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Chain rules are critical to the process of solving many thermodynamics-related partial derivatives. This study 

evaluates the solution method and error evolution of students’ responses to a pair of chain rule problems in an upper-

level undergraduate thermodynamics course. Students’ responses were categorized by solution method. Students’ 

solution methods included implicit differentiation, substitution, differential algebra, and chain rule diagrams. In 

addition to categorizing students’ solution methods, students’ errors were sorted and analyzed. In particular, many 

students did not know how to hold the appropriate variable(s) constant while evaluating partial derivatives. Students 

also had difficulties identifying partial derivatives, and reading and building chain rule diagrams. These results could 

be used to improve student understanding of partial derivatives and chain rules by adjusting the order, portrayal, and 

intensity of course material.   
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CHAPTER 1 - INTRODUCTION 
 

1.1. Motivation 
This project’s purpose is to further the understanding of how students algebraically approach thermodynamics-

related chain rule problems. Student success in thermodynamics is critically dependent on a thorough understanding 

of the algebraic workings and manipulations of partial derivatives, the building blocks of chain rules. The subjects of 

this study are students in the Paradigms in Physics program at Oregon State University (OSU). The Paradigms in 

Physics program at OSU is a constantly evolving upper-division undergraduate physics program.  

 

The project’s primary purpose is to help improve the learning experiences of students in OSU’s thermodynamics 

Paradigm. The course’s designer will use the results to gain insight into the effectiveness of current teaching 

strategies. Result implementation will take the form of adjusted order, portrayal, and intensity of relevant 

discussions, activities, and assignments. Via these means, students’ preparedness to solve chain-rule problems will 

be improved. 

 

This project resembles the work of Kustusch et al. [3]. Both studies have similar evaluations of subjects’ 

understandings of thermodynamics. Kustusch et al. [3] evaluates expert understanding as well as student 

understanding. This project focuses only on the later. As will be seem in Section 2.2, this project’s prompts are 

virtually parallel to the prompt in Kustusch et al. [3]. Due to these similarities, the results from this project will 

provide some level of independent verification of the validity of the results from Kustusch et al. [3]. 

 

1.2. Literature Review 
This project is not the first of its kind in PER. The following are short summaries of three relevant works cited in 

later sections. Thompson et al. [1] and Kustusch et al. [3] are both thermodynamics-related PER studies. This 

project bears great resemblance to the latter of the two. An introduction to Tuminaro and Redish [2] is necessary 

for an understanding Kustusch et al. [3]. 

 

The work of Thompson et al. [1] is based on the collaborative research between the University of Maine and Iowa 

State University regarding student understanding of thermodynamics. The paper contains an analysis of data 

representing student use of partial derivatives, particularly Maxwell relations and Clairaut’s Theorem (equality of 

mixed partial derivatives), throughout the course. Thompson et al. conclude by discussing student successes and 

difficulties observed within the analysis. 

 

Student successes include: knowing the difference between derivatives of systems with one or more independent 

variables, understanding (either conceptually or functionally) that partial derivatives treat some variables as 

constants, verbally expressing partial derivatives, and successfully creating Maxwell relations. Derivatives of 

systems with multiple independent variables are better known as partial derivatives. The observed difficulties 

include: treating differential expressions algebraically, applying partial derivative relations to a physical situation, 

and being unsure of when to apply Maxwell relations to a physical situation. 

 

Tuminaro and Redish [2] design and develop an analysis device, for education research, known as epistemic 

games. An epistemic game is “a coherent activity that uses particular kinds of knowledge and processes associated 

with that knowledge to create knowledge or solve a problem.” The paper analyzes 11 hours of video recorded in an 

open physics homework lab, where students were encouraged to discuss the problems. Tuminaro and Redish 

identify six epistemic games. In order of decreasing difficulty, the games are: mapping meaning to mathematics, 

mapping mathematics to meaning, physical mechanism game, pictorial analysis, recursive plug-and-chug, and 

transliteration to mathematics. These games are very general; more specific / situational games, such as those 

observed in Kustusch et al. [3], can be categorized as one (or a combination) of the six Tuminaro and Redish 

games. The outline of each of these epistemic games can be seen in Figure 1.1. From top-left to top-right: mapping 

meaning to mathematics, mapping mathematics to meaning, physical mechanism game, pictorial analysis, and 

transliteration to mathematics. Bottom: recursive plug-and-chug. 
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Kustusch et al. [3] compare and analyze methods used by physics faculty and upper-division undergraduate physics 

students to solve a thermodynamics problem (shown below).  

 

𝐹𝑖𝑛𝑑 (
𝜕𝑈

𝜕𝑝
)

𝑆

𝑓𝑜𝑟 𝑎 𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 𝑔𝑎𝑠, 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒: 

𝑝 =
𝑁𝑘𝑇

𝑉 − 𝑁𝑏
−

𝑎𝑁2

𝑉2
,                                                                    (𝟏. 𝟏) 

𝑆 = 𝑁𝑘 (ln (
(𝑉 − 𝑁𝑏)

𝑁
𝑇

3
2) +

5

2
)                                                        (𝟏. 𝟐) 

 

Figure 1.1 - Summaries of each epistemic game identified in Tuminaro and Redish [2]. 

From top-left to top-right: mapping meaning to mathematics, mapping mathematics to 

meaning, physical mechanism game, pictorial analysis, and transliteration to 

mathematics. Bottom: recursive plug-and-chug. 
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Kustusch et al. [3] provide an in-depth discussion of how the physics faculty approached the prompt. The study also 

makes interesting observations about how expert and student understandings differ. The analysis identifies three 

epistemic games, used by students and experts alike: Substitution, partial derivatives, and differentials. 

 

The substitution game uses substitution to change the set of quantities (the variables) describing a different quantity 

(the function). For example, solve 𝑧 = 𝑧(𝑥, 𝑦) for 𝑥 = 𝑥(𝑦, 𝑧) and substitute 𝑥 = 𝑥(𝑦, 𝑧) in to 𝑈 = 𝑈(𝑥, 𝑦, 𝑧), 

forming 𝑈 = 𝑈(𝑦, 𝑧). The quantity “𝑈” is now represented by the quantities 𝑦 and 𝑧 instead of 𝑥, 𝑦, and z. The 

partial derivatives game encompasses using the syntactical and semantical functions of partial derivatives to equate 

the desired partial derivative to an expression in terms of easily solvable partial derivatives. The differentials game 

involves algebraically manipulating the total differentials of functions in order to obtain an expression for the 

desired partial derivative. Three variants of these methods were observed: applying information about variables 

being held constant, using a differential of a thermodynamic identity, and dividing by a differential. Applying any of 

these variants to the above methods slightly changes the resulting process. 
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CHAPTER 2 – METHODS 

 

This chapter begins, in Section 2.1, by introducing the subject population. Section 2.2 discusses the prompts and 

(briefly) the data collection methods. Section 2.3 defines mathematical terms necessary for an understanding of the 

prompt’s possible solutions and their variations. These possible solutions are described in Section 2.4. An 

instructional timeline of the prompts’ assignments and solution methods is included in Section 2.5, and Section 2.6 

outlines analysis methods. 

 

2.1. Student Background 

The subjects of this study are twenty-nine students from the Spring-term 2016 thermodynamics course (“Energy and 

Entropy”) of the Paradigms in Physics program at OSU. Students should have entered the class with most of the 

mathematical background necessary to understand the prompts and their possible solution methods; most students 

had taken integral and vector calculus classes, as well as an introductory course in differential equations. 

Additionally, students had experience in applying their mathematical knowledge to content in other Paradigms 

courses. Namely, most students learned and applied partial derivatives in both the “Symmetries and Idealizations” 

and “Static Vector Fields” Paradigms courses. See Appendix A for a full list of relevant material in other Paradigms 

courses. 

 

2.2. The Prompts 

This project studies student responses to two prompts. The prompts were assigned as two quizzes and a final exam 

question. Quiz prompts were posted online a few days before the quizzes were assigned in class, giving students a 

very generous chance to prepare for each quiz. Both quizzes had the same prompt: 

 

𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑙𝑜𝑤, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒. 

𝑈 = 𝑥2 + 𝑦2 + 𝑧2                                                                      (𝟐. 𝟏) 

𝑧 = ln(𝑦 − 𝑥)                                                                         (𝟐. 𝟐) 

𝐹𝑖𝑛𝑑 (
𝜕𝑈

𝜕𝑧
)

𝑦
                                                                         (𝟐. 𝟑) 

The first quiz was assigned, graded, and handed back to students on the second Friday of class. This quiz will be 

referred to as Quiz 4. Later that day, Quiz 4’s responses were recognized by the professor as viable research 

material. On the Monday afterwards, students were asked to hand back their responses. Only seven quizzes were 

received and scanned. Therefore, statistics involving Quiz 4 were mostly excluded from the analysis. Also on that 

Monday, the professor showed the class most of the possible Quiz 4 solution methods. The second assignment 

studied in this project was Quiz 14. Quiz 14 was assigned two weeks after Quiz 4, on the Friday of the fourth and 

last class week. This time, the graded quizzes were scanned before being handed back to students. There were 

twenty-nine responses to Quiz 14. Quiz 14’s possible solution methods were not discussed in class. 

 

The other prompt studied in this project was given on the final exam, and will be referred to as Final 4.b. Final 4.b’s 

prompt is as follows:  

 

𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑙𝑜𝑤, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒. 

