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Abstract. We consider a class of active scalar equations which includes, for example, the
2D Euler equations, the 2D Navier-Stokes equations, and various aggregation equations
including the Keller-Segel model. For this class of equations, we establish uniqueness of
solutions in the Zygmund space C0

∗ . This result improves upon that in [1], where the authors
show uniqueness of solutions in BMO. As a corollary of our methods, we establish the
uniform in space vanishing viscosity limit of Holder continuous solutions to the aggregation
equation with Newtonian potential.

1. Introduction

In this paper we investigate uniqueness of solutions for a class of active scalar equations
of the form

∂tρ+∇ · (ρV ρ) = ν∆ρ, (1.1)

where ν ≥ 0 is a fixed constant, V is, broadly speakly, a linear smoothing operator of order
one, and ρ : Rd×[0, T ]→ R is the unknown scalar-valued function of space and time variables.
Examples of PDE in this class include the two-dimensional Euler equations or Navier-Stokes
equations, where ρ denotes the scalar vorticity, and some aggregation equations, including
the Keller-Segel model [3, 4] and the inviscid aggregation equation with Newtonian potential
[8, 5], where ρ typically denotes the density of some population.

Our goal is to show uniqueness of weak solutions to (1.1) in the Zygmund space C0
∗ (Rd),

with d = 2 or 3. This is, to our knowledge, the strongest uniqueness result for this class
of equations, improving upon a recent result of Azzam and Bedrossian [1], who establish
uniqueness in the space BMO(Rd). To prove our result, we use Littlewood-Paley theory
and Bony’s paraproduct decomposition to estimate the difference of two solutions to (1.1)

in a homogeneous Besov space Ḃ−1
q,∞, with q < ∞. Our methods are similar to those in

[1] in that our uniqueness proof utilizes energy methods in a homogeneous space (in [1] the

authors use the space Ḣ−1). Unlike [1], however, we make use of Littlewood-Paley operators
to prove estimates which are localized in Fourier space, allowing for a sharper result. Our
techniques are motivated by those in [11], where Vishik applies Littlewood-Paley methods to
prove uniqueness of solutions to the Euler equations in a Besov type space which contains
C0
∗ .
As a corollary of our uniqueness theorem, in Section 4 we establish the uniform-in-space

vanishing viscosity limit of the aggregation equation with Newtonian potential for weak solu-
tions in a Holder space Cα, α > 0. This result is an improvement of a result in [8], in which
the authors establish the vanishing viscosity limit for strong solutions in Cα with α > 1. Our
strategy is to first apply methods from the uniqueness proof to establish a Ḃ−1

q,∞ estimate for
the difference of the solutions of the viscous and inviscid equations, respectively. We then use
interpolation and Holder regularity of the solutions to derive an estimate in the L∞-norm.
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The paper is organized as follows: in Section 2, we introduce the Littlewood-Paley op-
erators and useful function spaces. We also state a few useful lemmas. We then introduce
properties of solutions to the aggregation equation with Newtonian potential. In Section
3, we prove uniqueness of solutions to (1.1) in C0

∗ . In Section 4, we apply estimates from
Section 3 to establish the vanishing viscosity limit of solutions to the aggregation equation
with Newtonian potential.

2. Background and Preliminary Lemmas

2.1. Littlewood-Paley Operators and Function Spaces. We first define the Littlewood-
Paley operators. We let ϕ ∈ S(Rd) satisfy supp ϕ ⊂ {ξ ∈ Rd : 3

4 ≤ |ξ| ≤
8
3}, and for every

j ∈ Z we let ϕj(ξ) = ϕ(2−jξ) (so ϕ̌j(x) = 2jdϕ̌(2jx)). Observe that, if |j− j′| ≥ 2, then supp

ϕj ∩ supp ϕj′ = ∅. We define ψn ∈ S(Rd) by the equality

ψn(ξ) = 1−
∑
j>n

ϕj(ξ)

for all ξ ∈ Rd. For f ∈ S′(Rd) and j ∈ Z, we define the inhomogeneous Littlewood-Paley
operators ∆j by

∆jf =


0, j < −1,
ψ̌−1 ∗ f, j = −1,
ϕ̌j ∗ f, j > −1,

and for all j ∈ Z, we define the homogeneous Littlewood-Paley operators ∆̇j by

∆̇jf = ϕ̌j ∗ f.

Note that ∆̇jf = ∆jf when j ≥ 0.

Finally, for f ∈ S′(Rd) we define the operator Snf by

Snf = ψ̌n ∗ f =
n∑

j=−∞
∆jf.

It is well known that for all f ∈ S′(Rd), Snf converges to f in the sense of distributions (see,
for example, [7]).

In the proof of the main theorem we use the paraproduct decomposition introduced by
J.-M. Bony in [6]. We recall the definition of the paraproduct and remainder used in this
decomposition.

Definition 2.1. Define the paraproduct of two functions f and g by

Tfg =
∑
i,j

i≤j−2

∆if∆jg =

∞∑
j=1

Sj−2f∆jg.

We use R(f, g) to denote the remainder. R(f, g) is given by the following bilinear operator:

R(f, g) =
∑
i,j

|i−j|≤1

∆if∆jg.

Bony’s decomposition then gives

fg = Tfg + Tgf +R(f, g).

We now define the homogeneous and inhomogeneous Besov spaces.
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Definition 2.2. Let s ∈ R, (p, q) ∈ [1,∞]×[1,∞). The inhomogeneous Besov space Bs
p,q(Rd)

is defined to be the space of tempered distributions f on Rd such that

||f ||Bsp,q :=

 ∞∑
j=−1

2jqs||∆jf ||qLp

 1
q

<∞.

When q =∞, write

||f ||Bsp,∞ := sup
j≥−1

2js||∆jf ||Lp .

Let s ∈ R, (p, q) ∈ [1,∞] × [1,∞). The homogeneous Besov space Ḃs
p,q(Rd) is defined to be

the space of tempered distributions f on Rd such that

||f ||Ḃsp,q :=

 ∞∑
j=−∞

2jqs||∆̇jf ||
q

Lp

 1
q

<∞.

When q =∞, write

||f ||Ḃsp,∞ := sup
j∈Z

2js||∆̇jf ||Lp .

We also define the Zygmund spaces.

Definition 2.3. Let s ∈ R. The Zygmund space Cs∗(Rd) is the set of all tempered distributions
f on Rd such that

||f ||Cs∗ := sup
j≥−1

2js||∆jf ||L∞ <∞.

It is well-known that Cs∗(Rd) coincides with the classical Holder space Cs(Rd) when s is
not an integer and s > 0.

2.2. Useful Lemmas. We will make frequent use of Bernstein’s Lemma. We refer the reader
to [7], chapter 2, for a proof of the lemma.

