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Abstract.  In the Paradigms in Physics Curriculum at Oregon State University, we take a spins-first approach to quantum 
mechanics using a java simulation of successive Stern-Gerlach experiments to explore the postulates.  The experimental 
schematic is a diagrammatic representation that we use throughout our discussion of quantum measurements.  With a spins-
first approach, it is natural to start with Dirac bra-ket language for states, observables, and projection operators.  We also use 
explicit matrix representations of operators and ask students to translate between the Dirac and matrix languages.  The 
projection of the state onto a basis is represented with a histogram.  When we subsequently introduce wave functions, the 
wave function attains a natural interpretation as the continuous limit of these discrete histograms or a projection of a Dirac 
ket onto position or momentum eigenstates.  We are able to test the students’ facility with moving between these 
representations in later modules. 
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INTRODUCTION 

Quantum mechanics is often considered to be 
abstract and this abstractness is deemed to cause 
confusion for students [1,2].  In the Paradigms in 
Physics Project at Oregon State University, we attempt 
to ameliorate this situation by explicitly introducing 
representations that focus student attention on the 
physical aspects of the things being represented.  We 
also introduce a number of activities, including 
homework activities, which ask students to translate 
between representations [3]. 

In this article, we present many of the 
representations that we use in our courses in quantum 
mechanics and the reasons why we have chosen them.  
Where available, we also indicate the preliminary 
evidence for the effectiveness of these representations 
and discuss the occasional problems that we have 
noticed that arise from some of the representations. 

The courses in the Paradigms Program are quite 
modular.  An important aspect of this modularity is 
that faculty must buy in to the idea that it benefits 
weaker students if we know what representations have 
been introduced and agree to revisit representations 
over time.  When many students use a representation 
introduced in one course spontaneously and 
appropriately in another setting in a later course, we 
take this as strong evidence that the representation is 
useful and that the concept represented has transferred.  

SPINS FIRST 

We take a spins-first approach to quantum 
mechanics.  While several prior textbooks also take 
this approach, most are for more advanced students [4-
7]. Our own spins-first textbook, tailored for the 
middle/upper-division audience, is currently in press 
[8].  We are able to make this approach less abstract 
by using an explicit computer simulation of Stern-
Gerlach (SG) experiments, originally developed by 
Schroeder and Moore [9].   

 

 

FIGURE 1.  A java simulation of successive Stern-Gerlach 
measurements is a concrete representation of the quantum 
measurement process. 

 
Our story begins with exactly that, a story—which 

is a very powerful and memorable representation. We 
discuss the (fictitious) story of Erwin Schrödinger 
sorting his socks—black vs. brown, long vs. short.  By 
making an explicit analogy with this everyday 
occupation and successive SG measurements shown in 
Figure 1 (sock color corresponds to zS , sock length 



corresponds to xS ), students are able to encounter from 

the first day of class the counterintuitive nature of 
quantum mechanics.  In problem-solving interviews, 
one student mentioned that he was still trying to make 
sense of the sock story.  We learned from his remark 
that stories can be a vivid way of recording one’s lack 
of understanding as well as one’s understanding. 

DIRAC BRA-KET NOTATION 

It is straightforward and natural to use Dirac bra-
ket notation in our spins-first introduction to quantum 
mechanics. In bra-ket language, the mathematical 
representations of states  , projections  , 

observables ˆ ,H and projection operators    are all 

visibly different from each other.  It is relatively easy 
to draw students’ attention to the physical differences 
among the properties that these symbols represent. We 
found in the first year that we taught using bra-ket 
notation that many students spontaneously and 
appropriately used this notation in a later paradigm on 
the hydrogen atom; encouraging us to adopt this 
notation throughout our quantum courses and 
eventually encouraging us to put spins before even a 
basic introduction to wave mechanics in the form of 
particle-in-a-box. We also see students’ use this 
notation by preference in problem-solving interviews 
[5]. 

From the very beginning of the course, we also 
emphasize the postulates of quantum mechanics. 
Successive SG measurements are exploited to 
represent concrete examples of the postulates. Our 
students rapidly come to understand that (scalar) inner-
products are the answers to most of the questions they 
are asked.  They can reliably calculate these inner 
products, especially in bra-ket notation.  However, 
when we later introduce the projection postulate, 
students often do not realize that this second use of the 
word “projection” includes the “direction” in abstract 
Hilbert space.   We are actively developing an activity 
involving degeneracy that seems to help at least some 
students through this representational confusion. 

