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I. OVERVIEW AND GOALS

This project is part of the ongoing Paradigms in Physics Project, a complete redesign of

the upper-division physics major at Oregon State University. This project focuses on the

course content of the Energy and Entropy Paradigm and the Interlude session, an intensive

week of mathematical methods, that precedes it. The current reformulation of this course

is focused on providing students with more concrete examples and highlighting the physical

significance of mathematical manipulations in thermodynamics problems through the use

of new classroom activities and sequences of content. The primary goal of this Interlude is

to develop mathematical relationships present in thermodynamics in a familiar mechanics

context before beginning instruction in the more abstract subject of thermodynamics.

Students often struggle with thermodynamics at least in part due to the unfamiliarity and

complexity of partial derivatives [1–4]. Research conducted to assess student applications of

partial derivatives in thermodynamics has shown that even when given tasks related to ab-

stract non-physical contexts students struggle to correctly express and use partial derivatives

[5, 6]. During the 2012-2013 academic year, we designed an apparatus, which we have called

a Partial Derivative Machine (PDM), with the goal of introducing partial derivatives in a

physical context that is familiar to students through a mechanical analogue of a thermody-

namic system. This apparatus, along with the activities described in this paper, represents

a small piece of an extensive redesign of Energy and Entropy, which is the thermodynamics

portion of the Paradigms in Physics sequence at Oregon State University [7]. This reform

primarily relies on development of Interlude materials that build understanding of partial

derivatives through more concrete and tangible applications of derivatives. The PDM at-

tempts to meet our goal of connecting partial derivatives, tangible physical systems, and
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more abstract thermodynamic systems. By incorporating the PDM into Interlude activities

which are mathematically analogous to the Energy and Entropy course material, students

are able to study a physical system which can be manipulated tangibly.

Using the Actor Oriented Transfer framework to study students solving assignments where

a thermodynamics problem has been paired with a similar mechanics problem earlier in the

term we plan to investigate the following research question: Do students make explicit refer-

ences to connections they see between the task at hand and exercises using the PDM, make

gestures indicative of working with the PDM, or repeatedly use mathematical techniques?
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II. UNDERLYING PRINCIPLES: HOW THE PDM WORKS

The Partial Derivative Machine is an apparatus consisting of a central spring system

that can be stretched via two strings extending outward from the center (See Fig. 1). The

thumbnuts in the center of the board provide a fixed point to keep the spring system mounted

to the board as masses are added. This central system is placed on a large piece of particle

board which features a pulley and a knob on each of two adjacent corners (A and B in Fig.

1). Fixing the string with the knob at A or B allows the user to fix the respective position

(x or y) while performing other manipulations on the system.

FIG. 1. The PDM, (A/B)Pulley and knob, (C)Measuring Flags, (D)Mounting Knobs.

In order to more easily measure the stretching of the system, a measuring tape is placed

on the board parallel to each string and flags are added to the strings (Example labeled C in

Fig. 1). By defining the “X” and “Y” axes, the instructor is able to define four quantities for

this experiment: x, the position of the X flag; y, the position of the Y flag; Fx, the tension

in the X oriented string; Fy, the tension in the Y oriented string.
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FIG. 2. Pulley and Knob (A in Fig. 1).

There are two methods that can be used to manipulate the system. The first method

involves tightening the knob on corner A or B to pin the corresponding string, thereby fixing

x or y, and then increasing the mass on the opposite (freely hanging) string. For example,

pinning the knob at B would fix y, then adding weight to the X string would increase x, Fx,

and Fy.

Alternatively, one can leave both the X and Y strings free and add weights to one or both.

In doing so, placing weight on a string causes the system to react and both x and y change to

allow the system to reach a stable state. For example, adding weight to the X string would

cause x and Fx to increase while Fy stays constant and y may increase or decrease.

A. Example Central Systems

A variety of central systems can be used with the PDM to provide students with different

experiences. The variety of spring configurations leads to different mathematical and physical

behaviors of the system. During the first activities with the PDM, these central systems are
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hidden from students with a black box as in Fig. 4 in an attempt to make it impossible for

students to use Hooke’s law for their system. Four example systems are pictured in Fig. 3 to

illustrate the different ways that the two strings can be coupled. The systems included in Fig.

3 each behave slightly differently and consequently each group finds different relationships

to describe the behavior of the system. Not included in this picture are two systems only

used for the first activity “Simple Derivatives” described in Section VI B. The first of these

systems is a single spring connected to each string with no coupling; this system behaves

uniquely because manipulation of the X string has no influence on the Y string and vice

versa. The second system contains no springs, only strings, and it is therefore possible for the

system to be maximally stretched in particular direction and no longer respond to addition

of additional force in that direction.

FIG. 3. Example “central systems” used with the Partial Derivatives Machine

B. Changes from 2013 to 2014

The previous version of the Partial Derivative Machine used in the 2013 session of Inter-

lude (detailed description in Appendix C) featured four strings extending from the central

system. Two of these strings only functioned to hold the system in place and made experi-

mentation more difficult as they required frequently re-centering. The definitions of Fx and
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FIG. 4. PDM with “Black Box” included.

Fy used in the 2013 course required the two forces to be orthogonal, a restriction that was

not satisfied if the system was off-center. Additionally, if the system was not re-centered to

account for the change in forces it was prone to slip off the pulleys. The knobs on the new

system (D in Fig. 1) have replaced the two strings used to position the central system in the

2013 version.

The new system has the benefit of a layout of pulleys that minimizes occurrences of the

strings slipping off as well as only requiring two strings to manipulate the system. The fact

that the system can only be manipulated with two strings attempts to clarify to students

that there are exactly two ways of putting energy into the system (one per string). The

previous model created confusion as to whether or not recentering the system with the third

and fourth strings required putting energy into the system. A significant benefit of the new

system is that the measurements students took could be done in shorter time since no time

was spent repositioning the system. Since the time to conduct a measurement was reduced

it was the goal of the instructor to present more opportunities for measurement into the

course.
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III. LITERATURE REVIEW

The ability to apply knowledge from one context to another is often defined in the Edu-

cation Research community as transfer. Transfer has its foundations in both education and

psychology research and has evolved into many sub-frameworks each with their own defini-

tion of what constitutes evidence of transfer and how it should be assessed. In traditional

models of transfer, transfer is treated as the ability of students to apply content learned in

one setting to identical problems in a new setting. In more recent approaches the framework

has expanded to view transfer as a dynamic process that treats the target situation, the

situation in which the researcher looks for transfer, as a potential learning situation. Addi-

tionally, modern perspectives reconsider whether it is the researcher or subject who should

identify the initial and target situations as similar.

One contemporary framework by Bransford and Schwartz views transfer as “preparation

for future learning” (PFL) focusing on problem solving ability in new contexts [8]. This

approach analyzes the processes learners use to solve problems and whether the subject

can learn to use methods developed in previous contexts in the target situation. In this

approach, the subject is not “sequestered” but is instead allowed to use additional resources,

revise their thinking, and receive feedback . The developers of the PFL framework consider

the “sequestered problem solving” and “direct application” as a possible explanation for

the perceived pessimism surrounding evidence of transfer. Instead, the authors promote an

examination of how initial learning situations foster an ability to learn in new situations.

The example provided by the authors is a study of subjects’ ability to learn a new text

editor given previous experience with text editors. From a PFL perspective, examination

of potential transfer scenarios involves direct exploration of people’s ability to learn and
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relate new information. This perspective shifts the focus to whether learners are prepared

to learn to solve new problems. In the case of the text editor task, examination of these

scenarios would study the questions learners ask because these provide a partial picture of

their learning goals.

Wagner’s Transfer in Pieces approach considers the development of knowledge across

several encounters with the same task [9]. In this approach, transfer is evident through the

transition from initially perceiving a set of problems as different to developing a conceptual

understanding of how they are “alike” in terms of underlying principles. A critical element of

Transfer in Pieces, and the resource framework as a whole, is that coordinating ideas across

multiple situations is an essential characteristic of some concepts themselves. Consequently,

Transfer in Pieces does not make a firm distinction between general understanding of a

concept and the ability to apply it in specific situations. Transfer in Pieces draws from

the idea of resources in learning and traces these knowledge resources across the sequence

of problems and studies how these ideas develop. From this analysis, transfer is viewed as

“the incremental growth, systematization and organization of knowledge resources that only

gradually extend the span of situations in which a concept is perceived as applicable”.