Lemma 2.4. (Bernstein’s Lemma) Let r1 and r2 satisfy 0 < r1 < r2 < ∞, and let p and q
satisfy 1 ≤ p ≤ q ≤ ∞. There exists a positive constant C such that for every integer k, if u
belongs to Lp(Rd), and supp û ⊂ B(0, r1λ), then

sup
|α|=k

||∂αu||Lq ≤ Ckλk+d( 1
p
− 1
q

)||u||Lp . (2.1)

Furthermore, if supp û ⊂ C(0, r1λ, r2λ), then

C−kλk||u||Lp ≤ sup
|α|=k

||∂αu||Lp ≤ Ckλk||u||Lp . (2.2)

We also make use of the following positivity lemma. A proof of the lemma can be found
in [9].

Lemma 2.5. Assume f satisfies f,∆f ∈ Lp(Rd) for some p ∈ [2,∞). Then

−
∫
Rd
|f |p−2f∆f dx ≥ 0.

Finally, Osgood’s Lemma will be useful in what follows. A proof of the lemma can be
found in [7].
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Lemma 2.6. (Osgood’s Lemma) Let ρ be a positive borelian function, let γ be a locally
integrable positive function, and let µ be a continuous, increasing function. Assume that for
some number β ≥ 0, the function ρ satisfies

ρ(t) ≤ β +

∫ t

t0

γ(s)µ(ρ(s)) ds.

If β > 0, then

−φ(ρ(t)) + φ(β) ≤
∫ t

t0

γ(s) ds,

where φ(x) =
∫ 1
x

1
µ(r) dr. If β = 0, and µ satisfies∫ 1

0

dr

µ(r)
= +∞,

then ρ is identically zero.

2.3. Properties of the smoothing operator V. In what follows, we assume that V is a
linear operator satisfying the following properties:

P1) For each p ∈ (1,∞) and f ∈ Lp(Rd), ‖∇V f‖Lp ≤ C(p)‖f‖Lp .

P2) V commutes with the Littlewood-Paley operators, and for all f ∈ S′(Rd), there ex-

ists C > 0 such that for all j ∈ Z, ‖∇V ∆̇jf‖L∞ ≤ C‖∆̇jf‖L∞ .

P3) Given p and q with 1 < p < q <∞ and 1 + 1
q = d−1

d + 1
p , for all f ∈ Lp(Rd), there exists

C > 0 such that ‖V f‖Lq ≤ C‖f‖Lp .

Note that P1 is motivated by the boundedness of Calderon-Zygmund operators on Lp,
p ∈ (1,∞), while P3 is motivated by the Hardy-Littlewood-Sobolev inequality.

2.4. Definition of weak solution to (1.1). We will use the following definition of a weak
solution to (1.1) in Section 3.

Definition 2.7. We say that ρ : [0, T ] × Rd → R is a weak solution to (1.1) on [0, T ] if ρ
belongs to L2(0, T ;L2(Rd)) and if for all φ ∈ C∞c ([0, T ]× Rd),∫ T

0

∫
Rd
ρ(φt + V ρ · ∇φ+ ν∆φ) dx dt.

Equivalently, to say that ρ is a weak solution to (1.1) means that (1.1) holds in the sense of
distributions.

2.5. The Aggregation Equation with Newtonian Potential. The aggregation equation
with Newtonian potential is given by

(AGν)

 ∂tρ
ν +∇ · (ρνvν) = ν∆ρν ,

vν = −∇Φ ∗ ρν ,
ρν(0) = ρ0.

Here Φ denotes the Newtonian potential, ρν is the density, and vν is the velocity. The system
(AG1) represents a limiting case of the Keller-Segel equation modeling chemotaxis. Note also
that (AGν) is a special case of (ASE) with V ρν = −∇Φ ∗ ρν .
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In Section 4, we establish the vanishing viscosity limit of Cα solutions to (AGν) for any
fixed α > 0. The vanishing viscosity limit for (AGν) is addressed in [8], where the authors
establish the limit under the assumption that the solutions belong to Cα for α > 1.

The solutions under consideration in Section 4 are weak solutions, satisfying Definition
2.7 above. We will assume in addition that the limiting solution ρ0 to (AG0) is a so-called
Lagrangian solution. Properties of Lagrangian solutions to (AG0) are discussed at length in
Section 5 of [8]. We define Lagrangian solutions here and state a few properties that will be
useful in Section 4. We refer the reader to [5] and Section 5 of [8] for further details.

Definition 2.8. Fix T > 0. Let X : [0, T ]× Rd → Rd with X(t, ·) a homeomorphism for all
t ∈ [0, T ] and let ρ0 ∈ L∞(Rd). Define ρ0 : [0, T ]× Rd → R by

ρ0(t, x) =
ρ0(X−1(t, x))

1− tρ0(X−1(t, x))
(2.3)

and let v0 := −∇Φ∗ρ0. Here, X−1 is defined by X−1(t,X(t, x)) = x for all (t, x) ∈ [0, T ]×Rd.
Then (X, ρ0, v0) (or more simply ρ0) is a Lagrangian solution to (AG0) with initial density
ρ0 if X is the flow map for v0; that is, if

X(t, x) = x+

∫ t

0
v0(s,X(s, x)) ds

for all t ≥ 0, x ∈ Rd.

We remark that a Lagrangian solution ρ0 to (AG0) is also a weak solution to (AG0); see,
for example, Theorem 5.4 of [8] and its proof.

The short-time existence of Cα Lagrangian solutions to (AG0) in dimensions 2 and 3 with
compactly supported initial density was first established in [5], with an alternate proof given

in [8]. It follows from the equality (2.3) that, for each t ∈
[
0, 1
‖ρ0‖L∞

)
, Lagrangian solutions

satisfy

‖ρ0(t)‖L∞ ≤
‖ρ0‖L∞

1− ‖ρ0‖L∞t
, (2.4)

and for all q ∈ [1,∞),

‖ρ0(t)‖Lq ≤ ‖ρ0‖Lq(1− ‖ρ0‖L∞t)
1
q
−1
. (2.5)

Moreover, if the support of the initial density ρ0 is contained in a ball of radius R0, then for
each fixed t ∈ [0, T ), ρ0(t) has compactly support in Rd, and the support of ρ0(t) is contained
in a ball of radius

R(t) = R0 +
C

1− T‖ρ0‖L∞
(‖ρ0‖L1 + ‖ρ0‖L∞)t. (2.6)

Finally, for Cα Lagrangian solutions to (AG0), α ∈ [0, 1), the following inequality holds for
each t ∈ [0, T ):

‖∇X(t)‖L∞ , ‖∇X−1(t)‖L∞ ≤ C(T, ‖ρ0‖L1 , ‖ρ0‖Cα). (2.7)

If, in addition, ρ0 is in C1(Rd), then by the quotient rule, for each t ∈ [0, T ),

‖∇ρ0(t)‖L∞ ≤ (1 + Ct‖ρ0‖L∞)‖(1− tρ0)−1‖2L∞‖∇ρ0‖L∞‖∇X−1(t)‖L∞ . (2.8)
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3. Statement and Proof of Uniqueness

In this section we prove the following theorem.

