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Abstract.  One of the mathematical objects that students become familiar with in thermodynamics, often for the first 
time, is the partial derivative of a multivariable function.  The symbolic representation of a partial derivative and related 
quantities present difficulties for students in both mathematical and physical contexts, most notably what it means to 
keep one or more variables fixed while taking the derivative with respect to a different variable.  Material properties are 
themselves written as partial derivatives of various state functions (e.g., compressibility is a partial derivative of volume 
with respect to pressure).  Research in courses at the University of Maine and Oregon State University yields findings 
related to the many ways that partial derivatives can be represented and interpreted in thermodynamics.  Research has 
informed curricular development that elicits many of the difficulties using different representations (e.g., geometric) and 
different contexts (e.g., connecting partial derivatives to specific experiments).  
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INTRODUCTION 

In this paper, we will describe preliminary results 
from a collaboration between the Paradigm in Physics 
group at Oregon State University and the Physics 
Education Research Laboratory at the University of 
Maine to develop and assess curricular materials 
designed to help address student understanding of the 
mathematics used in thermodynamics, particularly the 
mathematics of partial derivatives and differentials.  
The Energy and Entropy course at Oregon State 
University (OSU) is one of the Paradigms in Physics 
courses developed as part of a comprehensive reform 
of the upper division [1,2].  A signature of Paradigms 
courses is extensive use of student-centered activities, 
lab activities, and a particular emphasis on connecting 
the mathematics to the physics, especially connecting 
the way mathematics is taught in mathematics courses 
to the way it is used in physics.  During the winter and 
spring quarters, the Paradigms include a “Preface” or 
“Interlude” week, which feature student experiences 
with relevant math methods immediately before the 
related physics courses.  Multiple representations are 
presented and students develop fluency through a 
variety of activities [3].  

Beyond their mathematics core courses, where 
have our students seen partial derivatives prior to their 
first upper division thermodynamics courses?  At the 
University of Maine, students have seen this content in 
E&M and math methods.  At OSU, this material is 
touched on briefly in the two paradigms on 

electrostatics and magnetostatics, but always in the 
context of derivatives with respect to x, y, and z. 

In thermodynamics, the ubiquity of multivariable 
functions to represent the state and properties of an 
equilibrium system lead to the use of multivariable 
differential calculus to describe any changes to the 
system based on changes in the equilibrium state. 
Understanding the mathematical formalism of 
multivariable differential calculus is thus integral to 
the analysis of thermodynamic processes. 

There are several facets of partial differentiation 
and total differentials that are necessary to understand 
to properly connect the mathematical formalism to the 
physical scenario.  The distinction between the 
derivative of a single-variable function and that of a 
multivariable function is important, especially 
knowing that all other independent variables are held 
fixed in a partial derivative.  Recognition of the 
empirical significance of a thermodynamic partial 
derivative is central to a functional understanding of 
the role of partial derivatives in thermodynamics.  
Understanding what the terms in a total differential 
represent, e.g., that the coefficients of the differentials 
of the independent variables are themselves partial 
derivatives, is important to make connections between 
different state variables in a physical scenario.   

Several different representations are used to 
describe partial derivatives.  The first is symbolic: the 
mathematical expression for the partial derivative in 
question.  Second, emphasis is placed on the derivative 
as experiment.  The course instructor at OSU (DR) has 



developed a “Name the experiment” activity for which 
students must describe the experiment corresponding 
to a particular partial derivative [4].  A third 
representation connects a partial derivative with its 
graphical equivalent.  This is used in particular to help 
students think about second-order partials, especially 
mixed second-order partials.  The primary activity for 
this representation is based on one developed by 
researchers at the University of Maine [5].  

NAME THE EXPERIMENT 

One representational problem that students have 
when they come to thermodynamics is that the need to 
specify the quantities held constant (the little 
subscripts after a partial derivative) is not clear to 
them.   
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Previously, students have always been able to simply 
say “everything else is held constant”, which is 
possible so long as there is a clear distinction between 
dependent and independent variables, as is the case in 
electrostatics where physical quantities such as the 
charge density or the electrostatic potential are 
function of the spatial variables.  Thermodynamics 
introduces a whole slew of variables, of which a wide 
variety of different subsets may be chosen as 
independent. Students initially resist explicitly 
mentioning which variables are held constant, as they 
feel that this is redundant.   

