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Abstract

The two body problem is treated classically. The reduced mass is
used to reduce the two body problem to an equivalent one body prob-
lem. Conservation of angular momentum is derived and exploited to
simplify the problem. Spherical coordinates are chosen to respect this
symmetry. The equations of motion are obtained in two different ways:
using Newton’s second law, and using energy conservation. Kepler’s
laws are derived. The concept of an effective potential is introduced.
The equations of motion are solved for the orbits in the case that
the force obeys an inverse square law. The equations of motion are
also solved, up to quadrature (i.e. in terms of definite integrals) and
numerical integration is used to explore the solutions.
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2 INTRODUCTION

In the Central Forces paradigm, we will examine a mathematically tractable
and physically useful problem - that of two bodies interacting with each
other through a force that has two characteristics: (a) it depends only on
the separation between the two bodies, and (b) it points along the line con-
necting the two bodies. Such a force is called a central force. Perhaps the
most common examples of this type of force are those that follow the 1
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behavior, specifically the Newtonian gravitational force between two point
masses or spherically symmetric bodies and the Coulomb force between two
point or spherically symmetric electric charges. Clearly both of these exam-
ples are idealizations - neither ideal point masses or charges nor perfectly
spherically symmetric mass or charge distributions exist in nature, except
perhaps for elementary particles such as electrons. However, deviations from
ideal behavior are often small and can be neglected to within a reasonable
approximation.

These notes discuss two solutions to the central force problem—classical
behavior exemplified by the gravitational interaction and quantum behavior
exemplified by the Coulomb interaction. In this way, we will be able to
explore the strong similarities and the important differences between classical
and quantum physics. Notice the difference in length scale: the archetypal
gravitational example is planetary motion—at astronomical length scales,
the archetypal Coulomb example is the hydrogen atom—at atomic length
scales. We will also consider forces that depend on r in other ways and the
kinds of motion they produce.

One of the unifying themes of this topic is the importance of angular

momentum. You should have covered angular momentum in your introduc-
tory physics course. Before starting these notes, you might find it helpful
to review the definition of angular momentum, how it enters into dynamical
equations (Newton’s laws and kinetic energy, for example), and the law of
conservation of angular momentum.

You should read these notes in conjunction with the assigned readings
in your textbooks. You should note that the development of the classical
central force problem in other textbooks may use a formulation based on La-
grangians, which you will not cover until the Classical Mechanics Capstone.
We will use a different approach in these notes. You are not responsible for
learning the Lagrangian formalism for this course, but your reading in other
books will be clearer if you know that the Lagrangian is defined simply as the

2



difference between kinetic energy and potential energy: L = T − U . And be
sure you don’t confuse the various symbols. Some books use L to represent
the Lagrangian instead of L, L to represent the angular momentum vector,
and l to represent the magnitude of the angular momentum. We will also
use Lu (u = x, y, z) to represent the components of the angular momentum
vector. Some authors use K to represent kinetic energy or V to represent
potential energy.

We will obtain the equations of motion in two equivalent ways, 1) using
Newton’s second law and 2) using energy conservation. The second approach
is slightly more sophisticated in that it exploits more of the symmetries from
the beginning.

3 Systems of Particles

Consider a system of n different masses mi, interacting with each other and
being acted on by external forces. We can write Newton’s second law for the
positions ri of each of these masses with respect to a fixed origin O, thereby
obtaining a system of equations governing the motion of the masses.

m1
d2r1

dt2
= F 1 + 0 + f 12 + f 13 + . . . + f 1n

m2
d2r2

dt2
= F 2 + f 21 + 0 + f 23 + . . . + f 2n (1)

...

mn
d2rn

dt2
= F n + fn1 + fn2 + . . .+ fn(n−1) + 0

Here, we have chosen the notation F i for the net external forces acting on
mass mi and f ij for the internal force of mass mj acting on mi.

In general, each internal force f ij will depend on the positions of the
particles ri and rj in some complicated way, making (1) a set of coupled
differential equations. To solve (1), we first need to decouple the differential
equations, i.e. find an equivalent set of differential equations in which each
equation contains only one variable.

The weak form of Newton’s third law states that the force f 12 of m2

on m1 is equal and opposite to the force f 21 of m1 on m2. We see that
each internal force appears twice in the system of equations (1), once with a
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positive sign and once with a negative sign. Therefore, if we add all of the
equations in (1) together, the internal forces will all cancel, leaving:

n
∑

i=1

mi
d2ri

dt2
=

n
∑

i=1

F i (2)

Notice what a surprising equation (2) is. The right-hand side directs us
to add up all of the external forces, each of which acts on a different mass;
something you were taught never to do in introductory physics.

