
“Measuring” the Density Matrix

Introduction

Schrödingers quantum mechanics and its statistical postulates are usually formulated
in terms of a state (wave) function, ∣Ψ⟩ which is a solution to Schrödingers equation.
Alternatively, these statistical postulates can be formulated in terms of a density
operator ρop, which is defined as

ρop = ∣Ψ⟩⟨Ψ∣ , (1)

a choice which, in many ways, is more general and useful than the state (wave)
function formulation. For one thing, the density operator is a measurable. i.e. it
is determined by observables, whereas the state (wave) function is not. (There is,
in fact, no way to determine a wave function by measurements.) This alone is cer-
tainly a good incentive. Another practical reasons for choosing the density operator
formulation is that it is capable of accommodating a broader description of quan-
tum “states” – in particular “states” which are not “pure”, i.e. “states” for which
“information” content is less than 1. This is a major stride towards defining ther-
modynamics. For pure state density operators [see Eq.1] possess complete knowledge
of the quantum system, whereas thermodynamic systems are those about which
knowledge is incomplete. There is no state function that describes that practical
(thermal) condition.

On the other hand, there is a quantum object – called the Mixed State Density
operator – that does accommodate incomplete knowledge and within which lies the
quantum basis of thermodynamics.

Therefore, to extend the reach of quantum mechanics to thermal situations the den-
sity operator concept is a crucial bit of quantum mechanics that must be brought
to our attention. One can, indeed, shed the the state vector ∣Ψ⟩ habit formed by
introductory “QM” pedagogy and everywhere replaced it by the density operator of
Eq.1.

In this lab we focus on the density operator, especially its corresponding matrix as
generated by a particular choice of expansion basis.
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Objectives

Unlike a wave function which is NOT a measurable, the density operator (matrix)
is, in principle, determined by measurables. The issue of “measuring” a density
matrix reduces largely to how many distinct measurements are necessary and which
ones.

SPINS is a computer simulation that conducts a variety of computer experiments
involving randomly polarized spin-1/2 atoms emanating from, say, an oven.

1. We use the simulated Stern-Gerlach apparatus to find the density matrix cor-
responding to each of the program’s modeled sources.

2. We will use two different definitions of information to calculate the information
content associated with each of these density matrices.

3. We will decide if each density matrix represents a pure or mixed state.

Theory I

If a system can exist in N linearly independent quantum states, say ∣φi⟩, i = 0,1, . . .N,
the density matrix

ρm,n = ⟨φm∣ρop∣φn⟩ = ⟨φm∣Ψ⟩⟨Ψ∣φn⟩ (2)

will have N rows and N columns. Since a density matrix has the property Tr ρop = 1,
it has N2 − 1 independent elements. (A spin 1/2 system can exist in two states,
usually taken as states quantized parallel and anti-parallel to a z-axis, so that the
density matrix is of dimension 2 × 2 and has 3 independent elements.) Assume now
that we can find N 2 linearly independent N ×N hermitian operators Ωs,

Ω = {Ω1,Ω2,Ω3 . . . ,ΩN2} (3)

that are “orthogonal” in the sense that

TrΩjΩk = δjk (4)

[Note: Finding such “orthogonal” operators may, in general, be much easier said
than done. But for this exercise there is no difficulty. See R. G. Newton and B.
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Young, Annals of Physics 49, 393 (1968).] We can then expand any N ×N observ-
able Γ as

Γ =
N2

∑
s=1

γsΩs (5)

where the coefficients are
γs = TrΓ Ωs. (6)

We are interested in the particular case Γ ≡ ρop (a density operator) so that Eq. 5
becomes

ρop =
N2

∑
s=1

ρsΩs (7)

whose expansion coefficients are

ρs = Tr ρop Ωs (8)

= ⟨Ωs⟩ (9)

where ⟨Ωs⟩ is the average value of Ωs. The density operator (matrix) is, therefore,
totally characterized by the “complete set” of average values ⟨Ωs⟩, i.e.,

ρ =
N2

∑
s=1

⟨Ωs⟩ Ωs (10)

or in terms of matrix elements

⟨m∣ρ ∣n⟩ =
N2

∑
s=1

⟨Ωs⟩ ⟨m∣Ωs ∣n⟩ . (11)

Theory II

The average value of any observable Γ is expressible in terms of the density operator
ρop as

⟨Γ⟩ = Tr ρopΓ (12)

=
N2

∑
s=1

γsTr ρop Ωs (13)

=
N2

∑
s=1

γs ⟨Ωs⟩ (14)
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where Eq.5 has been used to obtain Eq. 13.