Theorem 3.1. Let T > 0 and let p0 and p1 satisfy 1 < p0 < d < p1 < ∞. Assume ρ1

and ρ2 are weak solutions of (1.1) in C([0, T ];Lp0 ∩ Lp1 ∩ C0
∗ (Rd)) such that ρ1

0 = ρ2
0. Then

ρ1(t) = ρ2(t) for every t ∈ [0, T ].

Proof. To prove Theorem 3.1, we estimate the difference between ρ1 and ρ2 in the homoge-
neous Besov space Ḃ−1

q,∞ for q sufficiently large.

Assume that ρ1 and ρ2 solve (1.1). Let ρ̄ = ρ1 − ρ2. Then ρ̄ satisfies

∂tρ̄+∇ · (ρ̄V ρ1) +∇ · (ρ2V ρ̄) = ν∆ρ̄. (3.1)

For fixed l ∈ Z, we apply the ∆̇l operator to (3.1). This gives

∂t∆̇lρ̄− ν∆∆̇lρ̄ = −(∆̇l∇ · (ρ̄V ρ1) + ∆̇l∇ · (ρ2V ρ̄)) := −(Al +Bl). (3.2)

We must manipulate Al = ∆̇l∇ · (ρ̄V ρ1) further. By the product rule,

Al = ∆̇l∇ · (ρ̄V ρ1) = ∇ · [∆̇l(V ρ1ρ̄)− Sl−2V ρ1∆̇lρ̄] +∇ · (Sl−2V ρ1∆̇lρ̄)

= Rl(V ρ1, ρ̄) +∇ · (Sl−2V ρ1∆̇l ρ̄)

= Rl(V ρ1, ρ̄) +∇∆̇l ρ̄ · Sl−2V ρ1 + ∆̇l ρ̄∇ · Sl−2V ρ1

= Rl(V ρ1, ρ̄) +A1
l +A2

l ,

where

Rl(V ρ1, ρ̄) = ∇ · [∆̇l(V ρ1ρ̄)− Sl−2V ρ1∆̇lρ̄],

A1
l = ∇∆̇l ρ̄ · Sl−2V ρ1, and

A2
l = ∆̇l ρ̄∇ · Sl−2V ρ1.

In order to utilize Property P3 of V in what follows, we assume s satisfies 1 + 1
s = d−1

d + 1
p0

,

and we fix q ∈ [2,∞) sufficiently large to justify the calculations. We multiply (3.2) by

∆̇lρ̄|∆̇lρ̄|q−2 and integrate to obtain

1

q

d

dt

∫
Rn
‖∆̇lρ̄‖qLq − ν

∫
Rd

∆̇lρ̄|∆̇lρ̄|q−2∆∆̇lρ̄

= −
∫
Rd

∆̇lρ̄|∆̇lρ̄|q−2(Rl(V ρ1, ρ̄) +A1
l +A2

l +Bl).

(3.3)

It follows from Lemma 2.5 that

−ν
∫
Rd

∆̇lρ̄|∆̇lρ̄|q−2∆∆̇lρ̄ ≥ 0.

Moreover, it follows from integration by parts that∫
Rd

∆̇lρ̄|∆̇lρ̄|q−2A1
l dx ≤ C

∫
Rd
|Sl−2∇V ρ1||∆̇lρ̄|q dx ≤ C‖Sl−2∇V ρ1‖L∞‖∆̇lρ̄‖qLq .

Then (3.3) reduces to

d

dt
‖∆̇lρ̄‖qLq ≤ q(‖∆̇lρ̄‖q−1

Lq ‖Rl(V ρ1, ρ̄)‖Lq + ‖∆̇lρ̄‖q−1
Lq ‖A

2
l ‖Lq

+ ‖∆̇lρ̄‖q−1
Lq ‖Bl‖Lq + C‖Sl−2∇V ρ1‖L∞‖∆̇lρ̄‖qLq).

(3.4)
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After taking the time derivative of the left hand side and dividing through by q‖∆̇lρ̄‖q−1
Lq , we

conclude that
d

dt
‖∆̇lρ̄‖Lq ≤ ‖Rl(V ρ1, ρ̄)‖Lq + ‖A2

l ‖Lq + ‖Bl‖Lq + C‖Sl−2∇V ρ1‖L∞‖∆̇lρ̄‖Lq . (3.5)

We now estimate the terms on the right hand side. In what follows, we assume p ≥ 2 is fixed
(to be chosen later).

We begin with ‖Sl−2∇V ρ1‖L∞‖∆̇lρ̄‖Lq . First note that Sl−2∇V ρ1 = 0 when l ≤ 0, so we
may assume that l ≥ 1. For the case l ≥ 1, Bernstein’s Lemma and property P2 of V imply
that

‖Sl−2∇V ρ1‖L∞ ≤ ‖∆−1∇V ρ1‖L∞ +
l−2∑
k=0

‖∆k∇V ρ1‖L∞

≤ C‖∆−1∇V ρ1‖Lp1 +
l−2∑
k=0

‖∆kρ1‖L∞ ≤ C‖ρ1‖Lp1 + (l − 1)‖ρ1‖C0
∗
.

(3.6)

This gives

sup
−∞<l≤p

2−l‖Sl−2∇V ρ1‖L∞‖∆̇lρ̄‖Lq ≤ C(‖ρ1‖Lp1 + (p− 1)‖ρ1‖C0
∗
)‖ρ̄‖Ḃ−1

q,∞

≤ C(p− 1)(‖ρ1‖Lp1 + ‖ρ1‖C0
∗
)‖ρ̄‖Ḃ−1

q,∞
.

(3.7)

We now estimate ‖Bl‖Lq = ‖∆̇l∇ · (ρ2V ρ̄)‖Lq . Following [10], we define

J l,k := ∂k∆̇l

(
(V ρ̄)kρ2

)
,

and we use Bony’s paraproduct decomposition to write

J l,k = ∂k∆̇l

∑
|j−l|≤3,j≥1

Sj−2(V ρ̄)k∆jρ2 + ∂k∆̇l

∑
|j−l|≤3,j≥1

∆j(V ρ̄)kSj−2ρ2

+ ∂k∆̇l

∑
|j−j′|≤1,max{j,j′}≥l−3

∆j(V ρ̄)k∆j′ρ2

:= J l,k1 + J l,k2 + J l,k3 .

We first estimate J l,k1 in the Lq-norm. By Bernstein’s Lemma and properties P1 and P2 of
V ,

‖J l,k1 ‖Lq ≤ 2l
∑

|j−l|≤3,j≥1

‖Sj−2V ρ̄‖Lq‖∆jρ2‖L∞ ≤ 2l
∑

|j−l|≤3,j≥1

‖ρ2‖C0
∗

∑
k≤j−2

‖∆kV ρ̄‖Lq

≤ C2l‖ρ2‖C0
∗

∑
k≤l+1

‖∆kV ρ̄‖Lq ≤ C2l‖ρ2‖C0
∗

(
‖∆−1V ρ̄‖Lq +

l+1∑
k=0

‖∆kV ρ̄‖Lq
)

≤ C2l‖ρ2‖C0
∗

(
‖∆−1V ρ̄‖Lq +

l+1∑
k=0

2−k‖∆kρ̄‖Lq
)

≤ C2l‖ρ2‖C0
∗

(
‖∆−1V ρ̄‖Lq + (l + 2)‖ρ̄‖Ḃ−1

q,∞

)
.

