estimate Rlz. Writing out the commutator and using properties of Littlewood-Paley
operators gives

R} ==V -[Tv,,,Ajp= -V - (TVplAlﬁ - Al(Tvplﬁ)>

=-V-| > SiaVedAp-A > S VpAp
J>1,|5-1<3 J21,15-1<3
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Applying the L%-norm, Bernstein’s Lemma, and property P2 of V' gives

IR |lLe < 24| > (Sj—QVmAjAzﬁ - Al(Sj—szAjﬁ))
§>1,j-1l<3 La

=2 > /Rd 1Y) (Sj—2Vpi(z —y) — Sj—2Vp1(2)Ajp(x — y) dy

J21,5-1<3 L

<2 [ a8V =) - eV (@) = 1)z dy
J2L]j-1<3

D DR A P PNV / 2052 Iy dy
J>1,]j—1/<3 Re

<C D> 182Vl 257l e,
F21li-1I<3
< C(|A=1VVpi|pee + max{L,l + 2} p1]

c;)  sup  [|A;plLa,
7>1,]5-1<3

where we used the mean value theorem to get the last equality, and we applied a change of
variables to get the second-to-last inequality. Multiplying the resulting estimate by 27! and
taking the supremum over [ < p gives

sup 27| R2ls < CUALTV ol + (p+ 2 prlleg )l 5.
—oo<I<p ’

We now estimate R?. First note that by the product rule and properties of Littlewood-
Paley operators,

IR} e = ||V - Z Si—2(Vp1 — Si—aVp1)AjAip
i-11<3,5>1 La (3.16)
< Y AVl lApllze + Y 1AV pulle [ AVl e
k—1]<3 k—1]<3

We consider three cases separately: | < —2, —2 <[ <2, and [ > 2. For the first case, Rf’ is
identically zero. For the second case, Bernstein’s Lemma and properties P1 and P2 of V' give

IR e < [ IAAVVprllze+ Y [1AVVpillz | [|Ap]|La
|k—1|<3,k>0

+{ 1AVl + Y 1AVl | [AVA] Lo
|k—1|<3,k>0

< (1AZ1VVpillz + Cllpillco) | A1l e

+C 1A Vil + > 275Vl | 21 A7l Lo
lk—1|<3,k>0

< C(lpilizer + llpsllco)lAipllze + CUIA-1V pillzee + llptlloe) | Apll Lo
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Finally, for the third case, we can again use Bernstein’s Lemma and property P2 of V to
write

IR e < > AVl Al + > 1AVl reol| AVl e

lk—1|<3,k>0 k—1|<3,k>0
< Y AVl Al + > 27 ALYV pr || oo | Ap] e
lk—1|<3,k>0 [k—1]<3,k>0

< Cllprllcoll AwpllLa-
Combining the three cases above, multiplying by 27!, and taking the supremum over [ < p
gives

sup  27|[RP|le < C(|A-1 Vil + [l Lo + loalleo)lipll g1 -
—oo<I<p ’

Finally, we estimate R?. We do this without utilizing the difference. We first write

IR | ra < IV - AR5, Vp)llza + IV - R(Si—aV p1, Aip)||pa := | R || pa + IR}

Lo

Then using an argument similar to that in [10], we apply Bernstein’s Lemma and property
P2 of V' to deduce that

4.1 _
1B e < €20 " 1A Verllze | A s
j>max{l-3,—1}

< C2' [ AV pillp=|Acipllre + Y 277 VAV pu |l oo | A5 s
§>0

< C2' | |A L VprllpeellA 1l + Y 27712 pall |1 A Lo
Jj=0
< €2 (lprlles + I1A1Vorllze) 1]
Multiplying by 2~/ and taking the supremum over I < p gives

— 4,1 _
sup 27| R |ze < Clllprllce + 1AV prllze) 1l 51 (3.17)
—oo<I<p q,1

By the definition of B; L and Bernstein’s Lemma,

1Pl g1 < CllApla+ Y 2770 Aplpa + Y277 A 1a
’ 0<j<p i>p
_ B . jd(i*l) _
< Ol A1pllns +plpll gy, + D 27927 70 |||
jzp
_pd
< CllAaplze +pllpll g1, +27 7 llplle,

where we used that p; > d to get the last inequality. After substituting this estimate into
(3.17), we conclude that

—1) pi1 _ _ —pd
sup_ 2 NIB; e < Clllpallos + 1ALV pillzee) (1A= 1p] 2o + 012l 1, +27 < 15lle).
—oo<I<p ’
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We now estimate HRlA"QH ra. We apply the definition of the remainder term, the product rule,
properties of Littlewood-Paley operators, Bernstein’s Lemma, and property P2 of V' to write