𝑆 = 𝑁𝐾𝐵 (ln (
N − Vb

𝑁𝐶
𝑇

3
2) +

5

2
)                                                       (𝟐. 𝟒) 

𝑈 =
3

2
𝑁𝐾𝐵𝑇 −

𝑎𝑁2

𝑉
                                                                  (𝟐. 𝟓) 

𝐹𝑖𝑛𝑑 (
𝜕𝑈

𝜕𝑉
)

𝑆
                                                                      (𝟐. 𝟔) 
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In Final 4.b, Equation 2.4 was designed to make solving for T a nontrivial process. As you will see later, this design 

has consequences on how students approach the problem. The final exam was given on the class day after Quiz 14 

was assigned; there was only a weekend between Quiz 14 and the final exam. Twenty-seven students responded to 

Final 4.b. Responses to the final exam were scanned after being graded. Appendix E contains anonymized student 

responses from each prompt. 

 

These prompts are less complex than, but virtually parallel to, the prompt in Kustusch et al. [3]. Both studies’ 

prompts ask the student to evaluate a partial derivative. Each prompt provides two equations with overlapping 

variables. The prompt in Kustusch et al. [3] has explicit thermodynamics context due to its variables, as does Final 

4.b’s prompt. However, the prompt from Quiz 4 / 14 has no such context. 

 

2.3. Terminology 

These prompts are difficult to evaluate. In order to understand the prompts’ solutions and their variations, some 

additional mathematical background is required. This section will familiarize the reader with necessary concepts and 

introduce our terminology. 

  

Direct and Indirect Partial Derivatives 
In this study, two types of partial derivatives must be distinguished. The first kind can be evaluated with a single 

function. The function must have the same variable space as the desired partial derivative; the partial derivative and 

the function must have the same variables. The function may need to be reorganized in order to evaluate the partial 

derivative. This kind of partial derivative will be referred to as a direct partial derivative. Consider the following 

examples of direct partial derivatives: 

 

Calculating (
𝜕𝑈

𝜕𝑧
)

𝑦
 from 𝑈(𝑦, 𝑧) is a direct partial derivative because the function and the partial derivative are both 

in terms of 𝑈, 𝑦, and 𝑧. 

 

Calculating (
𝜕𝑈

𝜕𝑦
)

𝑥,𝑧
 from 𝑈(𝑥, 𝑦, 𝑧) is a direct partial derivative because the function and the partial derivative are 

both in terms of 𝑈, 𝑥, 𝑦, and 𝑧. 

 

The second kind of partial derivative does not have the same variable space as the function it acts on. 

Thermodynamics-related expressions often have many variables, which are not all independent. This can result in 

needing to evaluate partial derivatives of functions that contain more variables than the partial derivative. To 

evaluate such a partial derivative, one must know the additional (constraint) equations relating the expression’s 

variables. This type of partial derivative will be referred to as an indirect partial derivative. Consider this example of 

an indirect partial derivative: 

 

Calculating (
𝜕𝑈

𝜕𝑧
)

𝑦
 from 𝑈(𝑥, 𝑦, 𝑧) is an indirect partial derivative because the function is in terms of 𝑈, 𝑥, 𝑦, and 𝑧, 

whereas the partial derivative is only in terms of 𝑈, 𝑦, and 𝑧.  

 

Any solution method for finding an indirect partial derivative either changes the indirect partial derivative to a direct 

partial derivative or creates a chain rule in terms of other partial derivatives. Any indirect partial derivatives in the 

chain rule must also either be changed to direct partial derivatives or expressed as chain rules. This process 

continues until the originally desired indirect partial derivative can be expressed by direct partial derivatives. Note 

that both prompts require the solver to evaluate an indirect partial derivative. 

 

Solution Methods 
There exist only a small number of unique solutions to the prompts shown in Equations 2.1 through 2.6. The 

possible solutions have been divided into categories, which will be referred to as solution methods. Distinct solution 

methods contain at least one logical step not observed in any other solution method, whereas variations contain the 

same logical process carried out in a slightly different manner. Before discussing each solution method, in Section 

2.4, it is useful to know where the methods have room for variation.  
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Constant Variables 

Variation can occur in solution methods depending on where the solver chooses to apply information about variables 

being held constant. Applying variable information early in a solution method can cause some terms to reduce to 

zero. This simplification makes the solution process faster and leaves less room for algebraic errors. However, the 

solver loses physical insight about the original expression. Setting a variable as constant removes one degree of 

freedom from the physical system, thus restricting the system’s solution space. Applying constant-variable 

information is an epistemic game variation observed in Kustusch et al. [3]. 

 

Forms of Total Differentials 
Solution methods can also vary by the solver’s choice of total differential form. The two distinct forms of total 

differentials are defined as follows. 

 

Given a function 𝐷(𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2, the general form of the total differential of 𝐷 is: 

 

𝑑𝐷 = (
𝜕𝐷

𝜕𝑎
)

𝑏,𝑐
𝑑𝑎 + (

𝜕𝐷

𝜕𝑏
)

𝑎,𝑐
𝑑𝑏 + (

𝜕𝐷

𝜕𝑐
)

𝑎,𝑏
𝑑𝑐                                          (𝟐. 𝟕) 

 

The general form of the total differential applies information only about what variables describe a function; the 

actual expression defined as being the function, 𝑎2 + 𝑏2 + 𝑐2 in this case, is irrelevant here. This form’s partial 

derivatives are left unevaluated, and therefore have no explicit functional dependence. Equation 2.7 is a true 

statement for any function existing in a space of three variables. 

 

The function’s expression is applied to the general total differential to obtain the specific total differential. The 

specific total differential is shown as a general total differential with each partial derivative evaluated, thus 

introducing explicit functional dependence. The applicability of the resulting total differential is restricted to the 

function capable of producing such a partial derivative combination. For example: 

 

Given a function 𝐷(𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2, the specific form of the total differential of 𝐷 is: 

 

𝑑𝐷 = 2𝑎𝑑𝑎 + 2𝑏𝑑𝑏 + 2𝑐𝑑𝑐 

 

The practical differences between the two forms of total differentials are minor; using the specific form instead of 

the general form only requires that a few direct partial derivatives be calculated.  

 

2.4. Possible Solution Methods 

The solution methods for finding the prompts’ indirect partial derivatives are described below. Each description 

provides an example where the respective solution method is applied to the Quiz 4 / 14 prompt (Equations 2.1 

through 2.3). Solution methods will later be referred to by their abbreviated names, which are included in quotation 

marks in each method’s label. For example: Solution Method 3 will be referred to as Diff RE. 

 

The following solution methods were not written to be epistemic games. Instead, the solution methods were written 

to represent whole solutions. Each solution may be composed of one or more games. Most of these solution methods 

can be described by the epistemic games developed in Kustusch et al. [3]. Due to these equivalencies, the student 

solution methods observed in this project provide some independent verification of the results in Kustusch et al. [3]. 

Each solution method’s description will note the respective counterpart in Kustusch et al. [3]. 

 

Solution Method 1 – Chain Rule Diagram – “CRD” 
Use a chain rule diagram of the initial function to build an unevaluated chain rule for the desired 

partial derivative.  

 

1. Build a chain rule diagram for the desired partial derivative. 



IAN W. FOUNDS 

 

 10 

 

2. Construct a chain rule from the chain rule diagram. 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
(

𝜕𝑥

𝜕𝑧
)

𝑦
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
 

The above chain rule is read from the chain rule diagram. However, the chain 

rule diagram innately applies variable information; the chain rule has already 

been simplified by applying 𝑑𝑦 = 0 and 𝑑𝑧/𝑑𝑧 = 1. The unsimplified chain 

rule for this problem would read as follows: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
(

𝜕𝑥

𝜕𝑧
)

𝑦
+ (

𝜕𝑈

𝜕𝑦
)

𝑥,𝑧

(
𝜕𝑦

𝜕𝑧
)

𝑦
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
(

𝜕𝑧

𝜕𝑧
)

𝑦
 

3. Compute the chain rule’s partial derivatives in order to obtain an expression for 

the desired partial derivative. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑥(−𝑒𝑧) + 2𝑧 

A chain rule diagram is a tool used to graphically represent differential interdependence. This tool 

allows the user to quickly construct a chain rule for whatever partial derivative is desired. This 

method has no explicit equivalent from Kustusch et al. [3]. 

 

Solution Method 2 – Differential Division – “Diff Div” 
Divide the initial function’s total differential by a carefully chosen differential. 

 

1. Calculate the specific total differential of 𝑈 = 𝑈(𝑥, 𝑦, 𝑧). 

 

𝑈 = 𝑥2 + 𝑦2 + 𝑧2 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
𝑑𝑥 + (

𝜕𝑈

𝜕𝑦
)

𝑥,𝑧

𝑑𝑦 + (
𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
𝑑𝑧 

𝑑𝑈 = 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 + 2𝑧𝑑𝑧 

2. Divide both sides of 𝑑𝑈 = 𝑑𝑈(𝑥, 𝑦, 𝑧) by 𝑑𝑧. This forms an  incomplete 

mathematical statement that could represent one of two possible derivatives: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
or (

𝜕𝑈

𝜕𝑧
)

𝑥
 

Given 𝑑𝑦 = 0, it is clear that we desire an expression for the former of these two 

partial derivatives. 
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𝑑𝑈

𝑑𝑧
=

2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 + 2𝑧𝑑𝑧

𝑑𝑧
 

𝑑𝑈

𝑑𝑧
= 2𝑥

𝑑𝑥

𝑑𝑧
+ 2𝑦

𝑑𝑦

𝑑𝑧
+ 2𝑥

𝑑𝑧

𝑑𝑧
 

3. Mindfully transform the differential ratios into partial derivatives. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑥 (

𝜕𝑥

𝜕𝑧
)

𝑦
+ 2𝑦 (

𝜕𝑦

𝜕𝑧
)

𝑦
+ 2𝑥 

4. Calculate the remaining partial derivatives to obtain an expression for the 

desired partial derivative. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑥(−𝑒𝑧) + 2𝑧 

Diff Div is contained within the “Mathematically Illegal” epistemic game variant observed in 

Kustusch et al. [3] where the student or expert divides by a differential to get to the desired partial 

derivative. 