In order to help students to understand what we 
mean in physics by a partial derivative, we have 
introduced a series of activities [4] in which students 
work in groups to describe physical experiments that 
would be needed to measure particular thermodynamic 
derivatives.  Doing this reinforces the idea that a 
thermodynamic partial derivative describes a 
physically measurable quantity, which is independent 
of how we choose to write our functions (e.g. writing 

3 / 2U kT  rather than as a function of S and V —as 

we encourage students to think of it—doesn’t affect 
the value of  /

S
U V  with S constant). These 

activities also serve to reinforce the definitions of 
thermodynamic quantities in terms of measurable 
quantities.  In particular, pressure and entropy are 
quantities that we feel students learn to understand 
better experimentally through these activities. 

We begin with very simple derivatives 
corresponding to experiments involving changing one 
of  , ,p V T and measuring another while holding the 

third fixed.  This gives students a first chance to 

recognize that they need to come up with an approach 
to keep the constant quantity fixed.  We move on to 
trickier derivatives involving entropy, which forces 
students to grapple with the question of how to 
measure a change in entropy or how to keep it fixed.  
The latter is simple (insulation), but the former 
requires that they grapple with the thermodynamic 
definition of entropy change as an integral of heat over 
temperature.  Finally, when we discuss Maxwell 
relations, we have a third name-the-experiment 
activity in which students work out two experiments to 
measure the same derivative, in which it is usually 
obvious that one experiment will be significantly 
easier than the other, thus demonstrating a use for 
Maxwell relations (if they can imagine that they would 
want to know the derivative in the first place).   

MATHEMATICAL RELATIONSHIPS 
VS. PHYSICAL LAWS 

The next two representations of differentials are 
both symbolic, and may not easily be recognized as 
two separate representations.  The first is referred to as 
the “math” version, which lays out the expression for a 
total differential in the general form, while the second, 
“physics” version replaces the partial derivatives with 
the appropriate physical quantity. Instruction 
emphasizes the two different representations as 
distinct, which is a useful pedagogical tool to explicit 
connect math and physics in this context.  Research on 
student learning suggests that students may have 
difficulties connecting the coefficients of the physics 
version of a total differential to the partial derivatives 
that their math equivalent represents [6]. 
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Encouraging students to distinguish the “math” 

differential relationship from the “physics” one is part 
of a common strategy in the Paradigms—sense-
making about which equations are true because of 
general mathematical relationships, which are true 
because of physical laws, and which are true only for 
specific physical examples [7]. 

CHAIN RULE 

Computationally, knowing how and when to apply 
the chain and product rules when taking derivatives of 
expressions containing multivariable functions is a 
necessary skill to work through problems successfully. 



At OSU, we have found it useful to use a 
representation, which we call a derivative tree [8], a 
standard mnemonic tool, common in many vector 
calculus texts [9], for keeping track of nested 
multivariable functions. 
 

 

FIGURE 1.  Derivative tree for the pressure P thought of 
first as a function of volume V and temperature T and then 
as a function of volume and entropy S . 

 
This diagram corresponds to the chain rule: 
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The different levels in the diagram are particularly 
helpful to keep track of which variables are held 
constant in their partial derivatives.  OSU students use 
this representation spontaneously on homework and 
exams.   
 

 

FIGURE 2.  Students working with a derivative tree in 
class.   

MAXWELL RELATIONS 

Second-order partial derivatives occur frequently 
in thermodynamics; the most common type is the 
mixed second-order partial derivative, for which each 
derivative is with respect to a different independent 
variable.  For a two-variable function that satisfies 
requirements for continuity of both the function and its 
first partial derivatives, these mixed second-order 
partial derivatives are equal; this is known as 
Clairaut’s Theorem.  The Maxwell relations, important 
relationships between second-order mixed partial 
derivatives of “thermodynamic potentials” (different 
energy functions), allow for inferences about changes 
in system properties such as entropy by measuring 
other changes in the system.  

ACTIVITY ON GRAPHICAL 
INTERPRETATION OF PARTIALS 
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FIGURE 3.  P-V-T diagrams for an ideal gas showing (a) 
first partial derivatives, (b) full second-order partials, and (c) 
mixed second-order partials of volume.   

 
One activity incorporated in the course has students 

graphically interpreting various partial derivatives, 
both first- and second-order.  The activity is an excerpt 
from a small-group, guided-inquiry activity (i.e., a 
tutorial) that was developed at the University of 
Maine, based on an instructional sequence used (by 
DBM) in the thermodynamics course there [5].  The 
tutorial attempts to answer the questions: what does it 
mean graphically (physically) for the mixed second 
partials of a function to be equal, and yet not equal to 



zero?  In particular, what does the equality of mixed 
second partials tell us about the state function of 
volume?  As mentioned above, the tutorial is a 
response to the findings of Bucy et al. that students 
misinterpret the meaning of “holding a variable 
constant” during partial differentiation, considering the 
fixed variable to remain constant after differentiation 
rather than being fixed only during the process [6]. 