Multiplying by 2−l and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖J l,k1 ‖Lq ≤ C‖ρ2‖C0
∗

(
‖∆−1V ρ̄‖Lq + (p+ 2)‖ρ̄‖Ḃ−1

q,∞

)
.
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We now estimate J l,k2 in the Lq-norm. Again by Bernstein’s Lemma and properties P1 and
P2 of V ,

‖J l,k2 ‖Lq ≤ 2l
∑

|j−l|≤3,j≥1

‖Sj−2ρ2‖L∞‖∆jV ρ̄‖Lq ≤ 2l
∑

|j−l|≤3,j≥1

j‖ρ2‖C0
∗
‖∆jV ρ̄‖Lq

≤ 2l
∑

|j−l|≤3,j≥1

j‖ρ2‖C0
∗
2−j‖∆j∇V ρ̄‖Lq ≤ C2l max{l + 3, 1}‖ρ2‖C0

∗
‖ρ̄‖Ḃ−1

q,∞
.

Multiplying by 2−l and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖J l,k2 ‖Lq ≤ C‖ρ2‖C0
∗
(p+ 3)‖ρ̄‖Ḃ−1

q,∞
.

Finally, we estimate J l,k3 . By Bernstein’s Lemma and properties of Littlewood-Paley opera-
tors,

‖J l,k3 ‖Lq ≤ C2l
∑

j≥max{l−3,−1}

‖∆jρ2‖L∞‖∆jV ρ̄‖Lq ≤ C2l‖ρ2‖C0
∗
‖V ρ̄‖B0

q,1
. (3.8)

By Bernstein’s Lemma and property P1 of V ,

‖V ρ̄‖B0
q,1
≤ ‖∆−1V ρ̄‖Lq +

p−1∑
j=0

‖∆jV ρ̄‖Lq +
∑
j≥p
‖∆jV ρ̄‖Lq

≤ ‖∆−1V ρ̄‖Lq +

p−1∑
j=0

2−j‖∆j∇V ρ̄‖Lq +
∑
j≥p

2
jd

(
1
p1
− 1
q

)
2−j‖∆j∇V ρ̄‖Lp1

≤ ‖∆−1V ρ̄‖Lq + p‖ρ̄‖Ḃ−1
q,∞

+ 2
− pd

q ‖ρ̄‖Lp1 ,

where we used that p1 > d to get the last inequality. Substituting this estimate into (3.8),
multiplying by 2−l, and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖J l,k3 ‖Lq ≤ C‖ρ2‖C0
∗

(
‖∆−1V ρ̄‖Lq + p‖ρ̄‖Ḃ−1

q,∞
+ 2
− pd

q ‖ρ̄‖Lp1
)
. (3.9)

Combining the estimates for J l,k1 , J l,k2 , and J l,k3 , we conclude that

sup
−∞<l≤p

2−l‖Bl‖Lq = sup
−∞<l≤p

2−l‖∆̇l∇ · (ρ2V ρ̄)‖Lq

≤ sup
−∞<l≤p

d∑
k=1

2−l(‖J l,k1 ‖Lq + ‖J l,k2 ‖Lq + ‖J l,k3 ‖Lq)

≤ C‖ρ2‖C0
∗

(
‖∆−1V ρ̄‖Lq + (p+ 3)‖ρ̄‖Ḃ−1

q,∞
+ 2
− pd

q ‖ρ̄‖Lp1
)
.

(3.10)

We now estimate Rl(V ρ1, ρ̄) = ∇ · (∆̇l(V ρ1ρ̄) − Sl−2V ρ1∆̇lρ̄). We follow techniques used
in [11] and [2]. Specifically, we write

Rl = R1
l +R2

l +R3
l +R4

l , (3.11)
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where

R1
l = ∇ · (∆̇lTρ̄V ρ1),

R2
l = −∇ · [TV ρ1 , ∆̇l]ρ̄,

R3
l = ∇ · (TV ρ1−Sl−2V ρ1∆̇l)ρ̄,

R4
l = ∇ ·

{
∆̇lR(V ρ1, ρ̄)−R(Sl−2V ρ1, ∆̇lρ̄)

}
.

(3.12)

By estimating each of the four terms individually, we will show that

sup
−∞<l≤p

2−l‖Rl‖Lq ≤ C(‖ρ1‖C0
∗

+ ‖ρ1‖Lp1 + ‖∆−1V ρ1‖L∞)

× (‖∆−1ρ̄‖Lq + (p+ 3)‖ρ̄‖Ḃ−1
q,∞

+ 2
− pd

q ‖ρ̄‖Lp1 ).

(3.13)

We begin with R1
l . By Bernstein’s Lemma and property P2 of V ,

‖R1
l ‖Lq ≤ 2l

∑
|j−l|≤3,j≥1

‖Sj−2ρ̄‖Lq‖∆jV ρ1‖L∞

≤ 2l
∑

|j−l|≤3,j≥1

∑
k≤j−2

2k2−k‖∆kρ̄‖Lq2−j‖∇∆jV ρ1‖L∞

≤ 2l
∑

|j−l|≤3,j≥1

2j
∑
k≤j−2

2−k‖∆kρ̄‖Lq2−j‖∆jρ1‖L∞

≤ C2l‖ρ1‖C0
∗
(‖∆−1ρ̄‖Lq + max{1, l + 2}‖ρ̄‖Ḃ−1

q,∞
).

(3.14)

Multiplying by 2−l and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖R1
l ‖L2 ≤ C‖ρ1‖C0

∗
(‖∆−1ρ̄‖Lq + (p+ 2)‖ρ̄‖Ḃ−1

q,∞
). (3.15)

We now estimate R2
l . Writing out the commutator and using properties of Littlewood-Paley

operators gives

R2
l = −∇ · [TV ρ1 , ∆̇l]ρ̄ = −∇ ·

(
TV ρ1∆̇lρ̄− ∆̇l(TV ρ1 ρ̄)

)
= −∇ ·

 ∑
j≥1,|j−l|≤3

Sj−2V ρ1∆j∆̇lρ̄− ∆̇l

∑
j≥1,|j−l|≤3

Sj−2V ρ1∆j ρ̄

 .
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Applying the Lq-norm, Bernstein’s Lemma, and property P2 of V gives

‖R2
l ‖Lq ≤ 2l

∥∥∥∥∥∥
∑

j≥1,|j−l|≤3

(
Sj−2V ρ1∆j∆̇lρ̄− ∆̇l(Sj−2V ρ1∆j ρ̄)