 

Solution Method 3 – Differential Re-expression – “Diff RE” 

Change the differentials of the initial function’s total differential via substitution and then identify 

the desired partial derivative.  

 

1. Obtain an expression for dx. Either solve 𝑧 = 𝑧(𝑥, 𝑦) for 𝑥 = 𝑥(𝑦, 𝑧) and then 

take the specific total differential of 𝑥 = 𝑥(𝑦, 𝑧), as shown, or calculate the 

specific total differential of 𝑧 = 𝑧(𝑥, 𝑦) and isolate dx. 

 

𝑧 = ln (𝑦 − 𝑥) 

𝑒𝑧 = 𝑦 − 𝑥 

𝑥 = 𝑦 − 𝑒𝑧 

𝑑𝑥 = (
𝜕𝑥

𝜕𝑦
)

𝑧

𝑑𝑦 + (
𝜕𝑥

𝜕𝑧
)

𝑦
𝑑𝑧 

𝑑𝑥 = 1𝑑𝑦 − 𝑒𝑧𝑑𝑧 

2. Calculate the specific total differential of 𝑈 = 𝑈(𝑥, 𝑦, 𝑧). 

 

𝑈 = 𝑥2 + 𝑦2 + 𝑧2 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
𝑑𝑥 + (

𝜕𝑈

𝜕𝑦
)

𝑥,𝑧

𝑑𝑦 + (
𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
𝑑𝑧 

𝑑𝑈 = 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 + 2𝑧𝑑𝑧 

3. Substitute 𝑥 = 𝑥(𝑦, 𝑧) into 𝑑𝑈 = 𝑑𝑈(𝑥, 𝑦, 𝑧). 
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𝑑𝑈 = 2𝑥(1𝑑𝑦 − 𝑒𝑧𝑑𝑧) + 2𝑦𝑑𝑦 + 2𝑧𝑑𝑧 

4. Factor out differentials where possible. 
 

𝑑𝑈 = [2𝑥 + 2𝑦]𝑑𝑦 + [−2𝑥𝑒𝑧 + 2𝑧]𝑑𝑧 

5. Identify the contents of the brackets multiplied to 𝑑𝑧 as the desired partial 

derivative.  

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= −2𝑥𝑒𝑧 + 2𝑧 

Diff RE is equivalent to the method observed in Kustusch et al. [3] where the student or expert 

starts in the differential game and changes to the substitution game, using differentials instead of 

variables. 

 

Solution Method 4– Implicit Differentiation – “Imp Diff” 
Directly calculate the desired partial derivative by using implicit differentiation (taking into 

account all relevant possible variable interdependencies) on the initial function. 

 

1. Directly calculate the desired partial derivative using implicit differentiation. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑥 (

𝜕𝑥

𝜕𝑧
)

𝑦
+ 2𝑦 (

𝜕𝑦

𝜕𝑧
)

𝑦
+ 2𝑧 (

𝜕𝑧

𝜕𝑧
)

𝑦
 

2. Compute the chain rule’s partial derivatives in order to obtain an expression for 

the desired partial derivative.  

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑥(−𝑒𝑧) + 2𝑧 

This solution method is also known as “using the chain rule.” This method has no explicit 

equivalent from Kustusch et al. [3]. 

 

Solution Method 5 – Variable Re-expression – “Var RE” 
Change the initial function’s variables via substitution. Then, either directly calculate the desired 

partial derivative or identify the desired partial derivative from the function’s specific total 

differential. 

 

1. Solve 𝑧 = 𝑧(𝑥, 𝑦) for 𝑥 = 𝑥(𝑦, 𝑧). 

 

𝑧 = ln(𝑦 − 𝑥) 

𝑒𝑧 = 𝑦 − 𝑥 

𝑥 = 𝑦 − 𝑒𝑧 

2. Substitute 𝑥 = 𝑥(𝑦, 𝑧) in to 𝑈 = 𝑈(𝑥, 𝑦, 𝑧), forming 𝑈 = 𝑈(𝑦, 𝑧). 

 

𝑈 = 𝑥2 + 𝑦2 + 𝑧2 

𝑈 = (𝑦 − 𝑒𝑧)2 + 𝑦2 + 𝑧2 
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3. Directly calculate the desired partial derivative. Alternatively, calculate the 

specific total differential of 𝑈 = 𝑈(𝑦, 𝑧) and identify the desired partial 

derivative. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= 2(𝑦 − 𝑒𝑧)(−𝑒𝑧) + 2𝑧 

This method is the only solution that changes an indirect partial derivative into a direct partial 

derivative. All other solutions instead create a chain rule. Var RE is also the only solution method 

not explicitly discussed in class. Changing variables is not possible for every function; Var RE is 

not a sure-fire solution method for solving thermodynamics-related chain rule problems. Thusly, 

Final 4.b was designed to make this solution method exceedingly difficult. The design was to 

drive students towards more widely applicable methods. Var RE is equivalent to the substitution 

epistemic game from Kustusch et al. [3]. 

 

2.5. Instructional Timeline 
An instructional timeline of solution methods, relevant quizzes, and lecture topics was extracted from classroom 

videos. This timeline provides a basis for analyzing why student solution methods changed throughout the term. The 

timeline also improves the understanding of how well students were prepared for the prompts. The full timeline of 

relevant materials is provided in Appendix B. Table 2.1 contains a brief version of this timeline. Note that Var RE 

was not discussed in class. 

 
Table 2.1 – A brief timeline of the thermodynamics course’s relevant assignments and 

discussions. 

 
 

 

2.6. Coding Scheme Development 

As is standard in physics education research, a coding scheme was created to simplify data analysis. Coding 

schemes are analysis tools used in qualitative research. Coding schemes are generally developed on a project-by-

project basis. To develop a coding scheme, one starts by observing the data. Categories are then formed based on 

what similarities are seen between each piece of data. Categories are adjusted until they encompass the data. The 

code developer then writes instructions (code descriptions) for placing data in these categories. At this stage, the 

coding scheme must go through interrater reliability testing (IRT). 

 

IRT requires an individual to act as the interrater reliability tester (IRTr). This person cannot be directly involved 

with the coding scheme development. The IRTr uses code descriptions to encode a small dataset. The IRTr then 

compares their results to the code developer’s. The IRTr and code developer discuss the differences. Should the 

agreement be less than 80%, the code developer then revises the coding scheme and another round of testing is done. 

 

The initial coding scheme, which was later abandoned, was created with Dr. Corinne Manogue’s oversight. Mike 

Vignal, a graduate student colleague, acted as both interrater reliability tester and data anonymizer. The scheme is a 

language with syntax based on how students manipulate pieces. “Pieces” are individual mathematical relations 

containing a single variable, differential, or derivative equated to an expression in terms of other variables, 

differentials, or derivatives. Pieces are named according to the isolated term. For example, Equations 2.1, 2.2, 2.4, 

DATE DIRECTLY RELEVANT MATERIAL

4/20/2016 Imp Diff discussed

4/21/2016 Diff  RE (general total differential) and CRD discussed

4/29/2016 Quiz 4 assigned, 7 responses collected

5/2/2016 Quiz 4 solutions discussed: CRD, Imp Diff, Diff Div, Diff RE (specific total differential)

5/13/2016 Quiz 14 assigned, 29 responses collected

5/16/2016 Final exam assigned, 27 responses collected

BRIEF INSTRUCTIONAL TIMELINE
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and 2.5 would be respectively referred to as 𝑈, 𝑧, 𝑆, and 𝑈. The coding syntax has two fundamental moves, or steps: 

creating new pieces from known pieces, and substituting known pieces into other known pieces; synthesis and 

substitution, respectively. 

 

This coding scheme succinctly expresses student solutions (ideally) without losing information about student errors 

and variable information application. It is far easier to identify similarities between coded responses than it is to do 

so for raw student work. After the third round of IRT, the initial scheme’s agreement was better than 80%. 

 

Ultimately, the initial scheme proved to be a supreme distraction from the data; far more time was spent 

synonymizing coded data with raw data than was spent thinking about the data’s meaning. Thus, coding was 

reverted to simply sorting student solutions according to their methods and errors. The initial coding scheme’s final 

state can be seen in Appendix C.  

 

The final coding scheme was a vastly simplified version of the initial coding scheme. The final scheme’s coding had 

already been verified in the initial scheme’s IRT. Therefore, no further IRT was performed. In the final coding 

scheme, student responses were sorted by solution method, and later by the errors they contained. Some student 

responses did not reflect any solution method. A blanket term, “Other,” was created to encompass these responses. 

 

“Other” can be broken down into three more specific categories. The first category is indeterminate responses. If it 

is hard to tell what the students were doing or thinking, the response is indeterminate. No indeterminate responses 

were observed in the data. The second category is dead-end methods. Dead-end methods are methods that cannot 

obtain acceptable solutions to the prompts but also contain no syntactical errors. Acceptable solutions do not contain 

indirect partial derivatives. The last category is flawed methods. Flawed methods are methods that depend on one or 

more conceptual errors. Making conceptual errors at certain points in any given solution method can create new, 

unique methods by significantly changing the initial solution method’s process. 

 

The final coding scheme’s output is in Appendix D. Chapter 3 discusses and analyzes solution methods observed 

in the data. Data from Quiz 4 was very limited, so the analysis of its student method statistics was mostly excluded. 