Another contemporary approach is Lobato’s Actor Oriented Transfer which focuses on

the learner and their interpretation of situations as similar [10]. Actor Oriented Transfer

(AOT) focuses on instances in which the research subject is able to make a connection be-

tween contexts, through “personal construction of relations of similarity across activities”.

The framework has two foci, the learner and the learner’s perception of the initial and target

learning situations [12]. Evidence of AOT is the existence of student-identified relationships

between the initial learning situation and the task at hand observed in one of two ways.
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Specifically, any instance where the learner makes an explicit reference to previous learning

situations is considered evidence [11, 12]. The second type of evidence is less obvious and oc-

curs when the learner makes repeated use of particular techniques often without articulating

that they are making a connection. Consequently, the judgment of the researcher impacts the

consideration of these situations as evidence of transfer. While traditional cognitive views of

transfer identify the ability to apply formulas and surface features (procedural steps) across

multiple problems as evidence for transfer, AOT examines student reasoning processes since

students could be making connections from initial learning situations the researcher does

not expect [12]. A combination of think-aloud problem solving and analysis of the learners’

procedure can be used to identify their reasoning on a particular task.
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IV. METHODS

A. Choice of AOT Framework

AOT was used as a theoretical framework because we wanted to determine whether stu-

dents were able to apply conceptual understanding gained from the PDM to thermodynamic

topics. Alternative transfer frameworks were considered for this project, but the “evidence

of transfer” in other frameworks examines students’ ability to perform a particular task.

In the context of this project, this evidence would be measured by students demonstrating

increased ability to solve mathematically identical problems after completing the problem in

the Interlude and Energy and Entropy with different variables. Since it is the purpose of the

Interlude to develop these skills the researcher felt it would aid in curriculum development

to investigate the transfer of conceptual understanding and identify instances where stu-

dents noticed similarities between problems. In previous years the Interlude has taught the

mathematical ideas without any physical context, with abstract variables, and with the vari-

ables (but not physics) of thermodynamics. A benefit of the PDM may be the opportunity

to provide physical significance and conceptual understanding of the variables, derivatives,

derivative relationships, and total differentials used in Interlude. Consequently, AOT might

provide an appropriate framework for analysis of the Interlude and Energy and Entropy

courses due to its focus on transfer of concepts in addition to the procedural steps required

for problem solving. In our study, AOT would be evident through explicit references, such

as those by name or conceptual connections, and gestures indicative of working with the

PDM.
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B. Participant Selection

The original plan for participant selection for this study was to recruit volunteers via an

email sent to a particular subset of the students in the course, see appendix A. One selec-

tion criterion was student attendance in previous courses. Choosing students with reliable

attendance habits was done to increase the likelihood of reliable subject involvement. An

attempt was also made to select students, and subsequently form groups, at varying ability

levels as demonstrated in previous Paradigms in Physics courses. The ability of students to

explain their reasoning while solving problems was also considered as a factor in selection of

potential volunteers. This selection was done by the course instructors and the researcher

was not informed of the justification for the selection of any individuals.

Due to limited response to this initial invitation, Professor Manogue appealed to the

PH461 Mathematical Methods course, which most Paradigms students are concurrently en-

rolled in, for additional participants. After this appeal, five additional volunteers were found

for a total of six. These students were then divided into two groups for the duration of

the course. Groups were formed based partially on schedule availability but also took into

consideration the creation of groups that would be comfortable working together. Professors

Manogue and Roundy also considered the grades of the students to create groups with a

range of abilities. Each group was assigned to a particular workspace in the classroom to

aid in data collection as described below.

C. Data Collection

Data collected during this project consisted of recorded problem solving sessions and

classroom video from the 2014 Energy and Entropy Paradigm. All data collected was stored
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on a password protected network attached server (NAS) in the Weniger 495 lab facility.

Problem solving sessions were conducted in the Paradigms Research Group’s lab space,

Weniger 495. One camera was placed overhead to record the work of students on large white

boards as they completed tasks. A second camera recorded from the corner of the room to

record students gestures, facial expressions, interactions, etc. Sessions consisted of students

doing group problem solving exercises that presented problems included in the homework

assignments for Energy and Entropy, but before the students had been asked to submit the

problems for a grade. Students were asked to converse with each other while working on

tasks, articulate the steps they were taking, and explain the motivation for doing so. During

these problem solving sessions, students were allowed to work with little input from the

interviewer. Occasionally, clarifying questions were asked of the students so the interviewer

could follow the student work (such as asking for axis labels on a graph) but the interviewer

neither assisted students in solving problems nor asked them to explain their reasoning on

a particular task. Students were allowed to consult the instructor or teaching assistants as

needed so that the participation in the problem solving session would not impede their ability

to make progress on the assignment. During several problem solving sessions the students

were clearly not progressing and the researcher asked teaching assistants or instructor to join

the session and to provide help as needed.

Classroom video was collected during each class period during Interlude and Energy and

Entropy, a total of four weeks. Two cameras were focused on each of the groups involved

in this study to record their work. The first was positioned above the group and was

used to record the work of students on large white boards and working with the Partial

Derivative Machine. The second camera was positioned across the table from the group
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and recorded conversations between students and provided a better viewing angle to observe

facial expressions and interaction within the group. A fifth camera and microphone were used

to record the instructor during lectures and group activities. This provided a comprehensive

record of what the instructor said, whether different groups received different instruction,

and specifically what was presented to the research participants.

D. Problem Selection

One task from each homework assignment was selected for use in each problem solving

session. During the first and second sessions, students worked to complete their analysis of

data taken from laboratory experiments done in class. First was the Potential Energy Lab

from Interlude used with the PDM (See Homework 1 in Appendix B). This lab was selected

primarily because data collection had occurred the same day as the interview session and

the assignment was due the following day. Second was the Ice Calorimetry Lab from Energy

and Entropy (Homework 3 Appendix B). This task was also selected for the problem solving

session due to the timing of data collection and the collection of the assignment. These two

assignments represented a larger amount of work than a traditional problem set so it was

decided that students should be able to work on the assignments before the group session

and use the group session time to continue their work.

The third session focused on question 5.3 from the fifth homework set (See Homework

5 in Appendix B). Our research group selected this problem for use during the interview

session because we thought this task might present a likely scenario for transfer. For this

session, students were asked to wait to begin work on the problem until the interview session

so that we could observe them completing as much of the task as possible. This problem
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asked students to use the analytic expressions of tension and heat capacity of a bungee cord

to find analytic expressions for the free energy, internal energy, and entropy. Aside from

the obvious analogy of something being stretched this problem was unlike any particular

task done in Interlude as the concepts required for this problem were not identical to those

needed for problems done with the PDM.

Problem 5.3: Bungee A physics major carefully measures the tension in a Bungee

cord over a range of temperatures from room temperature to the boiling point of water.

She examines her data carefully and finds that the tension in the cord is very well

approximated by

τ =
(
a− be−T/T1

)
tan

(
πL

2LM

)

where L is the length that the cord is stretched beyond its relaxed length, and a, b,

T1 and LM are positive constants.

She then places the relaxed cord (L = 0) in a calorimeter and measures the heat

capacity over the same range of temperatures and finds that

CL = α + γe−T/T1

where α and γ are two additional positive constants, and T1 is the same value found in

the previous experiment.

a) Sketch the tension τ versus the stretch L, and the heat capacity CL versus the

temperature T .

b) Find the change in free energy ∆F = F (T, L) − F (TR,
1

2
LM) where TR is room
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temperature.

c) Solve for the change in entropy S(T, L) − S(T,
1

2
LM) at an arbitrary temperature

and length.

d) Solve for the change in internal energy U(T, L) − U(T,
1

2
LM) at an arbitrary tem-

perature and length.

Problem 5.3, the task used in the third problem solving session

The final session used question 7.2 which was almost identical to question 2.3 which was

completed on a previous assignment. The full assignments can be found in Appendix B.