MATRIX REPRESENTATIONS 
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Because our students are (basically) comfortable 

with bra-ket notation, it is natural for us to use this 

notation to describe matrix elements as well.  Equation 
(1) shows the matrix for the operator A in the z-basis 
of a spin ½ system.  Notice that we explicitly label the 
rows and columns with the appropriate basis elements.  
Similarly, we find it useful to explicitly label other 
symbols when we first introduce them, e.g. Figure 2. 

 

 

FIGURE 2.  Taking time to explicitly label representations 
is helpful to many students. 

 
While this matrix notation has many advantages, 

particularly that it makes the basis explicit; we have 
seen disadvantages in a later course in classical 
mechanics, when students were introduced to the 
alternative notation i jA for the matrix elements.  

Because matrix multiplication is assume in bra-ket 
notation, our students clearly had never thought about 
this notation as summation and had trouble 
transferring their understanding to the alternative 
notation. 

WAVE FUNCTIONS 

In several activities and especially in homework 
problems, we ask students to make histograms of the 
probability distribution of some quantum experiments 
(Figure 3). 

 

 

FIGURE 3. Histograms emphasize that quantum 
measurements are always probabilities. 

 
When we later introduce wave functions, it is 

natural to describe the wave function as the projection 
of the state onto a position eigenstate as shown in 
equation (2).  (We do not discuss the subtle issues 
about dimensions unless students bring this up.) 
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The square of the norm of the wave function then 
becomes a graphical representation of the continuous 
limit of the discrete histograms that the students have 
been examining for some weeks (Figure 4). 

 

 

FIGURE 4.  These representations for a wave function 
emphasize that it  x is the projection of the state onto a 

position eigenstate. 
 
Beginning with our E&M paradigms, we often use 

color to represent the value of a scalar field, 
particularly in three spatial dimensions.  This 
representation has implications for how we represent 
the distribution of the probability density in space.  
Figure 5 shows three representations for the 
probability density of a particle confined to a sphere 
(i.e. the rigid rotor problem) [11]. 

 

 

FIGURE 5. Multiple representations for the probability 
density for a spherical harmonic, i.e. a possible state for a 
rigid rotor.  What does the radial direction mean? 

 
Of course, by plotting only probabilities, we have 

been ignoring an important point that causes endless 
confusion for our students.  The coefficient of a 
quantum state in a particular basis direction (and 
therefore a quantum wave function) is inherently 
complex.  Only the probability, which is the square of 
the norm of this coefficient, is real.  Even after many 
weeks of emphasis, a few students will still 

confuse x  ,
2

x   and 
2
.x   This problem has 

been exacerbated in recent years as complex numbers 
disappear from high school and university level 
mathematics curricula.  A delightful activity intended 
to help students focus on the complex-valued nature of 
the wave function itself is to have them represent the 
(complex) values of spherical harmonics as many little 
complex planes on the surface of a balloon, as shown 
in Figure 6. 

 

FIGURE 6.  Students draw the complex phases for spherical 
harmonics on the surface of balloons. 

TIME DEPENDENCE 

We also employ the different representations for 
the spatial dependence of the probability density in 
animations that depict time dependence.  Figure 7 
shows a still picture of an animated gif [12]. 

 

 

FIGURE 7.  Representations for the probability density of a 
quantum particle confined to a ring. 

 
There are times when having the students represent 

a physical situation with their own bodies helps them 
reason through the geometry.  These “kinesthetic” 
activities are among the most memorable for students, 
who often refer to them in other classes or in our 
senior exit interviews.  We find them to be particularly 
effective in situations involving three dimensions in 
space and/or situations involving time dependence.  
Figure 8 shows students acting out the time 
dependence of an envelope function in the Periodic 
System paradigm. 

 

 

FIGURE 8.  Students act out an oscillating envelop wave 
function in a course on Periodic Systems. 



CONCLUSIONS 

When writing this article, we ourselves are struck 
by how many representations we ask students to wrap 
their brains around.  We believe that the extra 
representations that we use are sense-making tools for 
the students.  By spending time on these various 
representations, students also have time to ask 
questions about them (of themselves and of us) and to 
build their own robust understanding.  We believe that 
we see evidence in class and in problem-solving 
interviews of students making use of these 
representations.  For example, we hear students asking 
what an operator “is” and drawing Stern-Gerlach 
devices to organize their thinking. 

 

 

FIGURE 9.  A student draws SG devices to organize his 
thinking during a problem-solving interview. 

 
However, we also hear students expressing 

confusion related to these representations.  For 
example, several students mentioned still struggling 
with visualization and geometric reasoning.  Students 
frequently conflate the eigenvalue equation with the 
SG devices [10].  Clearly, there is lots of work 
remaining, both in terms of curriculum development 
and in terms of research on student understanding of 
quantum mechanics. 
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