Unfortunately, this restricts the observation of student response evolution to Quiz 14 and Final 4.b. Flawed methods 

and dead-end methods will be discussed in Section 4.3 and Chapter 5 respectively. 

 

Although this project does not focus on student answer correctness, each student’s final answer was labeled as 

correct, partially correct, or incorrect. Student errors were categorized as either mathematical or conceptual. 

Algebraic, arithmetic, and sign errors are examples of mathematical errors, which are not a focus in this project. 

Conceptual errors are broadly defined here as errors pertaining to the differential and partial derivative 

manipulations. Student conceptual errors were sorted into categories for further analysis. Further discussion and 

analysis of student errors is present in Chapter 4. 
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CHAPTER 3 – STUDENT SOLUTION METHODS 
 

Students used various solution methods to respond. Success rates and solution method prominence varied per 

assignment. 

 

Each prompt’s student method distribution is shown in Section 3.1. Section 3.2 contains an analysis of how students 

changed their responses between Quiz 14 and Final 4.b. Quiz 4’s data was incomplete. Therefore, Quiz 4 was 

mostly excluded from this analysis. Some student responses had work reflecting two correct methods. These 

responses were marked and counted as containing both methods. 

 

3.1. Student Method Distribution 
 

 
 

Figure 3.1 – Quiz 4’s student method distribution. Only seven Quiz 4 responses were 

available for analysis. 

 
As seen in Figure 3.1, students used a variety of methods to respond to Quiz 4. However, students were generally 

unsuccessful at solving Quiz 4’s prompt. Only one response contained a complete solution. Students were struggling 

with the solution methods, with the possible exception of Var RE. When students were assigned Quiz 4, they had 

been shown three solution methods in class: Imp Diff, Diff RE, and CRD. However, Var RE was present in one of 

Quiz 4’s responses. It is not known whether the student transferred this method from their previous mathematics 

courses, or discovered the method during the first two course weeks. The instructor presented the class with every 

possible solution method, save for Var RE, the class day after Quiz 4 was assigned. Note that only seven responses 

to Quiz 4 were available for analysis. With so few data points for Quiz 4, it is difficult to make specific statements 

about how Quiz 4’s method distribution compares to those in Quiz 14 and Final 4.b. 
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Figure 3.2 – Quiz 14’s student method distribution. One student was counted as both 

Diff Div and CRD, and another student was counted as both Diff Div and ImpDiff. 

 
See Figure 3.2 for Quiz 14’s student method distribution. Note that one student was counted as both Diff Div and 

CRD, and another student was counted as both Diff Div and ImpDiff. Students used various methods to respond to 

Quiz 14’s prompt. Var RE was by far the most prominent student method. About 70% of students obtained a correct 

or partially correct answer. The success rate could have risen due to former student experience with the prompt. 

Students had already responded to the same prompt in Quiz 4, which the instructor then solved in class via every 

method but Var RE. Increased aptness of students to study for quizzes could also explain the improvement. Given 

that Var RE was not shown in class, it is curious that so many students used Var RE successfully. One or more 

students could have transferred or discovered this solution method and shared it with their classmates.  
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Figure 3.3 – Final 4.b’s student method distribution. One student was counted as both 

CRD and Diff Re. 

 

See Figure 3.3 for Final 4.b’s student method distribution. One student was counted as both CRD and Diff RE. 

Similar to Quiz 14, students used many methods to respond to Final 4.b. Only ~45% of students obtained a correct 

or partially correct answer on Final 4.b. Diff RE became the most popular solution method, in place of Var RE on 

Quiz 14. Final 4.b proved to be a much greater challenge for students than Quiz 14 had. This is likely due to the 

greater mathematical complexity of Final 4.b’s prompt equations. This suspicion will be confirmed in Chapter 4. 

There was a redistribution and convergence of students’ method choices from Quiz 14 to Final 4.b. This reduction in 

diversification will be further discussed in Section 3.3. Var RE and Imp Diff were all but abandoned in the final 

exam. It appears that most students who used Var RE in Quiz 14 moved to either CRD or Diff RE on Final 4.b. This 

suspicion will be validated in Section 3.3. 
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Table 3.2 – Summarization of data shown in Table 4.2, showing the 

influx (I) and outflow (O) of students from each method, as well as how 

many students kept the same (S) method, between Quiz 14 and Final 4.b. 

3.2. Student Method Migration 
From Quiz 14 to Final 4.b, there was a redistribution and convergence of students’ method choices. As seen in 

Figures 3.2 and 3.3, both Imp Diff and Var RE dwindled while Diff RE became more prominent. Students realized 

that Var RE was not a good method to use on Final 4.b, and chose other methods instead. Final 4.b was designed to 

make Var RE a difficult solution method. Most students subsequently abandoned Var RE and instead used Diff RE 

or CRD. 

 

The numbers in Tables 3.1 and 3.2 do not add up perfectly. Two students did not attempt to respond to Final 4.b. 

Also note that students who appeared to use multiple methods, or whose work resembled more than one method, 

were counted as each relevant method. In Quiz 14, one student was counted as both Diff Div and CRD, and another 

student was counted as both Diff Div and ImpDiff. One student was counted as both CRD and Diff RE in Final 4.b. 

 
Table 3.1 - Students changing methods between Quiz 14 and Final 4.b. 

 
 

 

Table 3.1 shows the change of students’ method choices from Quiz 14 to Final 4.b. Table 3.2 summarizes the data 

shown in Table 3.1. Table 3.2’s columns are left to right as follows: responses per method in Quiz 14, number of 

students who used the same method in Final 4.b (S, for same), number of students who changed from the method in 

Final 4.b (O, for outflow), number of students who changed to the method in Final 4.b (I, for influx), and the 

responses per method in Final 4.b.  

 

When asked to respond to a difficult chain-rule problem, most students who abandoned Var RE instead used Diff 

RE or CRD. From these tables, we can see that CRD and Diff RE retained the most students, and that most students 

who changed methods moved to Diff RE. 

 

Little more can be said without discussing 

the errors students made while using these 

methods. This discussion will take place in 

Chapter 4.  
 

  

CRD DIFF DIV DIFF RE IMP DIFF VAR RE OTHER

CRD 4 0 2 0 1 0

DIFF DIV 0 0 1 1 0 0

DIFF RE 0 0 4 1 0 0

IMP DIFF 0 1 1 1 0 1

VAR RE 2 0 5 0 1 1

OTHER 0 0 0 0 1 2

FINAL 4.B

Q
U

IZ
 1

4

STUDENT METHOD MIGRATION

STUDENT METHOD MIGRATION 

SUMMARY 
METHOD QUIZ 14 S O I FINAL 4.B 

CRD 6 4 2 2 6 

DIFF DIV 2 0 2 1 1 

DIFF RE 5 4 1 9 12 

IMP DIFF 5 0 4 2 2 

VAR RE 10 1 9 2 3 

OTHER 3 2 1 2 4 



STUDENT RESPONSES TO CHAIN RULE… 

 

 19 

CHAPTER 4 – STUDENT ERRORS 
 

Many conceptual and mathematical errors were present in student responses. Mathematical errors, such as algebraic, 

arithmetic, and sign errors, are not a focus of this project. Errors pertaining to the manipulation of differentials and 

partial derivatives, and the use of chain rule diagrams are considered to be conceptual errors. Conceptual errors are 

this project’s primary focus. 

 

The error distribution observed in the data is shown and discussed in Section 4.1. Section 4.2 contains information 

about conceptual error categories. Section 4.2 also discusses correlations between method use evolution and error 

occurrence. Flawed method case studies are provided in Section 4.3. Flawed methods are methods that depend on 

one or more conceptual errors. In flawed methods, an error(s)’s occurrence dictates the steps that follow. Had the 

error(s) not been made, the response would contain different steps. 

 

4.1. Student Error Distribution 

The conceptual error distribution was shown alongside mathematical errors in Figure 4.1. Mathematical errors are 

included here to help explain the drop in success rates between Quiz 14 and Final 4.b, as observed in Figures 3.2 

and 3.3. Students who made both conceptual and mathematical errors are counted in both columns. Two students 

made both conceptual and math errors on Quiz 14. Please consider the number of observed responses to each prompt 

during any following comparisons of Quiz 4, Quiz 14, and Final 4.b. These assignments had 7, 29, and 27 responses 

respectively. 

 

 

 
 

Figure 4.1 – The error distribution observed in student responses. Two students made 

both conceptual and math errors in Quiz 14, and are included in both respective columns. 

 

 

As is reflected in Figure 4.1, there was a significant decrease in mathematical errors between Quiz 4 and Quiz 14. 

This trend was not upheld in the final exam. The poor success rate observed in Figure 3.3 is due to the numerous 

mathematical errors present in the responses to Final 4.b. The sudden jump in mathematical errors could be 

explained by the greater extent of algebraic manipulations required to correctly solve Final 4.b; Final 4.b’s prompt 

simply requires more algebra than the prompt in Quiz 4 and Quiz 14. Conceptual errors declined over the course of 

the thermodynamics class, most significantly so between Quiz 14 and Final 4.b. Very few students made conceptual 

errors on Final 4.b. Students must have done a great deal of studying over the two days between these assignments. 
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4.2. Common Conceptual Errors 

Most observed conceptual errors took one of five forms, all of which are described below. These conceptual errors 

will be later referred to by capitalizing the first letter of any word form of the error’s shortened name. For example, 

the words Equated, Equating, and Equation all refer to Error 1, but the words equated, equating, and equation do not.  