These questions required use of the ordinary and cyclic chain rules to show the equality of

two quotients of derivatives. The only difference between the two problems was the set of

physical variables (S, T, p, V vs. x, y, Fx, Fy) expressed in the derivatives. With this task,

we thought there might be opportunities for transfer of conceptual ideas about what the

quotients represented in addition to the students ability to solve the same mathematical

problem in a new context.

Problem 2.3: Isowidth and isoforce stretchability In class on Tuesday, you

measured the isowidth (or Corinne) stretchability and the isoforce stretchability of your

systems in the black boxes. We found that for some systems these were very different,

while for others they were identical.

Show that the ratio of isowidth stretchability to isoforce stretchability is the same for

both directions of a given system, i.e.:
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(
∂x

∂Fx

)

y(
∂x

∂Fx

)

Fy

=

(
∂y

∂Fy

)

x(
∂y

∂Fy

)

Fx

Problem 2.3, taken from the second homework assignment

Problem 7.2: Isothermal and adiabatic compressibility The isothermal com-

pressibility is defined as KT = − 1

V

(
∂V

∂p

)

T

. KT is found by measuring the fractional

change in volume when the pressure is slightly changed with the temperature held con-

stant. In contrast, the adiabatic compressibility is defined as KS = − 1

V

(
∂V

∂p

)

S

and is

measured by making a slight change in pressure without allowing any heat transfer. This

is the compressibility, for instance, that would directly affect the speed of sound. Show

that

KT

KS

=
Cp

CV

Where the heat capacities at constant pressure and volume are given by

Cp = T

(
∂S

∂T

)

p

and Cp = T

(
∂S

∂T

)

V

Problem 7.2, the task used in the fourth problem solving session
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V. INSTRUCTOR GOALS FOR THE PARTIAL DERIVATIVE MACHINE

Before the 2014 Interlude course, Professor Corinne Manogue and Professor David Roundy

were each interviewed by the researcher to establish what they felt was valuable about

using the PDM. These interviews were conducted separately in the Paradigms Research

Group lab space during Winter Term 2014. The interview started with a discussion of

the interviewees own difficulties with thermodynamics both as a student and an instructor.

From this, each interview moved towards a conversation about the difficulties the instructors

perceive students having in thermodynamics. These ideas built up to a conversation with

each instructor of their own learning goals related to the use of the PDM in the Interlude.

A summary of each instructor’s learning goals is given below.

A. Professor Corinne Manogue

Professor Manogue expressed a number of learning goals related to the use of the PDM

in the Interlude course. One common student difficulty is a struggle with interpreting the

degrees of freedom in a thermodynamic system. The tangible nature of the Partial Deriva-

tive Machine is useful for helping students identify how many free parameters are available

through actual manipulation of a system.

It is also a goal of Prof. Manogue that the Partial Derivative Machine be used to help

students understand conjugate variables and the relationship between properties of the sys-

tem. This topic is explored when dealing with the PDM equivalent of the First Law of

Thermodynamics and builds towards an understanding of internal energy as a function of

the state of a system. This is an important topic for students to develop a sense of what

“conservative” means from a physical perspective besides the mathematical viewpoint of “a
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curl is zero” or “a potential exists”.

The PDM also provides students an observable system to build understanding of the

mathematical and physical consequences of the variable(s) held fixed when taking derivatives.

Prof. Manogue emphasized that the PDM is valuable in demonstrating “derivatives as

experiments”, a complement to the “Name the Experiment” activity sequence in Energy

and Entropy, that helps students understand what is happening when a particular derivative

is measured.

Introducing Legendre Transforms and “free energies” with the PDM provides the in-

structors an opportunity to develop student understanding of the physical significance of

these manipulations. The physical significance of Legendre Transforms can be lost in the

mathematics in a thermodynamics context, but with the PDM the instructor can explore

these transformations as if it is including one of the hanging weights “inside the black box”

representing internal energy.

B. Professor David Roundy

Professor Roundy listed concepts and ideas that he felt were useful to explore with the

PDM. The first of these topics was the various properties of derivatives that can be explored

through the hands-on nature of the PDM. Demonstrating that derivatives are invertable

with the PDM is useful because, while it may seem mathematically legitimate, the PDM

allows students to demonstrate this property with measurement. It is also possible for

students to use measurement to observe that the variable held fixed matters when taking a

derivative. Prof. Roundy also hoped to use the activities and measurements performed with

the PDM to help students learn two properties of derivatives. First, derivatives are functions
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of system variables such as x and y. Second, derivatives represent a variable themselves and

are consequently not always constant. Using the PDM hopefully aids students in developing

an understanding of derivatives as an experiment through a combination of mathematical

computation and physical manipulation.

Asking students to physically measure derivatives with the PDM may help them under-

stand both the process of obtaining Maxwell Relations from expressions of the Energy and to

verify the accuracy of the Maxwell Relation. These concepts connect to student understand-

ing and manipulation of total differentials that are used extensively in thermodynamics. It

is important for students to understand total differentials as a relationship between small

quantities and interpret them mathematically.

Finally, Prof. Roundy discussed the importance of developing understanding of the

“state” of a system. It is important that students realize that for a thermodynamic sys-

tem, or the mechanical equivalent presented by the PDM, the state of a system defines all

the variables (x, y, Fx, Fy or T, S, p, V ), but it is not necessary to use all four variables to

define the state. This leads to the idea that students should understand the relation between

properties of the system and be able to count the number of properties that can be used to

influence the system.
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VI. INTERLUDE CLASSROOM SEQUENCE, 2014

A. Day 1: Introduction

When first introduced to the Partial Derivative Machine, the central system was hidden

from students through the use of a “Black Box” (See Fig. 4). With only the knowledge

that there were two strings extending from this box, students were told that there were two

measurable properties (typically x and y) and two controllable properties (typically Fx and

Fy).

Students were then asked to determine how many properties could be controlled inde-

pendently. Students worked briefly in groups of three to answer this prompt and then were

brought back together for a class discussion.

Many students did not realize that the tension in a particular string is not equivalent to

the weight hung from that string if the corresponding knob is locked since the mass becomes

irrelevant when the string is pinned down. Most students determined two of these properties

could be controlled independently, and that manipulating a pair of parameters caused a

responsive change in the other parameters but had difficulty coming to the conclusion that

the user is able to determine which properties were independent in a given scenario.

B. Days 1 and 2: Finding a Simple Derivative

Once students were familiar with the machine, they were asked in a second exercise to

measure ∂x
∂Fx

and provide a numerical answer with units. In this exercise students might

notice that there were two possible options:
(

∂x
∂Fx

)
y

and
(

∂x
∂Fx

)
Fy

. Roughly one half of

the class chose to measure each derivative; some groups noted that they were holding a
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particular variable constant while others did not. The instructor used this as an opportunity

to define the concept of stretchability as it relates to the system and distinguished between

the “isoposition” (constant y) and “isoforce” (constant Fy) stretchabilities.

After collecting data sets, some students approximated one or both derivative(s) with a

difference quotient while others used an intermediate step of plotting the derivative. The

approach of some groups was to take a few measurements of the form (Fx, x) and approximate

the derivative with the quantity ∆x
∆Fx

. Other groups chose instead to plot x as a function of

Fx and either make linear approximations of the function or take derivatives of the best fit to

find a numerical value. Each method led students to numerical values of the derivative. The

groups then reported these values to the instructor and briefly discussed their data collection

methods.

Due to the different systems under the black boxes, the numerical values for the “isopo-

sition” stretchability and “isoforce” stretchability varied widely from group to group. The

configuration of the springs impacted many behaviors of the system including the coupling

between the two strings and the rigidity of the system. The original state of the system

when the measurements were taken also impacted the numerical value students found as

systems behaved differently when stretched. The relationship between x and Fx also varied

from system to system due to the configurations of strings and springs used.

C. Days 1 and 2: Integrated Lab

As a preface to a major activity associated with the Partial Derivative Machines, students

were given a review lecture (Day 1) on:

• Calculating changes in internal energy, ∆U , as the work, W , done on the system
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• Work as the integral of force, W =
∫
Fdx

• The number of energy inputs (two) for this system, since each string is one way to do

work on the system.