)∥∥∥∥∥∥
Lq

= 2l

∥∥∥∥∥∥
∑

j≥1,|j−l|≤3

∫
Rd
ϕ̌l(y)(Sj−2V ρ1(x− y)− Sj−2V ρ1(x))∆j ρ̄(x− y) dy

∥∥∥∥∥∥
Lqx

≤ 2l
∑

j≥1,|j−l|≤3

∫
Rd
‖ϕ̌l(y)(Sj−2V ρ1(x− y)− Sj−2V ρ1(x))∆j ρ̄(x− y)‖Lqx dy

= 2l
∑

j≥1,|j−l|≤3

‖Sj−2∇V ρ1‖L∞‖∆j ρ̄‖Lq
∫
Rd
|2ldϕ̌(2ly)||y| dy

≤ C
∑

j≥1,|j−l|≤3

‖Sj−2∇V ρ1‖L∞‖∆j ρ̄‖Lq ,

≤ C(‖∆−1∇V ρ1‖L∞ + max{1, l + 2}‖ρ1‖C∗0 ) sup
j≥1,|j−l|≤3

‖∆j ρ̄‖Lq ,

where we used the mean value theorem to get the last equality, and we applied a change of
variables to get the second-to-last inequality. Multiplying the resulting estimate by 2−l and
taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖R2
l ‖Lq ≤ C(‖∆−1∇V ρ1‖L∞ + (p+ 2)‖ρ1‖C∗0 )‖ρ̄‖Ḃ−1

q,∞
.

We now estimate R3
l . First note that by the product rule and properties of Littlewood-

Paley operators,

‖R3
l ‖Lq =

∥∥∥∥∥∥∇ ·
∑

|j−l|≤3,j≥1

Sj−2(V ρ1 − Sl−2V ρ1)∆j∆̇lρ̄

∥∥∥∥∥∥
Lq

≤
∑
|k−l|≤3

‖∆k∇V ρ1‖L∞‖∆̇lρ̄‖Lq +
∑
|k−l|≤3

‖∆kV ρ1‖L∞‖∆̇l∇ρ̄‖Lq .
(3.16)

We consider three cases separately: l < −2, −2 ≤ l ≤ 2, and l > 2. For the first case, R3
l is

identically zero. For the second case, Bernstein’s Lemma and properties P1 and P2 of V give

‖R3
l ‖Lq ≤

‖∆−1∇V ρ1‖L∞ +
∑

|k−l|≤3,k≥0

‖∆k∇V ρ1‖L∞

 ‖∆̇lρ̄‖Lq

+

‖∆−1V ρ1‖L∞ +
∑

|k−l|≤3,k≥0

‖∆kV ρ1‖L∞

 ‖∆̇l∇ρ̄‖Lq

≤
(
‖∆−1∇V ρ1‖L∞ + C‖ρ1‖C0

∗

)
‖∆̇lρ̄‖Lq

+ C

‖∆−1V ρ1‖L∞ +
∑

|k−l|≤3,k≥0

2−k‖∆k∇V ρ1‖L∞

 2l‖∆̇lρ̄‖Lq

≤ C(‖ρ1‖Lp1 + ‖ρ1‖C0
∗
)‖∆̇lρ̄‖Lq + C(‖∆−1V ρ1‖L∞ + ‖ρ1‖C0

∗
)‖∆̇lρ̄‖Lq .
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Finally, for the third case, we can again use Bernstein’s Lemma and property P2 of V to
write

‖R3
l ‖Lq ≤

∑
|k−l|≤3,k≥0

‖∆k∇V ρ1‖L∞‖∆̇lρ̄‖Lq +
∑

|k−l|≤3,k≥0

‖∆kV ρ1‖L∞‖∆̇l∇ρ̄‖Lq

≤
∑

|k−l|≤3,k≥0

‖∆k∇V ρ1‖L∞‖∆̇lρ̄‖Lq +
∑

|k−l|≤3,k≥0

2l−k‖∆k∇V ρ1‖L∞‖∆̇lρ̄‖Lq

≤ C‖ρ1‖C0
∗
‖∆̇lρ̄‖Lq .

Combining the three cases above, multiplying by 2−l, and taking the supremum over l ≤ p
gives

sup
−∞<l≤p

2−l‖R3
l ‖Lq ≤ C(‖∆−1V ρ1‖L∞ + ‖ρ1‖Lp1 + ‖ρ1‖C0

∗
)‖ρ̄‖Ḃ−1

q,∞
.

Finally, we estimate R4
l . We do this without utilizing the difference. We first write

‖R4
l ‖Lq ≤ ‖∇ · ∆̇lR(ρ̄, V ρ1)‖Lq + ‖∇ ·R(Sl−2V ρ1, ∆̇lρ̄)‖Lq := ‖R4,1

l ‖Lq + ‖R4,2
l ‖Lq .

Then using an argument similar to that in [10], we apply Bernstein’s Lemma and property
P2 of V to deduce that

‖R4,1
l ‖Lq ≤ C2l

∑
j≥max{l−3,−1}

‖∆jV ρ1‖L∞‖∆j ρ̄‖Lq

≤ C2l

‖∆−1V ρ1‖L∞‖∆−1ρ̄‖Lq +
∑
j≥0

2−j‖∇∆jV ρ1‖L∞‖∆j ρ̄‖Lq


≤ C2l

‖∆−1V ρ1‖L∞‖∆−1ρ̄‖Lq +
∑
j≥0

2−j‖∆jρ1‖L∞‖∆j ρ̄‖Lq


≤ C2l

(
‖ρ1‖C0

∗
+ ‖∆−1V ρ1‖L∞

)
‖ρ̄‖B−1

q,1
.

Multiplying by 2−l and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖R4,1
l ‖Lq ≤ C(‖ρ1‖C0

∗
+ ‖∆−1V ρ1‖L∞)‖ρ̄‖B−1

q,1
. (3.17)

By the definition of Ḃ−1
q,∞ and Bernstein’s Lemma,

‖ρ̄‖B−1
q,1
≤ C‖∆−1ρ̄‖Lq +

∑
0≤j<p

2−j‖∆j ρ̄‖Lq +
∑
j≥p

2−j‖∆j ρ̄‖Lq

≤ C‖∆−1ρ̄‖Lq + p‖ρ̄‖Ḃ−1
q,∞

+
∑
j≥p

2−j2
jd

(
1
p1
− 1
q

)
‖ρ̄‖Lp1

≤ C‖∆−1ρ̄‖Lq + p‖ρ̄‖Ḃ−1
q,∞

+ 2
− pd

q ‖ρ̄‖Lp1 ,

where we used that p1 > d to get the last inequality. After substituting this estimate into
(3.17), we conclude that

sup
−∞<l≤p

2−l‖R4,1
l ‖Lq ≤ C(‖ρ1‖C0

∗
+ ‖∆−1V ρ1‖L∞)(‖∆−1ρ̄‖Lq + p‖ρ̄‖Ḃ−1

q,∞
+ 2
− pd

q ‖ρ̄‖Lp1 ).
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We now estimate ‖R4,2
l ‖Lq . We apply the definition of the remainder term, the product rule,

properties of Littlewood-Paley operators, Bernstein’s Lemma, and property P2 of V to write