 

Error 1 – Erroneous Direct Equating of Partial Derivatives – “Equating” 

The student directly equated two unequal partial derivatives. The only two cases of this error in 

the dataset were observed in the responses to Final 4.b. Both cases took the following form:  

 

(
𝜕𝑈

𝜕𝑉
)

𝑆
= (

𝜕𝑈

𝜕𝑉
)

𝑇
 

 

Error 2 – Erroneous Choice of Chain Rule Partial Derivatives – “Choice” 
The student did not choose the correct partial derivatives when building a chain rule. Given the 

Quiz 4/14 prompt, the correct chain rule for the desired partial derivative is: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
(

𝜕𝑥

𝜕𝑧
)

𝑦
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
 

The following are incorrect versions of the above chain rule, each containing one or more 

erroneous partial derivative choices: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
(

𝜕𝑧

𝜕𝑥
)

𝑦
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
(

𝜕𝑧

𝜕𝑦
)

𝑥

+ (
𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑦
)

𝑥,𝑧

(
𝜕𝑦

𝜕𝑥
)

𝑧
+ (

𝜕𝑥

𝜕𝑦
)

𝑧

 

Error 3 – Creation of Incomplete Chain Rule – “Incomplete” 
The student built a two-dimensional chain rule that was missing one or more partial derivatives; 

the chain rule was not in the proper format for a two-dimensional chain rule. This error is only 

concerned with the chain rule’s partial derivative layout; the correctness of the chain rule’s partial 

derivatives is irrelevant. Given the Quiz 4/14 prompt, the correct chain rule for the desired partial 

derivative is: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
(

𝜕𝑥

𝜕𝑧
)

𝑦
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
 

The following are incorrect versions of the above chain rule, each missing a partial derivative: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑥

𝜕𝑧
)

𝑦
+ (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
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(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
(

𝜕𝑥

𝜕𝑧
)

𝑦
 

Error 4 – Differential Expression Equated with a Partial Derivative – “Differential” 
The student equated a partial derivative with an expression containing a differential. The following 

is the most prominent example of this error in the dataset. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
𝑑𝑧 ;  (

𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑧𝑑𝑧 

Error 5 – Erroneous Identification of a Partial Derivative – “Misidentification” 
The student incorrectly identified a term or set of terms as a partial derivative. The following is the 

dataset’s most prominent example of this error. 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
𝑑𝑧 ;  (

𝜕𝑈

𝜕𝑧
)

𝑦
= 2𝑧𝑑𝑧 

 

Table 4.1 shows the appearances of the above errors in the dataset. The table’s cells contain the student numbers of 

students who made the corresponding error on the corresponding assignment. When reading this table, recall that 

there were 7, 29, and 27 responses to Quiz 4, Quiz 14, and Final 4.b respectively. 
 

Table 4.1 – The student numbers of students who made conceptual errors in their 

responses. 

 
 

 

Four students made Differential and Misidentification errors simultaneously. This correlation may be causation. The 

simultaneity of Differential and Misidentification errors could have occurred due to the presence of the 𝑑𝑧 

differential in the corresponding term of 𝑈’s total differential. Consider the following: 

 

Note the highlighted term of the general total differential of Equation 2.1’s expression for 𝑈: 

 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑥
)

𝑦,𝑧
𝑑𝑥 + (

𝜕𝑈

𝜕𝑦
)

𝑥,𝑧

𝑑𝑦 + (
𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
𝑑𝑧 

Misidentifying this term as the partial derivative in Equation 2.3 led to that partial derivative being equated to an 

expression containing 𝑑𝑧: 

 

(
𝜕𝑈

𝜕𝑧
)

𝑦
= (

𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
𝑑𝑧  

 

 

ERROR QUIZ 4 QUIZ 14 FINAL 4.B

EQUATING - - 4, 28

CHOICE - 13, 17, 20, 23, 24 16

INCOMPLETE 13 17, 23, 28, 29 16

DIFFERENTIAL 11 4, 11, 16, 28 -

MISIDENTIFICATION 4, 11 4, 11, 16, 28 -

COMMON CONCEPTUAL ERRORS
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Every common conceptual error that occurred in Quiz 14 became less prevalent on the final exam. No 

Misidentification or Differential errors were present in the Final 4.b responses. Interestingly, the two students who 

made the Equating error in the final exam had made both the Misidentification and Differential errors in their 

responses to Quiz 14. These students’ understanding must have evolved similarly. By observing Tables 3.1, 3.2, and 

4.1, we can see the evolution of relations between errors and methods. 

 

CRD shows significant improvement between Quiz 14 and Final 4.b. Students had great difficulty performing CRD 

on Quiz 14. In Quiz 14, students tended to make Choice and Incomplete errors while using CRD. Students who 

made Choice errors often created chain rule diagrams that did not match the desired partial derivative. These 

students did not correctly link the differentials in their diagrams. Specifically, the students chose the wrong 

differential to express in terms of other differentials. Students who made Incomplete errors while using CRD had 

varying technical misunderstandings of the workings of chain rule diagrams. 

 

Since Quiz 14 was assigned on the last day of the class, one could assume that students have difficulty obtaining a 

fully functional understanding of chain rule diagrams within the thermodynamics course’s timeframe. However, of 

the six students who used a chain rule diagram on Final 4.b, only one made a conceptual error. Four of the five 

students who made a conceptual error with CRD on Quiz 14 made no conceptual error while using CRD on Final 

4.b. Over the weekend between Quiz 14 and the final exam, these four students suddenly became masters of the 

chain rule diagram! None of the possible solution methods were discussed during the final exam review session, 

which occurred on the same day as Quiz 14. These students’ improvements on CRD must have been due to out-of-

class studying, likely prompted by the upcoming final exam and students’ poor success with CRD on Quiz 14. The 

only student who made a conceptual error in CRD on Final 4.b was student 16. Student 16 did not use the CRD 

method in Quiz 14. 

  

Student 16’s response to Quiz 14 is the only case in the dataset where a student made a conceptual error during Diff 

RE. Furthermore, the four students who successfully used Diff RE on Quiz 14 also used it on final 4. 

 

Many student responses contained flawed methods. Section 4.3 contains case studies of every student whose 

response contained a flawed method. 

 

4.3. Flawed Methods 

Multiple flawed methods were observed in the dataset. Flawed methods are dependent on their contained conceptual 

errors; in each flawed method, the occurrence of one or more conceptual errors dictates the steps that follow. 

Student responses that contain flawed methods will be described in detail. Doing so serves two purposes: to 

distinguish the flawed methods from mis-performed solution methods and to provide conceptual error case-studies. 

 

Students who made Choice and Incomplete errors while using CRD are not included in these case studies. Although 

Choice and Incomplete errors are considered conceptual for the purpose of this project, they result from technical 

misunderstandings of CRD use. Additionally, errors made while using CRD cannot lead to flawed methods since 

diagram use is what distinguishes CRD as a unique method; no matter what errors the student makes while using 

CRD, the fact remains that they were trying to create and read a chain rule diagram. Any student who used a chain 

rule diagram was using the CRD method. 

 

The figures on the following pages portray some common student errors and the resulting flawed methods. Figures 

4.3, 4.4, 4.5, and 4.8 show the work of students operating based on their misconceptions of what it means to hold a 

variable constant. Figures 4.2, 4.6, and 4.7 show flawed methods resulting from student misidentification of partial 

derivatives.  

 

 



STUDENT RESPONSES TO CHAIN RULE… 

 

 23 

 
 

Figure 4.2 - Student 4's response to the Quiz 4 prompt. 

 

As seen in Figure 4.2, student 4 obtained their final result to Quiz 4 by treating the 𝑑𝑧 term of 𝑈’s total differential 

as equivalent to the desired partial derivative. The third line of work shows the student solving what should be 

labeled as (
𝜕𝑈

𝜕𝑧
)

𝑥,𝑦
. The student found and substituted in an expression for 𝑑𝑧, so this method bears some 

resemblance to Diff RE. However, in their final line of work, the student Misidentified the 𝑑𝑧 term of the total 

differential of 𝑈 as the desired partial derivative. The student then substituted in their result from line 3, the 

prompt’s expression for 𝑧, and line 4’s expression for 𝑑𝑧. Student 4 had some reason to not include a differential in 

their solution, as the 𝑑𝑦 from the expression for 𝑑𝑧 is not present in the student’s answer. The student may have 

recognized that they should not set a differential expression equal to a partial derivative. However, it is also possible 

that the student dropped the 𝑑𝑦 from their solution, believing that this was equivalent to saying 𝑑𝑦 = 0. 
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Figure 4.3 - Student 4's response to the Quiz 14 prompt. 

 

 

It is difficult to decipher the method used in the response seen in Figure 4.3. The student clearly did not intend to 

convey that 𝐥𝐧(𝒚 − 𝒙)𝟐, which is equivalent to 𝒛𝟐, is equal to the desired partial derivative. Although the student set 

the desired partial derivative equal to the 𝒛𝟐 term, they evaluated the derivative in their next step. It is not a 

reasonable assumption that the student intended to implicitly equate an equation with its own derivative. Based on 

their action in the next step, this line was meant to say that 𝒛𝟐 is the only term that need be considered to calculate 

the desired partial derivative. In their last step, student 4 calculated the desired partial derivative from their identified 

term in the previous step. This error is unique in the dataset, and is technically not Misidentification. A 

Misidentification error is where a student identified a term as equal to a partial derivative. The student also made a 

Differential error in their final, boxed step by multiplying the partial derivative’s result by 𝒅𝒛. 

 

 
Figure 4.4 - Student 4's response to the Final 4.b prompt. 
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Figure 4.5 - Student 28's response to the Final 4.b prompt. 