Students then worked for the remainder of the period on determining a method of data

collection for the lab experiment. Students did so in the same groups as in previous activities

and continued to work in these groups for the remainder of the course. The development of

a data collection method was the first homework task assigned to the class and was treated

as a pre-lab task for the Potential Energy Lab.

Problem 1.1: Planning Ahead Work in groups to answer the following prompts.

Bring one copy of your groups plan to class Tuesday.

a) What data will your group take?

1. Which weights will you use?

2. What x or y constraints will you use (if any)?

b) How will you organize your data? (table, graph, etc.)

1. If you use a table, include a copy of your table when turning in your plan. Make

sure your table reflects the plan you outlined in the previous question (ex: include

values of independent variables where appropriate).

2. If you use a graph, turn in a template with axes and include a sketch of what you

expect the data to look like.

c) How will you analyze the data you collect?
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Before you arrive in class on Tuesday to take data, you should draft a plan of attack

for collecting data. In particular, you should keep in mind that you will need to find the

potential energy as a function of two orthogonal coordinates. Since the work only gives

you a difference in potential energy, you need to ensure that you have sufficient data

in order to find the potential energy at every point you consider relative to the same

arbitrary zero.

On the second day of the course, after reviewing and completing the “Simple Derivative”

activity, students proceeded to conduct a laboratory experiment. The primary task was to

measure the potential energy stored in the spring system of the Partial Derivative Machine,

however, a process to determine the energy of a particular state was not explicitly given.

The review of work, potential energy, and springs prior to data collection was designed to

help students make the connection that the potential energy could be obtained from the

work done on the system. Since the system was two dimensional, using W =
∫
Fdx required

finding the work done on the system in both the X and Y directions.

One possible solution method that determines all necessary information is:

1. Starting at a particular x = xo, where ∆x = 0, take measurements of y while changing

Fy (by adding/subtracting masses) in uniform steps, e.g., 0.05kg.

2. Set subsequent x values by loosening knob B, incrementing Fx by small uniform steps,

and then tightening knob B.

3. Repeat step 1 for each new fixed x value.

4. Using the data and numerical integration of Fx dx and Fy dy, approximate the value
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of U(x, y).

This process gave students the data needed to get from any state (x1, y1) to a different state

(x2, y2), provided each corresponded to a state generated during the steps outlined above.

To verify path independence one would need to conduct a similar process, now measuring

x for fixed y values while varying Fx (changing Fx and Fy by the same increments used

above). This lab also provided students practice distinguishing between fixed y and fixed Fy

processes and the relevance of each to particular measurements.

One common difficulty that students had when collecting data and performing their anal-

yses was a lack of sufficient data to complete the calculations. The data collection and

analysis methods many students used allowed them to find the change in internal energy

along any fixed x or y line but did not allow them find the energy along a combination of

these paths. Students are able to calculate the change in internal energy along a combination

of fixed x and fixed y lines easily if the intersection of the two lines corresponds to a state

(x, y) at which they collected data. If the intersection was a point not in their data set the

calculation of ∆U required interpolation, an option many students missed.

D. Connections to Thermodynamics

The integrated lab was designed to allow students to reach the conclusion that there

are two ways to manipulate the potential energy of the system, each corresponding to a

particular force (Fx or Fy) and distance (x or y). The students were able to see the pairing

of these quantities through the differential expression for work,

dU = Fxdx+ Fydy (1)
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which is a mechanical equivalent of the thermodynamic identity, using conjugate pairs of

forces and distances rather than the canonical thermodynamic conjugate pairs: temperature

and entropy, pressure and volume.

The instructor then introduced the concept of the potential energy of the system, U , as

a state function determined by x and y, an implicit function whose total differential is given

by:

dU =

(
∂U

∂x

)

y

dx+

(
∂U

∂y

)

x

dy (2)

From Eqs. 1 and 2 the instructor extracted definitions for the forces as partial derivatives

of the potential energy, a result which should be familiar from both classical mechanics and

Electricity and Magnetism.

Using these expressions for Fx and Fy students were asked to express
(

∂Fx

∂y

)
x

and
(

∂Fy

∂x

)
y

as derivatives of U. From these new derivative expressions, and Clairaut’s theorem, which

states the order in which mixed partial derivatives are taken does not matter, students found

a Maxwell Relation for their system that they could experimentally verify.

E. Days 3-5: Additional Mathematics Content

During the remaining contact hours of the Interlude course, using the physical param-

eters of the PDM, the instructor led students through additional mathematical techniques

relevant to thermodynamics including taking reciprocals of partial derivatives, other partial

derivative manipulations, the cyclic chain rule, and Legendre Transforms. These exercises

allowed students to practice these math methods and understand their results in the con-

text of tangible experimental measurements. Describing Legendre Transforms as “extending

the black box to include one or more strings” attempted to help students understand the



26

conceptual and mathematical value of this technique.

The instructor allowed students to conduct measurements of “simple derivatives” and ma-

nipulations in order to periodically verify the expressions determined for change of variables

and partial derivative chain rules. These brief exercises were used to break up lecture and

provide students additional hands-on learning exercises.

The instructor also used the variables of the PDM and the associated mathematics as

a means of teaching about total differentials and “the three things you can do with total

differentials”. These mathematical manipulations are algebraic manipulation, interpretation

of coefficients as derivatives, and integration along a path.
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VII. ANALYSIS

A. Evidence of Actor Oriented Transfer

During the second problem solving session the groups were asked to work on the Ice

Calorimetry Lab (Homework 3) having collected the data the previous day in class. While

planning their approach to the final question on this assignment one student remarked “this

is like what we did last week” referring to the numerical integration techniques to find the

change in Entropy in Question 3.5 as similar to those used to find Internal Energy in the

Potential Energy Lab (Homework 1). We view this event as evidence of AOT as it is clear

from a combination of the context of the quote and the quote itself that the student has made

a connection between these two instances where numeric integration of their data provided

a correct solution. The student in this example was exhibiting transfer of a procedural skill

developed in the Interlude but this incident does not provide strong evidence of transfer of

conceptual understanding between the PDM and thermodynamic systems.

In the final problem solving session, students were asked to complete a task (Problem

7.2) that was mathematically identical to a task from a previous assignment (Problem 2.3).

When solving this task, both of the participant groups made attempts at solution methods

that differed from the original solution. One possible explanation of this is that in the first

exposure to the problem the class was provided a hint that the ordinary and cyclic chain

rules for partial derivatives may be useful. When exposed to the problem a second time,

the students had much more experience with a variety of mathematical techniques that are

often useful in solving thermodynamics problems but without the hint were unsure of which

step would work best in this context.
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No other explicit references were made to the Partial Derivative Machine or techniques

used in the Interlude during the problem solving sessions, but this does not imply that

students did not learn from the PDM or think about it when solving problems. Limited

opportunities for the observation of AOT were provided by only examining the conversations

between students and their explicitly stated reasoning. It is possible that students were able

to construct similarities between activities or topics in Interlude and Energy and Entropy

but did not verbalize them. It is also a possibility that the problems were so different that

the analogies the instructor hoped to develop were not recognized as easily by the students.

A more comprehensive examination of transfer in this course could be accomplished by

designing and implementing paired assignments and classroom activities that require iden-

tical mathematical procedures or better parallel the conceptual ideas used in Interlude. A

consequence of this change might be a shift of the focus away from conceptual similarities

across contexts and towards procedural fluency with the mathematics.

B. Reflection on Problem Selection

The problems used for the problem solving sessions may have contributed to the lack

of evidence of Actor Oriented Transfer observed. As discussed above, it may be the case

that the concepts covered on the homework assignments during the Energy and Entropy

Paradigm were so conceptually different from the tasks completed in the Interlude that

transfer may have been unlikely. Questions 7.2 and 2.3 were nearly mathematically identical

yet the students did not make explicit connections between the two when solving them during

problem solving sessions. Other pairs of problems were not as closely aligned conceptually

or mathematically. For example, the third problem solving session used question 5.3 which
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relied on integration of analytic forms of expressions whereas Interlude activities were focused

on numerical integration.