IR e <C > 11882V Vpr|lroe |8 ApllLa +C > 1A;S1-aV 1l | A5,V pl| o
li-1<1 li—l]<1
< CIA 1S 2VVpillpe|A 1 Aipl|Le + ClA 1812V pr |l o< [ A1 AV 7| Lo

+C > (1AS-2VV il | A Apl La + 18812V 1l Lo |8 AV o)
i—1I<1,5>0

<ClA-Vpille=lAiplla +C Y7 18,V i<l Aipl| 1o
j—1I<1,5>0

<ClIA Vol + > 18jpillze | IIAAl La-
111,520

Multiplying by 27 and taking the supremum over | < p gives

—1 p4,2 0
sup 27| B2 e < 1AV prllzes + lpalleo)lpll 51,
—oo<I<p 1

Combining the estimates for Rl1 through R}, we conclude that

sup 27| Ryllze < Clllprllco + llprllze + 1A-1Vpr ] p<)
—oo<I<p

g (3.18)
X (1A-1pllze + (0 +3)Al g1, +27 < [IAllLer).

We now estimate A7 = ApV - S;_oV p1. Note that A12 is identically zero when [ < (0. For
[ > 1, write

1A1pV - Si—2VprllLa < |1 AupllLal|V - Si—2V prl| Lo

-2
<NAwpllea Y IV - AkVprlzee
k=—1
max{0,l—2}
< APl | IV-A Vil + > V- AVl
k=0

< 1Aupllza(Cllprlizer + (1 = Dllprllco),

where we used Bernstein’s Lemma and properties P1 and P2 of V' to get the last inequality.
Multiplying by 27 and taking the supremum over | < p gives

sup 27| AF|lze < Clallg 1 (lorllze + (p = Dllpallco)
—oco<I<p ’ (319)
< Clp = Dlpll g 1 Ulprllzes + llpallco)-

We now estimate the high frequencies. By Bernstein’s Lemma,

I A = —lold(E =1y _ld _pd
sup 27| Apl| o < sup 27251 5l 1o < sup 274 ||pllm < 27 ] o (3.20)
I>p I>p I>p

since p; > d by assumption.
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We integrate (3.5) in time, multiply by 27! take the supremum over [ < p, and apply the
estimates (3.7), (3.10), (3.18) and (3.19). Combining the resulting estimate with (3.20) gives

_pd t
1P g, <27 @ [lp(8)]] e +C/0 (o1 (s)llco + llp2(s)llco + llp1(s)lle + [[A-1V p1(s)| o)

_pd
< ([[A-1p(s)[[Le + 1AV ()| L + pllp(s)ll g2, +27 4 |(s) ]| 1) ds.
(3.21)

Before we apply Osgood’s Lemma, we must estimate several of the terms under the time
integral in (3.21). We first estimate ||[A_1V p(s)|/rs. Observe that, by Bernstein’s Lemma
and properties P1, P2, and P3 of V,

IA-1VDllzs < |l—p* Villza + 1AV~ Yp x Vil Lo

. ~ L _ pd(i-1y, ¥ _ _
< N—p* Volliza + Y 1AV pllLe <2777y« Vil + Cplpll g1, (3.22)
k=—p
1_

—nd 1y _
< 277Gl + Cpll g,

We must also estimate ||[A_;V p1(s)|/ L. By Bernstein’s Lemma,
A1V pi(s)llze < ClIVpr(s)llzs < Cllpi(s)Leo, (3.23)

where we again used property P3 of V.
Finally, we must estimate ||A_;p||za. By Bernstein’s Lemma and our choice of s > py,

1A-1pllze < [—p * pllzs + [A-1p = Pp * pl| s

—1
—pd( L -1 - B S
<Gy e o + 3 227 Asle (3.2
J=-p
1

Cpdf L1y _ —nd 1) _
< 277655 o + Clall g, <2778 ol + Cll g

Substituting (3.22), (3.23), and (3.24) into (3.21) gives

t
1P g1, < 270 | +C/O (Ipr(s)llco + lp2(s)llce + llpr(s)llze + llp1(s)llzro)

X (pllp(s)ll g1 +27%%p(s)l Lro ) ds
(3.25)

for sufficiently small g9 = eq(s, q).
Observe that, for ¢ sufficiently large, Bernstein’s Lemma gives