If the “orthogonal” expansion matrices ⟨m∣Ωs ∣n⟩ are traceless, then the identity
matrix Ω0 = νI, where ν is a normalizing factor, can be included as a basis member,
which means that only N2 − 1 non–trivial basis matrices are required.

The proof of this follows from the orthogonality condition Eq. 4. For assume that
Ω0,Ω1,Ω2, . . . ,Ωs form a basis such that Ω1,Ω2, . . . ,Ωs are traceless, i.e.

TrΩk =∑
m

⟨m ∣Ωk∣m⟩ = 0; k ≠ 0. (15)

Then with Ω0 = νI as the remaining member of the basis we can still write

TrΩ0 Ωk = 0; k ≠ 0 (16)

which satisfies the orthogonality requirement. Thereby Ω0 completes the basis.

But Ω0 must still be normalized, i.e.

Tr Ω0 Ω0 = ν2Tr I = 1 (17)

which requires

Ω0 =
I√
Tr I

(18)

in which case from Eqs. 7 and 8 the coefficient

ρ0 = ⟨Ω0⟩ = Tr ρopΩ0 (19)

= Tr ρop
I√
Tr I

(20)

= 1√
Tr I

(21)

where

TrρopI = 1 . (22)

Example: Spin 1/2

A spin 1/2 system (ignoring all degrees of freedom other than spin) can be con-
structed using a basis of the two spin Sz eigenstates ∣1/2⟩ and ∣−1/2⟩ where

Sz ∣±1/2⟩ = ±
h̵

2
∣±1/2⟩ . (23)
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Thus, the density matrix for spin 1/2 is only 2× 2 and consists of the 4 independent
elements,

ρ = ( ⟨1/2 ∣ρop∣1/2⟩ ⟨1/2 ∣ρop∣ − 1/2⟩
⟨−1/2 ∣ρop∣1/2⟩ ⟨−1/2 ∣ρop∣ − 1/2⟩ ) (24)

An orthogonal basis, in the sense of Eq. 4, is quite naturally the matrices,

Ω1 =
1√
2
( 0 1

1 0
) ; Ω2 =

1√
2
( 0 −i
i 0

) ; Ω3 =
1√
2
( 1 0

0 −1 ) (25)

where

σx = ( 0 1
1 0

) ; σy = ( 0 −i
i 0

) ; σz = ( 1 0
0 −1 ) (26)

are the 3 Pauli spin matrices [Matrices of angular momentum operators Sj in the

basis ∣1/2⟩ and ∣−1/2⟩ , as defined in Eq. 23, are Sj = h̵2σj.] Furthermore, the matrices
of Eqs. 25 all have zero trace, so that a trivial unit matrix (properly normalized)

Ω0 =
1√
2
( 1 0

0 1
) (27)

can be added to the basis giving the required N2 = 4 basis matrices. Then using the
expansion in Eq. 10 we have

ρ = ρ0 +
3

∑
j=1

⟨Ωj⟩ Ωj (28)

= [ I

2
+ 1

h̵
(⟨Sx⟩σx + ⟨Sy⟩σy + ⟨Sz⟩σz)] . (29)

By measuring the observables ⟨Sx⟩ , ⟨Sy⟩ , ⟨Sz⟩ we can construct a spin 1/2 density
matrix.

For higher values of angular momentum the problem becomes more complex but the
density matrix reconstruction is still possible.

The Experiment

1. Prepare the computer simulation by double clicking on the .jar file called “spins.
Read the accompanying “Notes for SPINS program.

2. Reset all the counters.
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3. Choose the first source option by selecting its radio button.

4. Choose the field gradient orientation x.

5. Start the flow of particles from the oven.

6. After a few hundred particles have registered in the detectors stop the particle
flow.

7. Determine the average value of spin component Sx.

8. Reset counters and repeat for Sy and then for Sz .

The Analysis

1. Use Eqs. 26 and 29 to construct the density matrix for each source.

2. Calculate the “Information” I for each density matrix,

I = Trρ2 (30)

3. Calculate the “Missing Information” S for each density matrix,

S = −Trρ lnρ . (31)

[How will you calculate S?]

4. Based on the results in 2. and 3. determine which sources are pure and which
are mixed.

5. Discuss what is meant by pure vs. mixed in terms of thermodynamic content.
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