C. Instructor References to Partial Derivative Machine in Lecture

There were multiple occasions during the Energy and Entropy Paradigm that Professor

Roundy made use of a PDM at the front of the class to illustrate particular concepts. One

such situation was during the first class period when Professor Roundy discussed transferring

energy into and out of a system in the context of the Ice Calorimetry Lab:

Most of these (stirring the cup of ice water, irradiating the cup, putting the

cup in contact with a hot object, etc.) work basically by heating. They heat the

system which relates to sort of a random transfer of energy that does nothing but

heat the system up. The other approach you could do is compress [the water]...

These two ways to transfer energy are the thermal analogues of the two strings in

the Partial Derivative Machine. If you throw in chemistry, you get more strings.

You get more ways you can transfer energy into and out of a system if you allow

chemical reactions.

Another instance in which Professor Roundy referenced the PDM was when he explained

Enthalpy and Legendre Transforms in the context of the Ice Labs, drawing connections

between the equivalent physical and mathematical manipulations in Interlude:

We talked about this last week when we used the Partial Derivative machine

and I talked about what if you were to cover up one of those weights. If you cover

up one of those weights and you can’t measure the position of that weight then you
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can’t find out what the potential energy of the system is but you can still measure

the work done [on the other string]. That is exactly like your experiments with

Styrofoam cup you couldn’t measure the volume conveniently so you don’t know

what this [−pdV ] term is. We introduced with the machines the idea of taking

the second energy from the second work and adding it on in a sort of interesting

manner.

A third instance in which Professor Roundy made reference to the PDM during lecture

was to emphasize the importance of the measurement aspect of thermodynamics and how

derivatives can be interpreted as measurement. One example of this was at the start of the

Energy and Entropy Paradigm when students were asked to respond to a prompt to define

temperature:

What I was surprised that no one wrote was something like temperature is the

thing you measure with a thermometer. That is actually really fundamental, that

we can define what it is in complicated math terms, but it is really important that

temperature is also the thing you measure in order for us to understand what it

is. Just like when we talked about forces last week it was important to say force

is the derivative of the potential energy with respect to x, but is also the thing

you measure by measuring how much mass there is.

In each of these instances, Professor Roundy was attempting to make conceptual links

between the Partial Derivative Machine and thermodynamic systems. The third instance

is more abstract in considering measurement and temperature than the first and second

which each made explicit references to experiments the students performed but each of these
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excerpts demonstrates an attempt to make a thermodynamic idea more tangible through

references to the PDM.

D. Ideas for Future Use of Partial Derivative Machine

One possible redesign of the Energy and Entropy Paradigm could make use of the Partial

Derivative Machine during the Paradigm instead of a devoted week of separate content. Ad-

dressing the same mathematics content in two separate physical contexts separated by a week

may impact the development of conceptual links between the PDM and thermodynamics.

If instead the instructor incorporated the activities using the PDM into the Paradigm and

blended its use with the other lab assignments and classroom activities used in the thermo-

dynamics portion of the course perhaps the conceptual links and mathematical skills could

each be developed more. The time separation of “paired” activities using similar mathemat-

ics in the two contexts may have contributed to the lack of observed Actor Oriented Transfer

and decreasing this separation could possibly benefit students by placing greater emphasis

on the conceptual similarities to complement the mathematical parallels.
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VIII. SUMMARY

Using the Actor Oriented Transfer (AOT) framework, this research project examined

the Interlude and Energy and Entropy courses at Oregon State University for evidence

of student application of conceptual and mathematical ideas between the courses and the

physical contexts each presents. In Interlude, students are exposed to a mechanical system,

called the Partial Derivative Machine (PDM), designed to build conceptual understanding of

thermodynamics and fluency with the mathematical procedures needed for thermodynamics.

Problem solving interviews were conducted during the Energy and Entropy Paradigm to

observe whether or not students made explicit references to the PDM when completing

homework tasks, made gestures indicative of working with the PDM, or applied similar

mathematical reasoning between the two contexts.

During the second problem solving interview one student drew parallels between the use

of numerical integration techniques in both the Ice Calorimetry Lab (Homework 3) and the

Potential Energy Lab (Homework 1) completed in the Interlude. We view this event as evi-

dence of AOT as the student was able to apply mathematical and computational techniques

from the mechanical system to thermodynamics and made explicit verbal reference to the

previous assignment.

While only one instance of transfer was observed during the problem solving interviews,

we do not view this as evidence that transfer did not occur. It is possible that the participants

in the study made reference to the PDM and associated activities while doing group work

and activities in class. The students’ work in class was also recorded and may be analyzed

in future research conducted by the Paradigms in Physics Research Group. Classroom video

of the instructor was also collected and could be of use to future research projects.
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One aspect of this project that may be modified for future research is narrowing the focus

of the project. Our examination of AOT during the Interlude and Energy and Entropy did

not have a specific focus on development of a particular skill, problem solving strategy, or

conceptual understanding of a topic. Instead, in further research it would be beneficial for

the researcher to examine the transfer of a particular idea such as understanding partial

derivatives as measurements rather than examining whether students refer to activities from

the Interlude while solving thermodynamics problems.
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Appendix A: Recruitment Email

Hello Energy and Entropy Students,

You are receiving this email because you have already agreed to participate in research

in the Paradigms in Physics Program. As part of that research, we are seeking volunteers

to participate in some extra research activities.

As a participant in this aspect of the study, you would be assigned to a specific group

of 3 students for the duration of the Interlude (week 1 of Spring 2014) and the Energy and

Entropy Paradigm (weeks 2-4 of Spring 2014). We would use video of your group as part

of the research study. Additionally, on Tuesday afternoons during weeks 1-4 you would

participate in videotaped problem solving interviews with your group in Weniger 495. The

material you would work on during these interviews would be specific homework problems,

not additional assignments. We request no more than one hour of your time for each interview

and you are only asked to stay as long as it takes your group to complete the problem.

Please respond to Grant Sherer (only) by email whether or not you agree to be a part of

this aspect of the study. There will be no negative consequences to you if you are unable or

unwilling to agree. If you do agree, please let Grant know what hours between 2-8pm you

would be available for the interviews (Tuesdays weeks 1-4 only).

We hope that our analysis of your work will lead to a better understanding of how to

improve our courses here at OSU and at similar institutions nationally. This data will

be analyzed by Grant Sherer for his undergraduate Honors Thesis this spring and also by

subsequent students and researchers in the Paradigms Program. We all appreciate your

willingness to consider being a part of this project.
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Thank you,

Grant Sherer, Physics Undergraduate

Corinne Manogue, Director of the Paradigms Project

David Roundy, Assistant Professor of Physics



Homework 1

Potential Energy Lab
In this lab, you will take measurements on an elastic system that can be stretched in two orthogonal
directions, which can control by applying two orthogonal forces. From these measurements, you must
extract the potential energy of that system.

1.1 Work and potential energy

Changes in the potential energy can be found by computed by measuring how much work is required to get
the system from one configuration to another. Keep in mind that the definition of work is

W =

∫
Fxdx +

∫
Fydy

You will need to determine the right hand side of this equation carefully, measuring the force for changes
in displacement. This will require numeric integration, which itself will require you to have a considerable
amount of data.

Problem 1.1: Planning ahead Work in groups to answer the following prompts. Bring one copy of your
groups plan to class Tuesday.

a) What data will your group take?

1. Which weights will you use?

2. What x or y constraints will you use (if any)?

b) How will you organize your data? (table, graph, etc.)

1. If you use a table, include a copy of your table when turning in your plan. Make sure your table
reflects the plan you outlined in the previous question (ex: include values of independent variables
where appropriate).

2. If you use a graph, turn in a template with axes and include a sketch of what you expect the data
to look like.

c) How will you analyze the data you collect?

Before you arrive in class on Tuesday to take data, you should draft a plan of attack for collecting data.
In particular, you should keep in mind that you will need to find the potential energy as a function of two
orthogonal coordinates. Since the work only gives you a difference in potential energy, you need to ensure
that you have sufficient data in order to find the potential energy at every point you consider relative to the
same arbitrary zero.