 
 
Student 4’s response to the Final 4.b prompt can be seen in Figure 4.4. As in both Quiz 4 and Quiz 14, student 4 

pays no heed to variable dependencies not explicitly noted in the partial derivative. In this case, the student does not 

consider how the desired partial derivative depends on the other variable in the expression, temperature 𝑇. However, 

student 4 did not multiply their final result by a differential, as they did in their response to Quiz 14. This Equating 

error turned the prompt into a one-step problem. Figure 4.5 shows student 28’s work on Final 4.b. This student’s 

method is identical to that used by student 4 on Final 4.b. In Quiz 14, student 28 made Incomplete, Differential, and 

Misidentification errors while using Imp Diff. 

 

 

 
 

Figure 4.6 - Student 11's response to the Quiz 4 prompt. 
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Figure 4.7 - Student 11's response to the Quiz 14 prompt. 

 

 

Figures 4.6 and 4.7 show student 11’s work from Quiz 4 and Quiz 14 respectively. These are identical methods, 

setting aside the missing 𝑧 in the last step of Figure 4.6 and the sign error in the last step of Figure 4.7. This student 

used a flawed method similar to that seen in student 4’s response to Quiz 4. In both cases, student 11 Misidentified 

the 𝑑𝑧 component of 𝑈’s total differential as the desired partial derivative. The student found an expression for 𝑑𝑧 

and substituted it into the misidentified term. In Quiz 14, the student also substituted in the prompt’s equation for 𝑧. 

Both of student 11’s solutions contain a differential. As described at the beginning of this chapter, this student’s 

Differential error is likely a result of their Misidentification error. The student’s final result has a differential 

because there was a differential in the term the student Misidentified as the desired partial derivative. Student 11 was 

one of the two students who used a dead-end method in Final 4.b. Student flailing will be discussed in Chapter 5. 

 
 

 
 

Figure 4.8 - Student 9's response to the Quiz 14 prompt. 

 

 

Figure 4.8 shows student 9’s work from Quiz 14. Student 9 made a unique conceptual error in their response. The 

𝑥2 term was treated as if it were unaffected by the partial derivative. In their final answer, the student substituted in 

the prompt’s expression for 𝑧. Although it bears resemblance to an Equating error, this student’s error is unique in 

the dataset. Student 9 went on to use Var RE, without any conceptual error, in Final 4.b. 

  



STUDENT RESPONSES TO CHAIN RULE… 

 

 27 

CHAPTER 5 – DEAD-END METHODS 
 

Dead-end methods are methods that do not contain errors but do not yield acceptable solutions; while dead-end 

methods are methods, they are not solution methods. Acceptable solutions contain no indirect partial derivatives. 

Only one dead-end method was observed in the dataset. In this method, students used the thermodynamic identity to 

create an expression for the desired partial derivative. The students started by either explicitly writing or creating an 

expression from the thermodynamic identity. The students then identified the desired partial derivative from the 

expression and equated it with pressure 𝑝. This method will be referred to as ThermIdent. It is worth noting that part 

c of final exam question 4 asked students to use ThermIdent. Neither student who used ThermIdent on Final 4.b did 

their work out of order. Additionally, both students referred to their work in Final 4.b while responding to Final 4.c. 

This confirms that the below responses are indeed responses to Final 4.b. ThermIdent was described as an epistemic 

game variant in Kustusch et al. [3]. This method could be used to solve the prompt from Kustusch et al. [3]. 

ThermIdent does not apply to the Quiz 4/14 prompt since the prompt’s equations have no explicit thermodynamic 

context. Although Final 4.b’s prompt has thermodynamic context, the problem is not designed in a way that allows 

ThermIdent to yield an acceptable solution. 

 

 
 

Figure 5.1 - Student 11's response to the Final 4.b prompt. 

 

  
Student 11’s approach to Final 4.b can be seen in Figure 5.1. After creating an expression for 𝑈’s general total 

differential, the student correctly identified temperature 𝑇 and the negative of pressure 𝑝 from 𝑈’s total differential. 
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It is clear that this student had the thermodynamic identity in mind. In this prompt, the desired partial derivative 

happens to be equivalent to the negative of pressure 𝑝. Student 11 then formed a Maxwell relation, presumably in an 

attempt to express pressure 𝑝 in terms of the prompt’s variables. Unfortunately, this process is not possible for Final 

4.b’s prompt. Final 4.b’s prompt contains no information about 𝑝. Student 11 used a flawed method in their 

responses to Quiz 4 and Quiz 14. 

 

 

 
 

Figure 5.2 - Student 19's response to the Final 4.b prompt. 

 

 

Student 19’s approach to Final 4.b can be seen in Figure 5.2. The student equated the thermodynamic identity to the 

prompt’s expression for U, correctly identifying that the desired partial derivative was equivalent to the negative of 

pressure 𝑝. Student 19 then split the desired partial derivative using a cyclical chain rule. Even if the student had had 

time to continue their process, both partial derivatives produced by the cyclical chain rule are indirect partial 

derivatives; performing the cyclical chain rule moved the student further from finding a derivative-less expression 

for the desired partial derivative. On Quiz 14, student 19 had successfully used Var RE. 

 

Both student 11 and student 19 used the dead-end method ThermIdent. Since this method is not applicable to the 

Quiz 4 and Quiz 14 prompts, it is impossible to discuss the ThermIdent’s evolution over the course. It is even 

difficult to know when students became aware of this method. Would students have applied this method to Quiz 4 or 

Quiz 14 if these assignments had been designed to allow it? Students had been shown the thermodynamic identity, 

cyclical chain rule, and Maxwell equations before the third class week; even before Quiz 4 was assigned, students 

had the information necessary to produce the work seen in Figures 5.1 and 5.2. If these quizzes had been designed 

to permit ThermIdent’s use, some students may have used this method. However, it is possible that students did not 

have enough time to process the material relevant to ThermIdent before Quiz 4 was assigned. 
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CHAPTER 6 – CONCLUSIONS 

 

The goal of this project was to better understand how students approach thermodynamics-related chain rule 

problems. Two such problems were assigned to students in the Fall 2016 thermodynamics course at Oregon State 

University (OSU). Students’ responses were anonymized and their solution methods and conceptual errors were 

studied. Students used many solution methods, all but one of which were taught during the course. At least one 

instance of every possible solution method was observed in responses to each of the two primary assignments. 

Solution method prominence varied greatly within each assignment and between assignments. Many student 

responses contained conceptual errors. There was some correlation between the student solution methods and 

student conceptual errors (or lack of conceptual errors). These results suggest adjustments to the course content of 

OSU’s thermodynamics Paradigm, as well as method improvements in possible future work. 

 

6.1. Summary of Results 
Student Solution Methods 
Two solution methods stood out due to their superior effectiveness. The first method involves changing the 

differentials of the initial function’s total differential, via substitution, and then identifying the desired partial 

derivative. This method is referred to as Diff RE. Diff RE was the most successful student solution method. In the 

second method, one uses a chain rule diagram of the initial function to build a chain rule for the desired partial 

derivative. This method is referred to as CRD. CRD was the most troublesome solution method for students. Most 

students who tried to use CRD on Quiz 14 either mis-built or misread their diagram. CRD showed drastic 

improvement in the short time between Quiz 14 and Final 4.b; most students who made conceptual errors with CRD 

on Quiz 14 went on to use CRD, without conceptual error, on the final exam. These students clearly saw value in 

CRD and worked to improve their understanding of the method over the weekend between Quiz 14 and Final 4.b. 

 

Student Successes and Difficulties 
Despite the many conceptual errors made by students, some of the student successes observed in Thompson et al. 

[1] were also observed in this project. Student successes observed by Thompson et al. [1] include: knowing the 

difference between derivatives of systems with one or more independent variables, and understanding (either 

conceptually or functionally) that partial derivatives treat some variables as constants.  

 

Most students in this study know that derivatives differ based on whether a system has one or many independent 

variables. Most of these students understand that partial derivatives involve holding one or more variables constant. 

In almost every response, students somehow applied information about variables being held constant. These 

successes, however, do not come without related difficulties.   

 

Aside from student difficulties with chain rule diagrams, two student difficulties were observed in this study.  The 

first student difficulty is holding variables constant while evaluating partial derivatives. In many cases, students 

made errors while operating based on their misconceptions of what it means to hold a variable constant. Many 

students do not know how to properly hold variables constant while evaluating partial derivatives. The other 

observed student difficulty is identifying partial derivatives. Students often misidentified partial derivatives. 

 

6.2. Implications for Instruction 
Most students who used Diff RE had a good understanding of its workings. Current teaching methods are clearly 

effective. However, the less successful solution methods could be removed from the curriculum, allowing more 

students to succeed with Diff RE. Diff RE can reliably solve any thermodynamics-related chain rule problem, 

making this solution method a preferable take-home message for students. 

 

Students need more practice with chain rule diagrams earlier in the class to be more successful with CRD. Like Diff 

RE, CRD is a valuable solution method because it can be universally applied to thermodynamics-related chain rule 

problems. Classroom activities already give students hands-on experience with this method. These activities could 

be enhanced to counteract the prominence of the two common CRD-related errors. Such errors could also be shown 

to the class in an attempt to inoculate students from making the errors. More extensive hands-on practice with chain 

rule diagrams would help rectify the issue. This hands-on practice could take the form of assigned worksheets. Such 

worksheets could have multiple prompts similar to those in this study. However, these prompts would only ask the 
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student to obtain an unevaluated chain rule. This design would maximize students’ experience with building and 

reading chain rule diagrams. Worksheets could be assigned in class and partially completed as in-class group 

activities, requiring students to finish on their own time. 