17l 1. = sup 27" | Apll e < sup 27! Apll o + sup 27| Ayp] o
’ IEZ <0 >0

1 1 . 1 1 .
gsupz—lzld(po ‘1>HAlﬁHLpo+Sup2_l2ld(f’1 Q>||Alﬁ\|Lp1
<0 >0

< Ipllzro + llpller < llptllzeonzer + |lp2llronze: -
Set

M = sup ([[p1(t)l|Lronrer + [[p2(t) || LronLer ),
te[0,7
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and for each t € [0,T7, set
s = TPy s
MT -
Let p = % (2 —1In 6(t)). Substituting this value of p into (3.25) gives
CM*(T +1)
€0

1) 5. < (
Integrating both sides from 0 to ¢ and dividing both sides by MT gives

> 5(t)(2 —In 8(t)) = C(M, T, 20)5(£)(2 — In 8(2)).

5(t) < C(M, T, ) /0 t 5(s)(2 — In &(s)) ds. (3.26)

We apply Osgood’s Lemma with p(t) = 0(t), u(r) = (2 —In r), and v(t) = C(M,T,eq) for
each t € [0, T]. This proves Theorem 3.1. O

4. THE VANISHING VISCOSITY LIMIT FOR (AG,)

In this section we establish the vanishing viscosity limit for Holder continuous solutions to
the aggregation equation with Newtonian potential. These solutions and their properties are
discussed in Section 2. We prove the following theorem.

Theorem 4.1. Let T > 0 and o > 0 be fived, and let d =2 or 3. Let p* and p° be solutions
to (AG,) and (AGy), respectively, in C(]0,T]; C%(R?)), generated from the same compactly
supported initial data py € C*(RY). There exists C > 0 such that for v sufficiently small and
foranyt <T and B < a,

v e_c
1(p” = P°)(t)[| oo < CLPO

Proof. We first apply Theorem 3.1 to show that p” converges to p° as v — 0 in the B; L -norm
for ¢ sufficiently large. Specifically, we show that under the assumptions of Theorem 4.1,

1" = P (D)l g, < CP " (4.1)

We then use interpolation and spatial regularity of p* and p° to complete the proof of Theorem
4.1.

Let x € C2°(R?) be a smooth bump function with x(z) = 1 for all z € B1(0), and x(z) = 0
for all x € B5(0)°. Set xn(z) = x(5) for each n and each z € R?, and set Po.n = XnSnpo-
Assume p¥ and p? are solutions to (AG,) and (AGy), respectively, with initial data p . For
fixed t € [0, T, write

16" = YO g < 100" = PO s, + 1005 = PO gr + 106~ YO 51
= (51(t) + 52(t) + 53(t).
We apply the proof of Theorem 3.1 to §; and d3, keeping in mind that we are now considering
the difference of two solutions generated from two distinct initial densities. The resulting
estimates on d; and d3, while similar to (3.26), will thus have an extra term on the right hand
side involving pg and pg . Specifically, one can conclude that, for j =1, 3,

”p() - pO,nH 5—1 t
5;(t) < I L O(M, T, o) / 5,(5)(2 — In §,(s)) ds. (4.2)
0

We must estimate ||pg — po.n| Byl Write

lpo = ponll g1, < llpo = Xnpoll g1, + IXnpo = XnSnpoll g1, -
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Since pyg is compactly supported, for sufficiently large n, ||po — Xnpol| Bik = 0. It remains to
estimate ||xnpo — XnSnpol| Bl By Bernstein’s Lemma, for ¢ sufficiently large,

| xnpo — XnSnPOHBQ—éo = SuIZ) 2_jHAj(Xn(P0 — Snpo))|lLa
, je
< SuglelAj(Xn(po — Snpo)) |z + sup 2771 Aj (xn(po = Snpo))ll e
1< Jz

< S.ulg27j2jd(171/q)llAj(Xn(po = Snpo))llzr + [[XnllLallpo = Snpoll Lo
j<

< IIxnllztllpo = Snpollzee + [IxnllLallpo = Snpoll Lo

< (Ixnllzr + Ixnllza) Y 2752% | Agpoll 1o
k>n
< Cni2™me < c27
for all 5 < «, where we performed a change of variables on x, to get the second to last

inequality, and where C' depends on the initial data.
Combining these estimates gives, for sufficiently large n and ¢,

lpo — pO,nHB;})O <027
for any 8 < . Substituting this estimate into (4.2) gives, for any 5 < «, and for j =1, 3,

c2?
M
By Osgood’s Lemma, for j =1, 3,

5:(t) < + C(M, T, ) /0 5:(5)(2 = In 5,(s)) ds.

9—np

log (2 — log 8, (¢)) + log <2 ~log <C )) < C(M, T, ).