1.2 Taking data

During class on Tuesday, you will take your actual data. Plan on spending only an hour taking data, as we
will not devote the entire class period to data collection.

1.3 Bonus System (required for 523 students)

As a challenge problem (which is required for PH 523 students), you can take data—possibly outside of
class—for a second system consisting of string with no springs, and analyze this data in the same way that
you treat your primary elastic system. If you undertake this challenge problem, you should discuss in your
report the differences and similarities between the two systems, and what makes them different.

Physics 423 1 Spring 2014
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Appendix B: 2014 Homework Assignments



1.4 Lab report

You will write up a formal lab report, which is due on Wednesday. This lab report should be written in good
English, and should include all the standard parts of a lab report. In this report in particular, you should
be sure to

• Include a diagram of your lab setup.

• Plot some of your raw data in a useful way.

• Plot U , being sure to account for the various dimensions present. It is not acceptable to hold any
experimental parameter fixed for the entire analysis.

Please consult the rubric below for more information on the expectations for your lab report.

1.5 Rubric

Potential Energy Lab Report Points

Abstract: Abstract conveys full report effectively; briefly describes
experiment, states goal and results.

3

Introduction/motivation: Gives clear reason or motivation for ex-
periment. Is constructed to engage the reader.

3

Experiment: Describes apparatus, components and their relation-
ship accurately, and provides clearly labeled diagrams. Describes
procedure in sufficient detail that a peer could replicate.

3

Results: Physics is correct. Measured data is well-organized, de-
scribed clearly, and plotted appropriately with attention to labels,
captions, and presentation.

6

Analysis: Physics is correct. Quantities derived from raw measure-
ment are clearly explained. Graphs and tables are clear and infor-
mative. Presentation addresses the multiple dimensions present in
the problem.

6

Assessment of data and conclusions: Compares experimental re-
sults with prior expectations. Provides an overview, a strong con-
clusion and comments on the experiment.

3

Language: Language is clear, concise and descriptive. Spelling and
grammar are correct. Tenses and voice are consistent. A profes-
sional tone is maintained. Organization is good.

3

Title, date, acknowledgements, etc: Title is a concise, informa-
tive description. Acknowledgements are appropriate. Date present.
Pages are numbered.

3

Total: 30
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Homework 2

Problem 2.1: Rubber sheet Consider a hanging rectangular rubber sheet. We will consider there to
be two ways to get energy into or out of this sheet: you can either stretch it vertically or horizontally. The
distance of vertical stretch we will call y, and the distance of horizontal stretch we will call x.

If I pull the bottom down by a small distance ∆y, with no horizontal force, what is the resulting change
in width ∆x? Express your answer in terms of partial derivatives of the potential energy U(x, y).

Problem 2.2: Coffee and Bagels In economics, the term utility is roughly related to overall happiness.
Many things affect your happiness, including the amount of money you have and the amount of coffee you
drink. We cannot directly measure your happiness, but we can measure how much money you are willing to
give up in order to obtain coffee or bagels. If we assume you choose wisely, we can thus determine that your
happiness increases when you decrease your amount of money by that amount in exchange for increasing
your coffee consumption. Thus money is a (poor) measure of happiness or utility.

Money is also a nice quantity because it is conserved—just like energy! You may gain or lose money,
but you always do so by a transaction. (There are some exceptions to the conservation of money, but they
involve either the Fed, counterfeiters, or destruction of cash money, and we will ignore those issues.)

In this problem, we will assume that you have bought all the coffee and bagels you want (and no more),
so that your happiness has been maximized. Thus you are in equilibrium with the coffee shop. We will
assume further that you remain in equilibrium with the coffee shop at all times, and that you can sell coffee
and bagels back to the coffee shop at cost.1

Thus your savings S can be considered to be a function of your bagels B and coffee C. In this problem
we will also discuss the prices PB and PC , which you may not assume are independent of B and C. It may
help to imagine that you have

a) The prices of bagels and coffee PB and PC have derivative relationships between your savings and
the quantity of coffee and bagels that you have. What are the units of these prices? What is the
mathematical definition of PC and PB?

b) Write down the total differential of your savings, in terms of B, C, PB and PC .

c) Use the equality of mixed partial derivatives (Clairut’s theorem) to find a relationship between PB ,
PC , B and C. Write this relationship mathematically, and also describe in words what it means.

d) Solve for the total differential of your net worth. Once again use Clairut’s theorem considering second
derivatives of W to find a different partial derivative relationship between PB , PC , B and C.

W ≡ S + PBB + PCC

Problem 2.3: Isowidth and isoforce stretchability In class on Tuesday, you measured the isowidth
(or “Corinne”) stretchability and the isoforce stretchability of your systems in the black boxes. We found
that for some systems these were very different, while for others they were identical.

Show that the ratio of isowidth stretchability to isoforce stretchability is the same for both directions of
a given system, i.e.:

(
∂x
∂Fx

)
y(

∂x
∂Fx

)
Fy

=

(
∂y
∂Fy

)
x(

∂y
∂Fy

)
Fx

(1)

1Yes, this is ridiculous. It would be slightly less ridiculous if we were talking about nations and commodities, but also far
less humourous.
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Hint You will need to make use of the cyclic chain rule, which we will derive on Thursday:

(
∂A

∂B

)

C

= −
(
∂A

∂C

)

B

(
∂C

∂B

)

A

(2)

Hint You will also need the ordinary chain rule, which we will also derive on Thursday:

(
∂A

∂B

)

D

=

(
∂A

∂C

)

D

(
∂C

∂B

)

D

(3)
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Homework 3

Ice Calorimetry Lab
In this lab, we will be measuring how much energy it takes to melt ice and heat water.

Materials:

• Styrofoam cup

• Heating element

• Scale

• 2 digital multimeters

• Temperature guage

• Ice and water

V

A

The setup You will put some mass of ice (about 50g) and ice-cold water (about 150g) into your styrofoam
cup. Use the scale to record the mass of the ice and water as you add them to the cup. Finally, add your
ice-cold heating element and thermometer through the lid of the cup.

Collect data We will be measuring the temperature of the water and the power dissipated in the heating
element (which is just a resistor). Thus we can find out how much energy was added to the water, and how
this changes the temperature. In order to keep the temperature measurement reasonable, we will need to
periodically stir the cup and heat it moderately slowly.

You will be collecting temperature data using the computer, so before you turn on the heater, you should
make sure the computer is taking data. Turn on the heater, and write down the time you do so as well as the
current and voltage, from which you can find the power dissipated in the resistor. If the current or voltage
changes during the course of the experiment, take note of the new values—and the time.

Problem 3.1: Plot your data I Plot the temperature versus total energy added to the system (which
you can call Q). To do this, you will need to integrate the power. Discuss this curve and any interesting
features you notice on it.

Problem 3.2: Plot your data II Plot the heat capacity versus temperature. This will be a bit trickier.
You can find the heat capacity from the previous plot by looking at the slope.

Cp =

(
∂Q

∂T

)

p

(1)

This is what is called the heat capacity, which is the amount of energy needed to change the temperature
by a given amount. The p subscript means that your measurement was made at constant pressure. This
heat capacity is actually the total heat capacity of everything you put in the calorimeter, which includes the
resistor and thermometer.

Problem 3.3: Specific heat From your plot of Cp(T ), work out the heat capacity per unit mass of water.
You may assume the effect of the resistor and thermometer are negligible. How does your answer compare
with the prediction of the Dulong-Petit law?

Problem 3.4: Latent heat of fusion

a) What did the temperature do while the ice was melting? How much energy was required to melt the
ice in your calorimeter? How much energy was required per unit mass? per molecule?
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b) The change in entropy is easy to measure for a reversible isothermal process (such as the slow melting
of ice), it is just

∆S =
Q

T
(2)

where Q is the energy thermally added to the system and T is the temperature in Kelvin. What is was
change in the entropy of the ice you melted? What was the change in entropy per molecule? What
was the change in entropy per molecule divided by Boltzmann’s constant?