 

Finally, students need more experience evaluating and identifying partial derivatives. Both of these concepts are 

likely fundamental enough to be further conveyed by repetitious practice. In both cases, assigned worksheets should 

suffice. Partial derivative evaluation worksheets could contain multiple one-equation partial derivatives with varying 

numbers of variables. Since partial derivatives differentiate with respect to only one variable, students would have 

practice holding the other variables constant while evaluating each partial derivative. In the case of partial derivative 

identification, prompts could provide students with the specific total differentials of multiple functions. Specific 

total differentials contain evaluated partial derivatives. Students would be required to identify the evaluated partial 

derivatives in each specific total differential.  

 

6.3. Future Work 
This study’s dataset was far from ideal. The lack of data on Quiz 4 restricted possible insight into student method 

and error evolution. Student method and error evolution was meaningfully observed between two assignments (Quiz 

14 and Final 4.b) that were only two days apart. This study would have greatly benefited from a complete dataset.  

 

Prompt synonymy was somewhat lacking. Final 4.b’s prompt had explicit thermodynamic context, while Quiz 4’s / 

Quiz 14’s prompt did not. All prompts need to be designed with, or without, physical context. Giving all prompts 

parallel physical context will avoid isolated occurrences of unique methods caused by contextually different 

prompts. In this way, the observation of each student method’s evolution will be ensured. 

 

To further improve this study, the dataset’s scope could be extended. Examination of a pre-test problem would be 

valuable. With this addition, a total of (ideally) four data points would be collected per student: beginning, middle, 

and end of the class, as well as the final exam. 

 

Furthermore, a larger dataset would allow exploration of the correlation (or lack thereof) between student conceptual 

errors and student method choice. The larger dataset would also improve chances of repeated trials yielding similar 

distributions of methods and errors. Unfortunately, the dataset’s size is limited to the observed class’s population. 
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APPENDIX A – CALCULUS IN OTHER PARADIGMS COURSES 
 

The following is a list of the Paradigms in Physics classes at Oregon State University that contain calculus-based 

content and precede the thermodynamics Paradigm. After each course title is a list of the calculus-based concepts 

taught in the respective course. 

 

Symmetries and Idealizations 
o Power Series 

o Scalar Line Integrals 

o Surface and Volume Elements 

o Surface and Volume Integrals 

o Partial Derivatives 

o Vector Differential 

o Gradient 

o Potentials due to Continuous Charge Distributions 

o Electric Field as a Gradient 

o Electric Field due to a Ring of Charge 

o Finding Potentials from Fields 

o Conservative Fields 

 

Static Vector Fields  
o Scalar Surface Integrals 

o Flux 

o Volume Integrals 

o Partial Derivatives 

o Gauss’s Law 

o Limit Definition of the Derivative 

o Divergence and the Divergence Theorem 

o Current 

o Scalar and Vector Line Integrals 

o Magnetic Vector Potential 

o The Biot-Savart Law 

o Ampere’s Law 

o Curl 

o Stoke’s Theorem  

o Differential Form of Ampere’s Law 

o Continuity of Fields over a Boundary 

o Path Independence 

o Conservative Vector Fields 

o The Laplacian 

o Product Rules 

 

Oscillations 
o Ordinary Differential Equations 

o Derivatives of Position 

o Damped and Undamped Harmonic Oscillations 

o RLC Oscillators 

o Fourier Transforms 

o Fourier Coefficients 

o Fourier Series 

o Impulses 

 

Quantum Measurements and Spin 
o Probability Calculus 

o Eigenvalues and Eigenfunctions 

o The Schrodinger Equation 

o Quantum Operators 

o Projections 

o Time-Dependent Schrodinger Equation 

 

One-Dimensional Waves 
o Phase and Group Velocity 

o Ordinary Differential Equations 

o Initial Conditions 

o Non-Dispersive Wave Equation 

o Dispersion Relations 

o Newton’s Law and Transverse Motion 

o Reflection, Transition, and Impedance 

o Energy Density 

o Fourier Series 

o Fourier Superposition 

o Wave Packets 

o The Schrodinger Equation 

o Eigenvalues and Eigenfunctions 

o Quantum Operators 

o Probability and Probability Density 

o Time-Dependent Schrodinger Equation 

o Barriers and Tunneling 

o Time Evolution of Wave Packets 

 

Periodic Systems 
o Ordinary Differential Equations 

o RLC Oscillators 

o Linearly Coupled Oscillators 

o N-Chain Oscillators 

o Infinite Chains of Atoms and Diatomic Molecules 

o The Equipartition Theorem 

o Heat Capacity 

o Specific Heat 

o Chained Potential Wells 

o Hamiltonian for the N-Well System 

o Effective Mass 

 

Reference Frames 
o 2-D Relative Time Derivatives 

o Coriolis Acceleration and Force 

o Centrifugal Acceleration and Force 

o Linear Motion in a Rotating Frame 

o Coupled Second-Order Differential Equations 

o 3-D Relative Time Derivatives 

o The Foucault Pendulum 

o Lorentz Transformations 



STUDENT RESPONSES TO THERMODYNAMICS-RELATED… 

 

 34 

APPENDIX B – TIMELINE OF RELEVANT COURSE MATERIALS 
 

Table B.1 contains a timeline of relevant assignments and discussions from the thermodynamics class of the 

Paradigms in Physics program at Oregon State University. Material directly relevant to this study is shown bolded. 

See Section 2.2 for the abbreviated solution codes contained within the “SOLUTIONS DISCUSSED” column 

below.  

 
Table B.1 – The Spring 2016 thermodynamics paradigm‘s instructional timeline. 

TIMELINE OF RELEVANT COURSE MATERIALS 
DATE ASSIGNMENTS SOLUTIONS DISCUSSED RELEVANT TOPICS DISCUSSED 

Week 1       

4/18/16 

    

Differentials 

Dependent and Independent Variables 

Partial Derivative Machine [4] 

4/19/16 

    

Isowidth and Isoforce Stretchability 

Total Differentials 

Partial Derivatives 

Multivariable Chain Rule (Differentials Version) 

4/20/16 

Homework 1 due Imp Diff 

Onion Method 

Chain Rule 

Multivariable Chain Rule (Differentials Version) 

Interpreting Partial Derivatives 

Thermodynamic Identity 

4/21/16 

  

Diff RE (general total 

differential) 

CRD 

Multivariable Chain Rule (Differentials Version) 

Upside-down Derivatives 

Cyclic Chain Rule 

4/22/16 

Homework 2 due   

Legendre Transforms 

Equality of Mixed Second Partial Derivatives 

Contoured Surfaces [5] 

Week 2       

4/27/16 Homework 3 due     

4/29/16 Quiz 4 assigned     

Week 3       

5/2/16 

  

Quiz 4 Solutions: 

>CRD 

>Imp Diff 

>Diff Div 

>Diff RE ( specific total 

differential)   

5/4/16 
    

Equality of Mixed Second Partial Derivatives 

Maxwell Relations 

Week 4       

5/11/16 Homework 7 due     

5/13/16 Quiz 14 assigned     

Week 5       

5/16/16 Final exam     
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APPENDIX C – CODING SYNTAX 
 

Upon initial review of the Quiz 4 and Quiz 14 data from the Spring 2016 thermodynamics paradigm, I broke each 

student’s responses down into steps and made codes for each unique step. I tried to make a flow chart that contained 

every possible correct student solution to the prompt; I hoped to represent each unique student response as a unique 

path through the flow chart. This proved too complex, so I instead developed a coding language. Even initially, my 

coding language allowed me to represent common sequences of steps in very little space. 

 

I performed the initial coding with my scheme, inputting the codes into Excel in a tabular format with three 

columns: Step, Err, and VC. “Step” is the column where student moves are listed sequentially. The “Err” column 

contains a code representing the nature of any error made by the student in the corresponding step. Similarly, the 

“VC” column contains a code representing how, or if, the student applied information about variables being held 

constant in the corresponding step. 

 

After the first round of IRT, I greatly simplified my codes by eliminating overlaps between coding definitions and 

better defining my codes for variable information application. After the second stage of IRT, I revised the coding 

syntax to disallow step nesting (when what is shown as one step actually contains multiple individually 

representable steps), which was used to represent common sequences of steps; I was unsatisfied by step nesting due 

to the loss of information about students’ errors and variable information application within sequence’s individual 

steps. The third round of IRT yielded a step-by-step agreement (all cells in a table’s row must be the same to count 

as an agreement) of ~60% as opposed to cell-by-cell agreement (each individual cell counts for or against 

agreement), which was >80%. 

 

After yet another large rework, which dramatically improved readability, I realized that I had obtained everything I 

needed from the coding scheme; common errors and patterns of steps were clear to me. I had little justification to 

continue dragging the coding scheme along. To clarify, the coding scheme was no longer necessary for me to 

observe student work at the detail required for my analysis. Additionally, every time I observed a new student move 

or solution, or came to realize that I had been classifying two distinguishably different moves as the same (even if 

such minute details were insignificant to my analysis), I had to rethink my coding scheme and all previous codings.  

 

Although I ultimately scrapped the coding scheme, the following is as it was in its final state, included for 

posterity’s sake. This scheme is far from perfect (there are several prominent student moves / steps that it fails to 

account for), and I would have made many additional changes had I continued to update it as my project progressed. 

 

C.1. Piece Names 
 

General Form of the Total Differential 
Ex: Given a function ? (𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2, the general form of the total differential of U, represented as “D?G” 

is as follows: 

𝑑? = (
𝜕?

𝜕𝑎
)

𝑏,𝑐
𝑑𝑎 + (

𝜕?