‖R4,2
l ‖Lq ≤ C

∑
|j−l|≤1

‖∆jSl−2∇V ρ1‖L∞‖∆j∆̇lρ̄‖Lq + C
∑
|j−l|≤1

‖∆jSl−2V ρ1‖L∞‖∆j∆̇l∇ρ̄‖Lq

≤ C‖∆−1Sl−2∇V ρ1‖L∞‖∆−1∆̇lρ̄‖Lq + C‖∆−1Sl−2V ρ1‖L∞‖∆−1∆̇l∇ρ̄‖Lq

+ C
∑

|j−l|≤1,j≥0

(‖∆jSl−2∇V ρ1‖L∞‖∆j∆̇lρ̄‖Lq + ‖∆jSl−2V ρ1‖L∞‖∆j∆̇l∇ρ̄‖Lq)

≤ C‖∆−1V ρ1‖L∞‖∆̇lρ̄‖Lq + C
∑

|j−l|≤1,j≥0

‖∆j∇V ρ1‖L∞‖∆̇lρ̄‖Lq

≤ C

‖∆−1V ρ1‖L∞ +
∑

|j−l|≤1,j≥0

‖∆jρ1‖L∞

 ‖∆̇lρ̄‖Lq .

Multiplying by 2−l and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖R4,2
l ‖Lq ≤ C(‖∆−1V ρ1‖L∞ + ‖ρ1‖C0

∗
)‖ρ̄‖Ḃ−1

q,∞
.

Combining the estimates for R1
l through R4

l , we conclude that

sup
−∞<l≤p

2−l‖Rl‖Lq ≤ C(‖ρ1‖C0
∗

+ ‖ρ1‖Lp1 + ‖∆−1V ρ1‖L∞)

× (‖∆−1ρ̄‖Lq + (p+ 3)‖ρ̄‖Ḃ−1
q,∞

+ 2
− pd

q ‖ρ̄‖Lp1 ).

(3.18)

We now estimate A2
l = ∆̇lρ̄∇ · Sl−2V ρ1. Note that A2

l is identically zero when l ≤ 0. For
l ≥ 1, write

‖∆̇lρ̄∇ · Sl−2V ρ1‖Lq ≤ ‖∆̇lρ̄‖Lq‖∇ · Sl−2V ρ1‖L∞

≤ ‖∆̇lρ̄‖Lq
l−2∑
k=−1

‖∇ ·∆kV ρ1‖L∞

≤ ‖∆̇lρ̄‖Lq

‖∇ ·∆−1V ρ1‖L∞ +

max{0,l−2}∑
k=0

‖∇ ·∆kV ρ1‖L∞


≤ ‖∆̇lρ̄‖Lq(C‖ρ1‖Lp1 + (l − 1)‖ρ1‖C0

∗
),

where we used Bernstein’s Lemma and properties P1 and P2 of V to get the last inequality.
Multiplying by 2−l and taking the supremum over l ≤ p gives

sup
−∞<l≤p

2−l‖A2
l ‖Lq ≤ C‖ρ̄‖Ḃ−1

q,∞
(‖ρ1‖Lp1 + (p− 1)‖ρ1‖C0

∗
)

≤ C(p− 1)‖ρ̄‖Ḃ−1
q,∞

(‖ρ1‖Lp1 + ‖ρ1‖C0
∗
).

(3.19)

We now estimate the high frequencies. By Bernstein’s Lemma,

sup
l≥p

2−l‖∆̇lρ̄‖Lq ≤ sup
l≥p

2−l2
ld( 1

p1
− 1
q

)‖ρ̄‖Lp1 ≤ sup
l≥p

2
− ld
q ‖ρ̄‖Lp1 ≤ 2

− pd
q ‖ρ̄‖Lp1 (3.20)

since p1 > d by assumption.
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We integrate (3.5) in time, multiply by 2−l, take the supremum over l ≤ p, and apply the
estimates (3.7), (3.10), (3.18) and (3.19). Combining the resulting estimate with (3.20) gives

‖ρ̄(t)‖Ḃ−1
q,∞
≤ 2

− pd
q ‖ρ̄(t)‖Lp1 + C

∫ t

0
(‖ρ1(s)‖C0

∗
+ ‖ρ2(s)‖C0

∗
+ ‖ρ1(s)‖Lp1 + ‖∆−1V ρ1(s)‖L∞)

× (‖∆−1ρ̄(s)‖Lq + ‖∆−1V ρ̄(s)‖Lq + p‖ρ̄(s)‖Ḃ−1
q,∞

+ 2
− pd

q ‖ρ̄(s)‖Lp1 ) ds.

(3.21)

Before we apply Osgood’s Lemma, we must estimate several of the terms under the time
integral in (3.21). We first estimate ‖∆−1V ρ̄(s)‖Lq . Observe that, by Bernstein’s Lemma
and properties P1, P2, and P3 of V ,

‖∆−1V ρ̄‖Lq ≤ ‖ψ̌−p ∗ V ρ̄‖Lq + ‖∆−1V ρ̄− ψ̌−p ∗ V ρ̄‖Lq

≤ ‖ψ̌−p ∗ V ρ̄‖Lq +

−1∑
k=−p

‖∆̇kV ρ̄‖Lq ≤ 2
−pd( 1

s
− 1
q

)‖ψ̌−p ∗ V ρ̄‖Ls + Cp‖ρ̄‖Ḃ−1
q,∞

≤ 2
−pd( 1

s
− 1
q

)‖ρ̄‖Lp0 + Cp‖ρ̄‖Ḃ−1
q,∞
.

(3.22)

We must also estimate ‖∆−1V ρ1(s)‖L∞ . By Bernstein’s Lemma,

‖∆−1V ρ1(s)‖L∞ ≤ C‖V ρ1(s)‖Ls ≤ C‖ρ1(s)‖Lp0 , (3.23)

where we again used property P3 of V .
Finally, we must estimate ‖∆−1ρ̄‖Lq . By Bernstein’s Lemma and our choice of s > p0,

‖∆−1ρ̄‖Lq ≤ ‖ψ̌−p ∗ ρ̄‖Lq + ‖∆−1ρ̄− ψ̌−p ∗ ρ̄‖Lq

≤ 2
−pd

(
1
p0
− 1
q

)
‖ψ̌−p ∗ ρ̄‖Lp0 +

−1∑
j=−p

2j2−j‖∆̇j ρ̄‖Lq

≤ 2
−pd

(
1
p0
− 1
q

)
‖ρ̄‖Lp0 + C‖ρ̄‖Ḃ−1

q,∞
≤ 2

−pd
(

1
s
− 1
q

)
‖ρ̄‖Lp0 + C‖ρ̄‖Ḃ−1

q,∞
.