Problem 3.5: Entropy for a temperature change Choose two temperatures that your water reached
(after the ice melted), and find the change in the entropy of your water. This change is given by

∆S =

∫
d̄Q

T
(3)

=

∫ tf

ti

P (t)

T (t)
dt (4)

where P (t) is the heater power as a function of time and T (t) is the temperature, also as a function of
time.
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Homework 5

Problem 5.1 (practice): Power from the ocean It has been proposed to use the thermal gradient of
the ocean to drive a heat engine. Supoose that at a certain location the water temperature is 22oC at the
ocean surface and 4oC at the ocean floor.

a) What is the maximum possible efficiency of an engine operating between these two temperatures?

b) If the engine is to produce 1 GW of electrical power, what minimum volume of water must be processed
every second? Note that the heat capacity of water Cp = 4.2 Jg−1K−1 and the density of water is
1 g cm−3, and both are roughly constant over this temperature range.

Problem 5.2: Power plant on a river At a power plant that produces 1 GW (109watts) of electricity,
the steam turbines take in steam at a temperature of 500oC, and the waste energy is expelled into the
environment at 20oC.

a) What is the maximum possible efficiency of this plant?

b) Suppose you arrange the power plant to expel its waste energy into a chilly mountain river at 15oC.
Roughly how much money can you make in a year by installing your imporved hardware, if you sell
the addtional electricity for 5 cents per kilowatt-hour?

c) At what rate will the plant expel waste energy into this river?

d) Assume the river’s flow rate is 100m3/s. By how much will the temperature of the river increase?

e) To avoid this “thermal pollution” of the river the plant could instead be cooled by evaporation of river
water. This is more expensive, but it is environmentally preferable. At what rate must the water
evaporate? What fraction of the river must be evaporated?

Problem 5.3: Bungee A physics major carefully measures the tension in a Bungee cord over a range of
temperatures from room temperature to the boiling point of water. She examines her data carefully and
finds that the tension in the cord is very well approximated by

τ =
(
a− be−T/T1

)
tan

(
πL

2LM

)

where L is the length that the cord is stretched beyond its relaxed length, and a, b, T1 and LM are positive
constants.

She then places the relaxed cord (L = 0) in a calorimeter and measures the heat capacity over the same
range of temperatures and finds that

CL = α+ γe−T/T1

where α and γ are two additional positive constants, and T1 is the same value found in the previous experi-
ment.

a) Sketch the tension τ versus the stretch L, and the heat capacity CL versus the temperature T .

b) Find the change in free energy

∆F = F (T, L) − F (T, 12LM )

where TR is room temperature.

c) Solve for the change in entropy S(T, L) − S(T, 12LM ) at an arbitrary temperature and length.

d) Solve for the change in internal energy U(T, L) − U(T, 12LM ) at an arbitrary temperature and length.
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Problem 5.4: Using the Gibbs free energy You are given the following Gibbs free energy:

G = −kTN ln

(
aT 5/2

p

)

where a is a constant (whose dimensions make the argument of the logarithm dimensionless).

a) Compute the entropy.

b) Work out the heat capacity at constant pressure Cp.

c) Find the connection among V, p,N, and T , which is called the equation of state.

d) Compute the internal energy U .

Problem 5.5: Free expansion The internal energy is of any ideal gas can be written as

U = U(T,N) (1)

meaning that the internal energy depends only on the number of particles and the temperature, but not the
volume.1 The ideal gas law

pV = NkBT (2)

defines the relationship between p, V and T . You may take the number of molecules N to be constant.
Consider the free adiabatic expansion of an ideal gas to twice its volume. “Free expansion” means that no
work is done, but also that the process is also neither quasistatic nor reversible.

a) What is the change in temperature of the gas?

b) What is the change in entropy of the gas? How do you know this?

Tc

Th

Qc

Qh

W

Problem 5.6 (challenge): Heat pump A heat pump is a refridgerator (or air
conditioner) run backwards, so that it cools the outside air (or ground) and warms
your house. We will call Qh the amount of heat delivered to your home, and W the
amount of electrical energy used by the pump.

a) Define a coefficient of performance γ for a heat pump, which (like the efficiency
of a heat engine) is the ratio of “what you get out” to “what you put in.”

b) Use the second law of thermodynamics to find an equation for the coefficient of
performance of an ideal (reversible) heat pump, when the temperature inside
the house is Th and the temperature outside the house is Tc. What is the
efficiency in the limit as Tc � Th?

c) Discuss your result in the limit where the indoor and outdoor temperatures
are close, i.e. Th − Tc � Tc. Does it make sense?

d) What is the ideal coefficient of performance of a heat pump when the indoor
temperature is 70◦F and the outdoor temperature is 50◦F? How does it change
when the outdoor temperature drops to 30◦F?

1This relationship happens to be linear at low temperatures, where “low” is defined relative to the energy of the excited
states of the molecules or atoms.
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Homework 7

Problem 7.1: Hot metal A 1 cm3 cube of hot metal is thrown into the ocean; several hours pass.

a) During this time does the entropy of the metal increase, decrease, remain the same, or is this not
determinable with the given information? Explain your reasoning.

b) Does the entropy of ocean increase, decrease, remain the same, or is this not determinable with the
given information? Explain your reasoning.

c) Does the entropy of the metal plus the ocean increase, decrease, remain the same, or is this not
determinable with the given information? Explain your reasoning.

Problem 7.2: Isothermal and adiabatic compressibility The isothermal compressibility is defined
as

KT = − 1

V

(
∂V

∂p

)

T

(1)

KT is be found by measuring the fractional change in volume when the the pressure is slightly changed with
the temperature held constant. In contrast, the adiabatic compressibility is defined as

KS = − 1

V

(
∂V

∂p

)

S

(2)

and is measured by making a slight change in pressure without allowing for any heat transfer. This is the
compressibility, for instance, that would directly affect the speed of sound. Show that

KT

KS
=
Cp

CV
(3)

Where the heat capacities at constant pressure and volume are given by

Cp = T

(
∂S

∂T

)

p

(4)

CV = T

(
∂S

∂T

)

V

(5)

Problem 7.3: Boltzmann ratio At low temperatures, diatomic molecule can be well described as a rigid
rotor. The Hamiltonian of such a system is simply proportional to the square of the angular momentum

H =
1

2I
L2 (6)

and the energy eigenvalues are

Elm = h̄2
l(l + 1)

2I
(7)

a) What is the energy of the ground state and the first and second excited states of the H2 molecule?

b) At room temperature, what is the relative probability of finding a hydrogen molecule in the l = 0 state
versus finding it in any one of the l = 1 states?
i.e. what is Pl=0,m=0/ (Pl=1,m=−1 + Pl=1,m=0 + Pl=1,m=1)

c) At what temperature is the value of this ratio 1?

d) At room temperature, what is the probability of finding a hydrogen molecule in any one of the l = 2
states versus that of finding it in the ground state?
i.e. what is Pl=0,m=0/ (Pl=2,m=−2 + Pl=2,m=−1 + · · · + Pl=2,m=2)
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Problem 7.4 (challenge): A plastic rod When stretched to a length L the tension force τ in a plastic
rod at temperature T is given by its Equation of State

τ = aT 2(L− Lo)

where a is a positive constant and Lo is the rod’s unstretched length. For an unstretched rod (i.e. L = Lo)
the specific heat at constant length is CL = bT where b is a constant. Knowing the internal energy at To, Lo

(i.e. U(To, Lo)) find the internal energy U(Tf , Lf ) at some other temperature Tf and length Lf .

a) Write U = U(T, L) and take the total derivative dU .

b) Show that the partial derivative (∂U/∂L)T = −aT 2(L− Lo).

c) To integrate the resulting differential equation Line Integrate dU very carefully in the T, L plane,
keeping in mind that CL = bT holds only at L = Lo.
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Appendix C: Partial Derivative Machine, 2013 Version

Description

The Partial Derivative Machine is an apparatus consisting of a central spring system that

can be stretched via four strings extending outward from the center (See Fig. 5). Alternative

central systems can be used for this activity including a loop of string, a piece of spandex,

and other combinations of springs (see Fig. 6). This central system is on a large piece of

particle board which features a pulley on two adjacent corners (Corners C and D in Fig. 5),

and a knob on all four corners (See Fig. 7). By tightening the knobs at A and B (See Fig. 5),

one can hold the system in place while adding weights to the hanging strings, allowing one

to manipulate the state of the system.