𝜕𝑏
)

𝑎,𝑐
𝑑𝑏 + (

𝜕?

𝜕𝑐
)

𝑎,𝑏
𝑑𝑐                                               (12) 

 

Specific form of the Total Differential 
Ex: Given a function ? (𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2, the specific form of the total differential of U, represented as “D?S” 

is as follows: 

𝑑? = 2𝑎𝑑𝑎 + 2𝑏𝑑𝑏 + 2𝑐𝑑𝑐                                                              (13) 

Partial Derivatives 
Syntax: ABcd ; A is the numerator variable, B is the denominator variable, and all lowercase letters are the variables 

that are being held constant. 

Ex: Given functions ? (𝑎, 𝑏, 𝑐) and 𝑎 ( 𝑏 , 𝑐 ), a few of the possible partial derivatives are: 

o ABc represents: 

(
𝜕𝑎

𝜕𝑏
)

𝑐
                                                                                 (14) 

o CAb represents:  
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(
𝜕𝑐

𝜕𝑎
)

𝑏
                                                                                 (15) 

o ?Cab represents: 

(
𝜕?

𝜕𝑐
)

𝑎,𝑏
                                                                              (16) 

 

 

C.2. Step Syntax 
The step syntax appears in these forms, translating directly to the corresponding statements: 

o A for B into C ; Used piece A to solve for piece B and substituted piece B into piece C 

o B into C ; Substituted piece B into piece C 

o A for B ; Used piece A to solve for piece B 

o A in B ; Identified partial derivative “A” in piece B 

o A by B ; divided piece A by differential B 

o or ; It is unclear which of the listed moves / steps the student made 

o and ; used only after “or,” when one of the listed moves contains multiple steps 

 

Other step syntax codes, which represent moves and steps to which the previous syntax does not apply: 

 

Created (NOT solved for) the General Form of a Total Differential  
Syntax: Given a function ? (𝑎, 𝑏, 𝑐), D?G 

 

Created (NOT solved for) the Specific form of a Total Differential 
Syntax: Given a function ? (𝑎, 𝑏, 𝑐), D?S 

 

Performed Extensive Algebraic Manipulation 
Syntax: ALG { piece on which the algebra was performed } 

 

Used a Cyclical Chain Rule 
Syntax: CCR { partial derivative that is expanded by the cyclical chain rule} 

 

Made a Chain Rule Diagram 
Syntax: CRD { primary branching differential “to” secondary branching differential } 

Ex: Given functions ? (𝑎, 𝑏, 𝑐) and 𝑎 ( 𝑏 , 𝑐 ), all possible chain rules with “D?” as the primary branching 

differential: 

 

CRD { D? to DA } ; D? branching into DA, DB, and DC, DA branching into DB and DC. See Figure C.1. 

 

 

 

 

 

Figure C.1 – Chain rule diagram represented by CRD { D? to DA } 
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CRD { D? to DB } ; D? branching into DA, DB, and DC, DB branching into DA and DC. See Figure C.2. 

 

 

CRD { D? to DC } ; D? branching into DA, DB, and DC, DC branching into DA and DB. See Figure C.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Built a Chain Rule (non-cyclical) 
Syntax: BCR { partial derivative which is expanded by the chain rule } 

Ex: Given functions ? (𝑎, 𝑏, 𝑐) and 𝑎 ( 𝑏 , 𝑐 ), all possible chain rules with “?” as a common numerator: 

o BCR { ?Ab } 

(
𝜕?

𝑑𝑎
)

𝑏
= (

𝜕?

𝜕𝑐
)

𝑎,𝑏

(
𝜕𝑐

𝜕𝑎
)

𝑏
+ (

𝜕?

𝜕𝑎
)

𝑏,𝑐
                                                         (6) 

o BCR { ?Ac } 

(
𝜕?

𝑑𝑎
)

𝑐
= (

𝜕?

𝜕𝑏
)

𝑎,𝑐

(
𝜕𝑏

𝜕𝑎
)

𝑐
+ (

𝜕?

𝜕𝑎
)

𝑏,𝑐
                                                          (7) 

o BCR { ?Ba } 

(
𝜕?

𝑑𝑏
)

𝑎
= (

𝜕?

𝜕𝑐
)

𝑎,𝑏

(
𝜕𝑐

𝜕𝑏
)

𝑎
+ (

𝜕?

𝜕𝑏
)

𝑎,𝑐
                                                          (8) 

o BCR { ?Bc} 

(
𝜕?

𝑑𝑏
)

𝑎
= (

𝜕?

𝜕𝑎
)

𝑏,𝑐

(
𝜕𝑎

𝜕𝑏
)

𝑐
+ (

𝜕?

𝜕𝑏
)

𝑎,𝑐
                                                          (9) 

o BCR { ?Ca } 

(
𝜕?

𝜕𝑐
)

𝑎
= (

𝜕?

𝜕𝑏
)

𝑎,𝑐

(
𝜕𝑏

𝜕𝑐
)

𝑎
+ (

𝜕?

𝜕𝑐
)

𝑎,𝑏
                                                       (10) 

o BCR { ?Cb } 

(
𝜕?

𝜕𝑐
)

𝑏
= (

𝜕?

𝜕𝑎
)

𝑏,𝑐

(
𝜕𝑎

𝜕𝑐
)

𝑏
+ (

𝜕?

𝜕𝑐
)

𝑎,𝑏
                                                       (11) 

 

 

Figure C.2 – Chain rule diagram represented by CRD { D? to DB } 

 

Figure C.3 – Chain rule diagram represented by CRD { D? to DC } 
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In short, the syntax says: “the student built a chain rule for the partial derivative within the brackets.” Once a student 

equates a chain rule to a partial derivative, the partial derivative is considered to be a piece whose expression is the 

chain rule, regardless of whether the student matched the partial derivative with the correct chain rule (incorrectly 

matching a partial derivative and a chain rule is considered to be a conceptual error). 

 

Obtained a Solution 
Syntax: 

o SOLN ; obtained a correct solution, disregarding sign errors 

o SOLN# ; obtained a partially correct solution  

o SOLN## ; did not obtain a correct or partially correct solution 

 

 

C.3. Variable Information Codes (each step has a code from this section) 

 

EXP ; Explicitly applied information about a variable being held constant 

Ex: Stated that 𝑑𝑦 = 0 and crossed out the dy term. 

Ex: Showed y as a subscript in a partial derivative 

 

IMP ; Implicitly applied information about a variable being held constant 

Ex: Left a term out of a calculation because it would have resulted in zero, but did not explicitly show and cross out 

the term 

 

DNA ; Did not apply information about a variable being held constant 

 

NA ; No information about a variable being held constant can be applied to this step 

 

 

C.4. Error Codes (each step has a code from this section) 

 

NER ; No mathematical or conceptual errors were made in the specified step 

 

SIN ; A sign error was made in the specified step 

 

MTH ; A non-sign mathematical error was made in the specified step 

 

CPL ; A conceptual error was made in the specified step 
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APPENDIX D – CODED STUDENT RESPONSES 
 

Table D.1 contains the coding scheme’s final output. A list of anonymized student responses is in Appendix E. The 

Analysis in Sections 3.1, 3.2, and 4.1 can be derived from the Table D.1’s contents. The table’s cells contain codes 

for each student’s solution method. Some student responses had work reflecting two correct methods. These 

responses were therefore marked and counted as containing both methods. Green, orange, and red cell fill colors 

respectively represent a correct answer, partially correct answer, and incorrect answer. Although information about 

student answer correctness was recorded and shown, it is not this project’s focus. Green, orange, and red font colors 

respectively signify that the student made no errors, a math error(s), and a conceptual error(s).  

 
Table D.1 – Coded data, outputted by the final coding scheme. Green, orange, and red 

cell fill colors respectively represent a correct answer, partially correct answer, and 

incorrect answer. Green, orange, and red font colors respectively signify that the student 

made no errors, a math error(s), and a conceptual error(s). 

 

  

STUDENT QUIZ 4 QUIZ 14 FINAL 4.B

1 NO DATA IMP DIFF DIFF DIV

2 DIFF RE VAR RE DIFF RE

3 NO DATA VAR RE VAR RE

4 FLAWED FLAWED FLAWED

5 DIFF DIV DIFF DIV or CRD DIFF RE

6 NO DATA VAR RE CRD

7 NO DATA VAR RE DIFF RE

8 NO DATA IMP DIFF DIFF RE

9 NO DATA FLAWED VAR RE

10 NO DATA DIFF RE DIFF RE

11 FLAWED FLAWED DEAD-END

12 NO DATA VAR RE DIFF RE

13 CRD CRD CRD or DIFF RE

14 NO DATA VAR RE DIFF RE

15 CRD VAR RE CRD

16 NO DATA DIFF RE IMP DIFF

17 NO DATA CRD CRD

18 NO DATA DIFF RE DIFF RE

19 NO DATA VAR RE DEAD-END

20 NO DATA IMP DIFF NOT ATTEMPTED

21 NO DATA VAR RE DIFF RE

22 NO DATA DIFF DIV or IMP DIFF IMP DIFF

23 NO DATA CRD CRD

24 NO DATA CRD VAR RE

25 NO DATA DIFF RE DIFF RE

26 NO DATA VAR RE NOT ATTEMPTED

27 VAR RE DIFF RE DIFF RE

28 NO DATA IMP DIFF FLAWED

29 NO DATA CRD CRD

CODED STUDENT RESPONSE DATA



IAN W. FOUNDS 

 

 40 

APPENDIX E – ANONYMIZED STUDENT RESPONSES 

 

E.1. Quiz 4 
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E.2. Quiz 14 
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E.3. Final exam, question 4.b 
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