Classroom video from this activity at OSU shows 
students having problems in the tutorial that 
demonstrate that they are having to wrestle with the 
geometric and physical meaning of many of the 
derivatives:  Some confuse a curve on the graph of 
V (T) for a given P  with the partial derivative of 
V for constant (fixed) P  (i.e. the confuse the curve 
with its first derivative).  Some have trouble 
coordinating a 3-d plot of the function with a plot 
(provided) of the cross-sections of the function.  Many 
have trouble understanding the geometric meaning of 
the second derivative—how are the slopes changing?  
And most of the class is stumped on a question that 
has negative slopes which become shallower.  They 
have trouble seeing that as an “increasing” slope.     

OVERALL ASSESSMENT 

In the Energy and Entropy paradigm and the 
preceding Interlude (developed in the last couple of 
years), students were assessed on their functional 
understanding of partial derivatives and differentials, 
using a combination of questions developed earlier (by 
JRT and colleagues at the University of Maine) and 
asked in both physics [10,5] and analogous 
mathematics contexts [11], as well as questions 
developed specifically for the paradigm.  In general, 
many of the successes and difficulties identified earlier 
were confirmed in the OSU students.  We find that 
students at the beginning of the Interlude have less 
facility with partial derivatives and total differentials 
than in a traditional curriculum (e.g., at the University 
of Maine), and have many of the difficulties identified 
in earlier research.  They also seem to be equally 
skilled at making the empirical connection from a 
partial derivative, based on the “name the experiment” 
results.  However, our preliminary results suggest that 
by the end of the paradigm, OSU students make strong 
gains in their skills and facility, with most of the class 
recognizing the connections between the math and the 
physics easily.  

This apparent success is attributed to the 
deliberate effort to make explicit pedagogical 
connections between the math and the physics, 
including making students aware of the differences in 
notation, convention, etc. between the disciplines in 
this area.  The multiple representations used serve to 

bridge the disciplinary distinctions, and it seems like 
students in the paradigms courses have gained a 
greater appreciation for the role of mathematics in the 
physics. 

ACKNOWLEDGMENTS 

Our thanks to Rabindra Bajracharya, Kerry 
Browne, Jessica Clark, Zlatko Dimcovic, Henri 
Jansen, Adam Kaczynski, Jeff Monroe, Teal Pershing, 
Michael (Bodhi) Rogers, Guenter Schneider, Trevor 
Smith, Andy Svesko, and, of course, Allen Wasserman 
(who started it all) for their contributions to this 
project. This work was also supported by NSF grants 
DUE-0231032, -0618877, -0837829, and -1023120 
(Oregon State); -0837214 (Maine) and -0837301 
(Ithaca College). 

REFERENCES 

1. C.A. Manogue et al., American Journal of Physics 69, 
978-990 (2001).  

2. C.A. Manogue and K.S. Krane, Physics Today 56, 53-58 
(2003). 

3. All of the materials and activities discussed here, as well 
as a complete description of the Paradigms in Physics 
Program can be found at: 
http://www.physics.oregonstate.edu/portfolioswiki 

4. physics.oregonstate.edu/portfolioswiki/acts/eename1; 
physics.oregonstate.edu/portfolioswiki/acts/eename2; 
physics.oregonstate.edu/portfolioswiki/acts/eename3 

5. B.R. Bucy, Ph.D. dissertation, University of Maine, 
2007.  

6. B.R. Bucy, J.R. Thompson, and D.B. Mountcastle, in 
2006 Phys. Educ. Res. Conf., AIP CP 883, 157-160 
(2007). 

7. physics.oregonstate.edu/portfolioswiki/acts:someneverall 
8. physics.oregonstate.edu/portfolioswiki/acts:inisobulkmod 
9. For example: McCallum et al., Multivariable Calculus 

4th Edition, John Wiley and Sons, 2005 pp 720-721; J. 
Stewart, Multivariable Calculus: Early Transcendentals 
5th Edition, Brooks/Cole 2003, pp. 934-936. 

10. J.R. Thompson, B.R. Bucy, and D.B. Mountcastle, in 
2005 Phys. Educ. Res. Conf., AIP CP 818, 77-80 (2006). 

11. W.M. Christensen and J.R. Thompson, in Proc. 13th 
Ann. Conf. on Res. in Undergraduate Mathematics 
Education (MAA, 2010). 