FIG. 5. The PDM, (A/B)Corners with only knob, (C/D)Corners with pulley, (E)Measuring Flag.

In order to more easily measure the stretching of the system, a measuring tape is placed

on the board parallel to each string and flags are added to the strings (Example labeled E

in Fig. 5). By labeling the axis from corner B to corner D as the “X-axis” and the axis from
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FIG. 6. Central Systems: (A)Loop of String, (B)Piece of Spandex, and (C)Spring System.

corner A to corner C as the “Y-axis” the instructor is able to define four quantities for this

experiment:

1. x, the distance between the flags on the X strings

2. y, the distance between the flags on the Y strings

3. Fx, the tension in the X oriented strings

4. Fy, the tension in the Y oriented strings

There are two conditions under which the system can be manipulated. The first method

involves tightening the knob on corner C or D to pin a third string, thereby fixing x or y,

and then increasing the mass on the freely hanging string. For example, pinning the knob

at C would fix y, then adding weight to the X string would increase x, Fx, and Fy.

Alternatively, one can leave both the X and Y strings free and add weights to one or

both. In doing so, placing weight on a string causes the system to stretch in one direction

while compressing in the other direction as the system balances the forces. For example,

adding weight to the X string would cause x and Fx to increase while Fy stays constant and

y decreases.
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FIG. 7. Corner with Pulley and Knob (C/D in Fig. 5).

It is important to note that as weights are added it is not uncommon for the system to

shift from its centered position. In order to keep Fx and Fy orthogonal as the system is

shifted, students are told to temporarily loosen knobs at A and B to recenter the system

between measurements. If done correctly, this action is only a translation of the system.

Thus it does not result in stretching or compressing the system and does not impact any of

the measurements students are instructed to make.

Use of the PDM in the Classroom, 2013

Introduction

When first introduced to the Partial Derivative Machines, the central system was hidden

from students through the use of a “black box” (See Fig. 8). With only the knowledge that

there were four strings extending from this box, students were asked to determine:

• The properties of the system that can be controlled.

• The properties of the system that can be measured.

• The number of independent properties of the system.
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Students worked briefly in groups of 3 students to answer this prompt and then were brought

back together for a class discussion. During the wrap-up discussion, students listed a number

of controllable properties including the position of the central system relative to the center

of the board, the forces applied to the system, and the amount the system was stretched

in either direction. Students decided it was possible to measure x and y by taking values

for the positions of the flags, and to measure Fx and Fy by noting the mass hung from the

relevant string.

FIG. 8. Old PDM with “Black Box” included.

Many students did not realize however that the tension in a particular string is not

equivalent to the weight hung from that string if the corresponding knob is locked since the

mass becomes irrelevant when the string is pinned down. Most students also determined

that only two of these properties could be controlled independently and that manipulating

a pair of parameters caused a responsive change in the other parameters.



53

Finding a simple derivative

Once students were familiar with the machine, they were asked in a second exercise to

find ∂x
∂Fx

and had to consider that there were two possible options:
(

∂x
∂Fx

)
y

and
(

∂x
∂Fx

)
Fy

.

As an introduction, the instructor defined the concept of stretchability as it relates to the

system and distinguished between the “isowidth” (constant y) and “isoforce” (constant Fy)

stretchabilities.

After collecting data sets, plotting results, and calculating numerical values for both quan-

tities students were asked to present their results to the class. The focus of the presentation

was not to provide the class with numerical values, but to explain the techniques used to

both measure and calculate the necessary information. The approach of some groups was

to take a few measurements of the form (Fx, x) and approximate the derivative with the

quantity ∆x
∆Fx

. Other groups chose instead to plot x as a function of Fx.

Due to the different systems under the black boxes, the numerical values for the “isowidth”

stretchability and “isoforce” stretchability varied widely from group to group. The relation-

ship between x and Fx also varied from system to system — some groups found a linear

relationship while others found that the plot was clearly nonlinear.

After these presentations and discussion of the results, students removed the “black box”

to see the central systems. Students then walked around the classroom observing other

groups’ systems to see how each apparatus was different. This allowed for discussion of

why particular systems behaved as they did and why particular variables were dependent or

independent of each other for each system.

These observations were followed by a whole-class discussion. The instructor asked stu-

dents to consider if this activity was consistent with or contradicted the idea that one takes
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a partial derivative while holding “everything else” constant. Next, the class revisited the

number of independent variables and which could be set simultaneously.

It was not obvious to some students that y and Fy were relevant quantities when changing

x and Fx. To address this concern the instructor conducted a demonstration making use of

the piece of spandex (B in Fig. 6). Having one student grab a pair of opposite handles and

hold them a fixed distance apart, a second student was instructed to stretch the spandex in

the other direction, which simulated measuring
(

∂x
∂Fx

)
y
. It then became abundantly clear to

the first student that in order to maintain a constant y it was necessary for Fy to increase

as Fx increased. We have repeatedly found that the kinesthetic effect of feeling the force

increase in this demonstration helps people notice that the force and displacement in the

two directions are coupled.

Integrated Lab

As a preface to a major activity associated with the Partial Derivative Machines, students

were given a review lecture on:

• Calculating changes in potential energy, ∆U , as the work, W , done on the system

• Finding potential energy of stretched springs

• Work as the integral of force, W =
∫
Fdx

After this review they proceeded to conduct a laboratory experiment. The primary task

was to measure the potential energy stored in the spring system of the Partial Derivative

Machine, however a process to determine this function was not explicitly given. The review

of work, potential energy, and springs prior to data collection was designed to help students



55

make the connection that the potential energy could be obtained from the work done on the

system. Since the system was now two dimensional, using W =
∫
~F · d~r required finding the

work done on the system in both the X and Y directions.

One possible solution method that determines all necessary information is:

1. Starting at a particular x = xo, where ∆x = 0, take measurements of y while changing

Fy in uniform steps, e.g., 0.05kg × 9.81m/s2.

2. Set subsequent x values by loosening knob D, incrementing Fx by small uniform steps,

and then tightening knob D.

3. Repeat step 1 for each new fixed x value.

4. Using the data and numerical integration of Fx dx and Fy dy, approximate the value

of U(x, y).

This process gave students the data needed to get from any state (x1, y1) to a different state

(x2, y2), provided each corresponded to a state generated during the steps outlined above.

To verify path independence one would need to conduct a similar process, now measuring

x for fixed y values while varying Fx (changing Fx and Fy by the same increments used

above). This lab also provided students practice distinguishing between fixed y and fixed Fy

processes and the relevance of each to particular measurements.

Connections to Thermodynamics

The integrated lab was designed to allow students to reach the conclusion that there

are two ways to manipulate the potential energy of the system, each corresponding to a
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particular force (Fx or Fy) and distance (x or y). The students were able to see the pairing

of these quantities through the differential expression for work,

dU = Fxdx+ Fydy

which is a mechanical equivalent of the thermodynamic identity, using conjugate pairs of

forces and distances rather than the canonical thermodynamic conjugate pairs: temperature

and entropy, pressure and volume.

The instructor then introduced the concept of the potential energy of the system, U , as

a state function determined by x and y, a function whose total differential is given by:

dU =

(
∂U

∂x

)

y

dx+

(
∂U

∂y

)

x

dy

From Eqs. C and C the instructor extracted definitions for the forces as partial derivatives

of the potential energy, a result which should be familiar from both classical mechanics and

E & M.

Using these expressions for Fx and Fy students were asked to express
(

∂Fx

∂y

)
x

and
(

∂Fy

∂x

)
y

as derivatives of U. From these new derivative expressions, and Clairaut’s theorem (the order

of mixed partials does not matter), students found a Maxwell Relation for their system that

they could experimentally verify.

During the remaining three contact hours of the Interlude the instructor led students

through additional mathematical techniques relevant to thermodynamics including partial

derivative manipulations, the cyclic chain rule, and Legendre Transforms, using the physical

parameters of the PDM. These exercises allowed students to practice these math methods
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and understand their results in the context of tangible experimental measurements.