Taking the exponential twice gives, for j =1, 3,

e—C(M,T,so)t

—np
5;(t) < 22T (Ciw ) . (4.3)
Now consider the term do(t) = ||(p¥ — pg)(t)HBq_éo. In this case, the two solutions in the

difference are generated from the same initial data. However, as p" satisfies the inviscid
equation, when taking the difference of p¥ and p?, we see that an equation analogous to (3.1)
holds, but with the extra term vApQ on the right hand side. Applying the proof of Theorem
3.1 to this slightly modified equation results in the estimate

CVT|| ALY oo 0.7 551 !
i OB o T ) [ B - b)) ds (1)
0

2(t) <
To estimate ||Ap2|| Bl first observe that, by Bernstein’s Lemma,
120l 5;1 < llonllz -
Using the compact support of p2 and Bernstein’s Lemma, we can write
ol < supAsenllea +sup 272 |4,V pn

< ll0llzs + 1V phllze < Clm(Bu ()l phller,
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where the support of p? (¢) is contained in B,,(t), a ball with radius R, (¢). By (2.6), it follows
that R, (t) satisfies

“ ol
= IlPo, 1AL,00 -
1= Tllpon||pe oM IENE

Since Ry, (0) = 2n, and ||pon|lrinne < |lpollLinre, for sufficiently large n, m(By(t)) can be
bounded above by C(T, pg)n?. Therefore,

120011 < Nebllgs < CTs po)n® 9| oy on. (4.5)
Moreover, by (2.4), (2.7), (2.8), and the estimates

lpnolles < |lpollzes,
[pn0llce < lIxnlloallSnpollce < Cllpollce,

Rn(t) = Rn(o) +

it follows that
IPhller < llonll= + IVl e
om0l zoe
~ 1—|lpnollz=t
< O(T, poll =) (1 + IV pnoll o= [V X5 ()| )
< C(T |lpollzr lpollee) (1 + [lpnollcr)
< C(T,[lpollz1s llpollce) (L + lIxnllcr [1Snpollcr) -

Note that ||xn|lcr < % < C, and

+ (1+ Ctllpnoll) |1 = tpn0) " T [ VonollL VX ()] 2

I1Supoller < D (18gpolle + 18V pollze) < Cllpolica Y 2707 < c2r072),
j=—1 j=—1

Thus,
lonller < C(T llpoll s llpollea )2 =)
Substituting this estimate into (4.5) gives, for n sufficiently large,

HAP%HB;; < C(T, po)nd/q2n(1—a) < Oo(T, p0)2n(1—/3)
for any 8 < . Setting v = 27" in (4.4) and applying the above estimate gives

—nfB
d2(t) < 2

+C(M,T,eo) /Ot 92(s)(2 —In 62(s)) ds.

Again applying Osgood’s Lemma and taking the exponential twice gives
e—C(M,T,e0)t

- c 2-nh
Sy(t) < e2m2e TR0 (C > . (4.6)

M

Combining the estimates for d1, d2, and d3 and using that v = 27" gives, for all 5 < a and
for v sufficiently small,

1(p” = P*) ()l 51, < 01(2) + G2(t) + B3(t)

—C(M,T,eg)t
e
CcvP e—C(M,T,e0)t

< Qgrmre T ( v ) < C(M, T, 2)v ,

establishing (4.1).
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4.1. Convergence in L>*. We now apply an interpolation argument to show that the van-

ishing viscosity limit actually holds in the L°°-norm. By Bernstein’s Lemma, for any fixed
N >1,

N 00
9" = Pllzee < lldn * (0" = p)leee + D 1A = Pz + D 1A5(0" = ) 1o
j=—N

j=N+1
NL N ) o0 ]
<C2 g (0" = POleee + Y TN = g+ Y A0 = )l
j=—N j=N+1

-N< ., v — v
<02 h0 [|p” = oo + (C 4 2Nty — Plpr +27 0" e + 110°llce)
< C27N([1p" Lm0 + 16°MLro + Nl0” o + (17 low) + C2V D o — Pllps
< O(M, T,e0) (27N 4 gN@/at) gm0y

where we used that d > py to get the fourth inequality, and where we applied (4.1) to get
the last inequality. To optimize the rate of convergence, we choose N such that 27NV =
9N (d/q+1)y B CAT 20 g gives

-1 —C(M,T,eq)t
=———lo (yﬁe ) .
1tatdq 22

After substituting this value of N into the above calculation, we conclude that
H (pl/ - p) (t) HL"O < C(M, T’ 50)Vﬁc(a,d,q)e*C(M,T,so)t.

This completes the proof of Theorem 4.1. O
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