(3.24)

Substituting (3.22), (3.23), and (3.24) into (3.21) gives

‖ρ̄(t)‖Ḃ−1
q,∞
≤ 2−ε0p‖ρ̄(t)‖Lp1 + C

∫ t

0
(‖ρ1(s)‖C0

∗
+ ‖ρ2(s)‖C0

∗
+ ‖ρ1(s)‖Lp1 + ‖ρ1(s)‖Lp0 )

× (p‖ρ̄(s)‖Ḃ−1
q,∞

+ 2−ε0p‖ρ̄(s)‖Lp0 ) ds

(3.25)

for sufficiently small ε0 = ε0(s, q).
Observe that, for q sufficiently large, Bernstein’s Lemma gives

‖ρ̄‖Ḃ−1
q,∞

= sup
l∈Z

2−l‖∆̇lρ̄‖Lq ≤ sup
l≤0

2−l‖∆̇lρ̄‖Lq + sup
l>0

2−l‖∆̇lρ̄‖Lq

≤ sup
l≤0

2−l2
ld
(

1
p0
− 1
q

)
‖∆̇lρ̄‖Lp0 + sup

l>0
2−l2

ld
(

1
p1
− 1
q

)
‖∆̇lρ̄‖Lp1

≤ ‖ρ̄‖Lp0 + ‖ρ̄‖Lp1 ≤ ‖ρ1‖Lp0∩Lp1 + ‖ρ2‖Lp0∩Lp1 .

Set

M = sup
t∈[0,T ]

(‖ρ1(t)‖Lp0∩Lp1 + ‖ρ2(t)‖Lp0∩Lp1 ),
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and for each t ∈ [0, T ], set

δ(t) =

∫ t
0 ‖ρ̄(s)‖Ḃ−1

q,∞
ds

MT
≤ 1.

Let p = 1
ε0

(2− ln δ(t)). Substituting this value of p into (3.25) gives

‖ρ̄(t)‖Ḃ−1
q,∞
≤
(
CM2(T + 1)

ε0

)
δ(t)(2− ln δ(t)) = C(M,T, ε0)δ(t)(2− ln δ(t)).

Integrating both sides from 0 to t and dividing both sides by MT gives

δ(t) ≤ C(M,T, ε0)

∫ t

0
δ(s)(2− ln δ(s)) ds. (3.26)

We apply Osgood’s Lemma with ρ(t) = δ(t), µ(r) = r(2 − ln r), and γ(t) = C(M,T, ε0) for
each t ∈ [0, T ]. This proves Theorem 3.1. �

4. The Vanishing Viscosity Limit for (AGν)

In this section we establish the vanishing viscosity limit for Holder continuous solutions to
the aggregation equation with Newtonian potential. These solutions and their properties are
discussed in Section 2. We prove the following theorem.

Theorem 4.1. Let T > 0 and α > 0 be fixed, and let d = 2 or 3. Let ρν and ρ0 be solutions
to (AGν) and (AG0), respectively, in C([0, T ];Cα(Rd)), generated from the same compactly
supported initial data ρ0 ∈ Cα(Rd). There exists C > 0 such that for ν sufficiently small and
for any t < T and β < α,

‖(ρν − ρ0)(t)‖L∞ ≤ CνβCe
−Ct

.

Proof. We first apply Theorem 3.1 to show that ρν converges to ρ0 as ν → 0 in the Ḃ−1
q,∞-norm

for q sufficiently large. Specifically, we show that under the assumptions of Theorem 4.1,

‖(ρν − ρ0)(t)‖Ḃ−1
q,∞
≤ Cνβe−Ct . (4.1)

We then use interpolation and spatial regularity of ρν and ρ0 to complete the proof of Theorem
4.1.

Let χ ∈ C∞c (Rd) be a smooth bump function with χ(x) = 1 for all x ∈ B1(0), and χ(x) = 0
for all x ∈ B2(0)c. Set χn(x) = χ(xn) for each n and each x ∈ Rd, and set ρ0,n = χnSnρ0.

Assume ρνn and ρ0
n are solutions to (AGν) and (AG0), respectively, with initial data ρ0,n. For

fixed t ∈ [0, T ], write

‖(ρν − ρ0)(t)‖Ḃ−1
q,∞
≤ ‖(ρν − ρνn)(t)‖Ḃ−1

q,∞
+ ‖(ρνn − ρ0

n)(t)‖Ḃ−1
q,∞

+ ‖(ρ0
n − ρ0)(t)‖Ḃ−1

q,∞

:= δ1(t) + δ2(t) + δ3(t).

We apply the proof of Theorem 3.1 to δ1 and δ3, keeping in mind that we are now considering
the difference of two solutions generated from two distinct initial densities. The resulting
estimates on δ1 and δ3, while similar to (3.26), will thus have an extra term on the right hand
side involving ρ0 and ρ0,n. Specifically, one can conclude that, for j = 1, 3,

δj(t) ≤
‖ρ0 − ρ0,n‖Ḃ−1

q,∞

M
+ C(M,T, ε0)

∫ t

0
δj(s)(2− ln δj(s)) ds, (4.2)

We must estimate ‖ρ0 − ρ0,n‖Ḃ−1
q,∞

. Write

‖ρ0 − ρ0,n‖Ḃ−1
q,∞
≤ ‖ρ0 − χnρ0‖Ḃ−1

q,∞
+ ‖χnρ0 − χnSnρ0‖Ḃ−1

q,∞
.
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Since ρ0 is compactly supported, for sufficiently large n, ‖ρ0 − χnρ0‖Ḃ−1
q,∞

= 0. It remains to

estimate ‖χnρ0 − χnSnρ0‖Ḃ−1
q,∞

. By Bernstein’s Lemma, for q sufficiently large,

‖χnρ0 − χnSnρ0‖Ḃ−1
q,∞

= sup
j∈Z

2−j‖∆̇j(χn(ρ0 − Snρ0))‖Lq

≤ sup
j<0

2−j‖∆̇j(χn(ρ0 − Snρ0))‖Lq + sup
j≥0

2−j‖∆̇j(χn(ρ0 − Snρ0))‖Lq

≤ sup
j<0

2−j2jd(1−1/q)‖∆̇j(χn(ρ0 − Snρ0))‖L1 + ‖χn‖Lq‖ρ0 − Snρ0‖L∞

≤ ‖χn‖L1‖ρ0 − Snρ0‖L∞ + ‖χn‖Lq‖ρ0 − Snρ0‖L∞

≤ (‖χn‖L1 + ‖χn‖Lq)
∑
k≥n

2−kα2kα‖∆kρ0‖L∞

≤ Cnd2−nα ≤ C2−nβ

for all β < α, where we performed a change of variables on χn to get the second to last
inequality, and where C depends on the initial data.

Combining these estimates gives, for sufficiently large n and q,

‖ρ0 − ρ0,n‖Ḃ−1
q,∞
≤ C2−nβ

for any β < α. Substituting this estimate into (4.2) gives, for any β < α, and for j = 1, 3,

δj(t) ≤
C2−nβ

M
+ C(M,T, ε0)

∫ t

0
δj(s)(2− ln δj(s)) ds.

By Osgood’s Lemma, for j = 1, 3,

− log (2− log δj(t)) + log

(
2− log

(
C2−nβ

M

))
≤ C(M,T, ε0)t.

Taking the exponential twice gives, for j = 1, 3,

δj(t) ≤ e2−2e−C(M,T,ε0)t

(
C2−nβ

M

)e−C(M,T,ε0)t

. (4.3)

Now consider the term δ2(t) = ‖(ρνn − ρ0
n)(t)‖Ḃ−1

q,∞
. In this case, the two solutions in the

difference are generated from the same initial data. However, as ρ0
n satisfies the inviscid

equation, when taking the difference of ρνn and ρ0
n, we see that an equation analogous to (3.1)

holds, but with the extra term ν∆ρ0
n on the right hand side. Applying the proof of Theorem

3.1 to this slightly modified equation results in the estimate

δ2(t) ≤
CνT‖∆ρ0

n‖L∞(0,T ;Ḃ−1
q,∞)

M
+ C(M,T, ε0)

∫ t

0
δ2(s)(2− ln δ2(s)) ds. (4.4)

To estimate ‖∆ρ0
n‖Ḃ−1

q,∞
, first observe that, by Bernstein’s Lemma,

‖∆ρ0
n‖Ḃ−1

q,∞
≤ ‖ρ0

n‖Ḃ1
q,∞
.

Using the compact support of ρ0
n and Bernstein’s Lemma, we can write

‖ρ0
n‖Ḃ1

q,∞
≤ sup

j≤0
‖∆̇jρ

0
n‖Lq + sup

j>0
2−j2j‖∆̇j∇ρ0

n‖Lq

≤ ‖ρ0
n‖Lq + ‖∇ρ0

n‖Lq ≤ C(m(Bn(t)))1/q‖ρ0
n‖C1 ,
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where the support of ρ0
n(t) is contained in Bn(t), a ball with radius Rn(t). By (2.6), it follows

that Rn(t) satisfies

Rn(t) = Rn(0) +
Ct

1− T‖ρ0,n‖L∞
‖ρ0,n‖L1∩L∞ .

Since Rn(0) = 2n, and ‖ρ0,n‖L1∩L∞ ≤ ‖ρ0‖L1∩L∞ , for sufficiently large n, m(Bn(t)) can be

bounded above by C(T, ρ0)nd. Therefore,

‖∆ρ0
n‖Ḃ−1

q,∞
≤ ‖ρ0

n‖Ḃ1
q,∞
≤ C(T, ρ0)nd/q‖ρ0

n‖C1 . (4.5)

Moreover, by (2.4), (2.7), (2.8), and the estimates

‖ρn,0‖L∞ ≤ ‖ρ0‖L∞ ,
‖ρn,0‖Cα ≤ ‖χn‖Cα‖Snρ0‖Cα ≤ C‖ρ0‖Cα ,

it follows that

‖ρ0
n‖C1 ≤ ‖ρ0

n‖L∞ + ‖∇ρ0
n‖L∞

≤ ‖ρn,0‖L∞
1− ‖ρn,0‖L∞t

+ (1 + Ct‖ρn,0‖L∞)‖(1− tρn,0)−1‖2L∞‖∇ρn,0‖L∞‖∇X−1
n (t)‖L∞

≤ C(T, ‖ρ0‖L∞)
(
1 + ‖∇ρn,0‖L∞‖∇X−1

n (t)‖L∞
)

≤ C(T, ‖ρ0‖L1 , ‖ρ0‖Cα) (1 + ‖ρn,0‖C1)

≤ C(T, ‖ρ0‖L1 , ‖ρ0‖Cα) (1 + ‖χn‖C1‖Snρ0‖C1) .

Note that ‖χn‖C1 ≤ C
n ≤ C, and

‖Snρ0‖C1 ≤
n∑

j=−1

(‖∆jρ0‖L∞ + ‖∆j∇ρ0‖L∞) ≤ C‖ρ0‖Cα
n∑

j=−1

2j(1−α) ≤ C2n(1−α).

Thus,

‖ρ0
n‖C1 ≤ C(T, ‖ρ0‖L1 , ‖ρ0‖Cα)2n(1−α).

Substituting this estimate into (4.5) gives, for n sufficiently large,

‖∆ρ0
n‖Ḃ−1

q,∞
≤ C(T, ρ0)nd/q2n(1−α) ≤ C(T, ρ0)2n(1−β)

for any β < α. Setting ν = 2−n in (4.4) and applying the above estimate gives

δ2(t) ≤ C2−nβ

M
+ C(M,T, ε0)

∫ t

0
δ2(s)(2− ln δ2(s)) ds.

Again applying Osgood’s Lemma and taking the exponential twice gives

δ2(t) ≤ e2−2e−C(M,T,ε0)t

(
C2−nβ

M

)e−C(M,T,ε0)t

. (4.6)

Combining the estimates for δ1, δ2, and δ3 and using that ν = 2−n gives, for all β < α and
for ν sufficiently small,

‖(ρν − ρ0)(t)‖Ḃ−1
q,∞
≤ δ1(t) + δ2(t) + δ3(t)

≤ Ce2−2e−C(M,T,ε0)t

(
Cνβ

M

)e−C(M,T,ε0)t

≤ C(M,T, ε0)νβe
−C(M,T,ε0)t

,

establishing (4.1).
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4.1. Convergence in L∞. We now apply an interpolation argument to show that the van-
ishing viscosity limit actually holds in the L∞-norm. By Bernstein’s Lemma, for any fixed
N ≥ 1,

‖ρν − ρ0‖L∞ ≤ ‖ψ̌−N ∗ (ρν − ρ0)‖L∞ +

N∑
j=−N

‖∆̇j(ρ
ν − ρ0)‖L∞ +

∞∑
j=N+1

‖∆̇j(ρ
ν − ρ0)‖L∞

≤ C2
−N d

p0 ‖ψ̌−N ∗ (ρν − ρ0)‖Lp0 +

N∑
j=−N

2j(d/q+1)‖ρν − ρ0‖Ḃ−1
q,∞

+

∞∑
j=N+1

‖∆̇j(ρ
ν − ρ0)‖L∞

≤ C2
−N d

p0 ‖ρν − ρ0‖Lp0 + (C + 2N(d/q+1))‖ρν − ρ0‖Ḃ−1
q,∞

+ 2−Nα(‖ρν‖Cα + ‖ρ0‖Cα)

≤ C2−Nα(‖ρν‖Lp0 + ‖ρ0‖Lp0 + ‖ρν‖Cα + ‖ρ0‖Cα) + C2N(d/q+1)‖ρν − ρ0‖Ḃ−1
q,∞

≤ C(M,T, ε0)
(

2−Nα + 2N(d/q+1)νβe
−C(M,T,ε0)t

)
,

where we used that d > p0 to get the fourth inequality, and where we applied (4.1) to get
the last inequality. To optimize the rate of convergence, we choose N such that 2−Nα =

2N(d/q+1)νβe
−C(M,T,ε0)t . This gives

N =
−1

1 + α+ d/q
log2

(
νβe

−C(M,T,ε0)t
)
.

After substituting this value of N into the above calculation, we conclude that

‖(ρν − ρ)(t)‖L∞ ≤ C(M,T, ε0)νβC(α,d,q)e−C(M,T,ε0)t
.

This completes the proof of Theorem 4.1. �
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