The left-hand side of (2) directs us to add up (the second derivatives of)
n “weighted” position vectors pointing from the origin to different masses.
We can simplify the left-hand side of (2) if we multiply and divide by the
total mass M = m1 +m2 + . . . +mn and use the linearity of differentiation
to “factor out” the derivative operator:

n
∑

i=1

mi
d2ri

dt2
= M

n
∑

i=1

mi

M

d2ri

dt2
(3)

= M
d2

dt2

(

n
∑

i=1

mi

M
ri

)

(4)

= M
d2R

dt2
(5)

We recognize (or define) the quantity in the parentheses on the right-hand
side of (4) as the position vector R from the origin to the “center of mass”
of the system of particles.

R =
n
∑

i=1

mi

M
ri (6)

With these simplifications, equation (2) becomes:

M
d2R

dt2
=

n
∑

i=1

F i (7)

which has the form of Newton’s 2nd Law for a fictitious particle with mass
M sitting at the center of mass of the system of particles and acted on by
all of the external forces from the original system.
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We can define the momentum of the center of mass as the total mass
times the time derivative of the position of the center of mass:

P = M
dR

dt
(8)

If there are no external forces acting, then the acceleration of the center of
mass is zero and the momentum of the center of mass is constant in time
(conserved).

M
d2R

dt2
=
dP

dt
= 0 (9)

Notice that the entire discussion above applies even if all of the internal
forces are zero f ij = 0, i.e. none of the particles have any way of knowing
that the others are even present. Such particles are called non-interacting.
The position of the center of mass of the system will still move according to
equation (7).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. (TM 9.6) Consider two particles of equal mass m. The forces on the
particles are F 1 = 0 and F 2 = F0ı̂. If the particles are initially at rest
at the origin, find the position, velocity, and acceleration of the center
of mass as functions of time. Solve this problem in two ways, with or
without theorems about the center of mass motion and write a short
description comparing the two solutions.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 REDUCED MASS

So far, we have found one decoupled equation to replace ( 2.1 ). What about
the other n − 1 equations? It turns out that, in general, there is no way to
decouple and solve the other equations. Physicists often say, “The n-body
problem can not be solved in general.” Whenever you are stuck trying to
solve a general problem, it often pays to start with simpler examples to build
up your intuition. We will make several assumptions to simplify this problem
and keep track of them in a list.
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1. Assume that there are no external forces acting.

2. Assume that there are only two masses.

The system of equations ( 2.1 ) reduces to:

m1
d2r1

dt2
= −f 21

(10)

m2
d2r2

dt2
= f 21

Because we added the two equations of motion to find the equation of
motion for the center-of-mass, we are led now to consider subtracting the
equations so as to get r = r2 − r1. Figure 1 shows the basic geometry of
our problem. r1 and r2 are the position vectors of the two masses measured
with respect to an arbitrary coordinate origin O. We call the displacement

2

1r

r

1

x

y

z

r

m 2

m

Figure 1: The position vectors for m1 and m2 and the displacement vector
between them.

between the two masses r. The magnitude of this displacement is r and the
direction is r̂. These quantities can be found from r1 and r2 by:

r = r2 − r1 (11)

r = |r| = |r2 − r1| (12)

r̂ =
r

r
(13)

6



We see that before we subtract, we should multiply the first equation in
(11) by m2 and the second equation by m1 so that the factors in front of
the second derivative are the same. Subtracting the first equation from the
second and regrouping, we obtain:

m1m2
d2

dt2
(r2 − r1) = m1m2

d2

dt2
(r) = (m1 +m2) f 21 (14)

or rearranging:
m1m2

m1 +m2

d2r

dt2
= µ

d2r

dt2
= f 21 (15)

The combination of masses

µ =
m1m2

m1 +m2

(16)

is called the reduced mass. This equation is in the same form as Newton’s
law for a single fictitious mass µ, with position vector r, moving subject to
the force f 21. For the rest of these notes, we will talk about “the mass”,
meaning this fictitious particle. Note that to solve the original two mass
problem we started with, we will need to transform the solutions for r back
to r1 and r2. See Problem 1.1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. The figure below shows the orbit of a “fictitious” reduced mass, µ,
traveling around the center-of-mass at the origin. The position vector r
locates the particle at a particular instant t. Assume that m2 = m1 and
draw on the figure the position vectors for m1 and m2 corresponding to
r. Also sketch the orbits for m1 and m2. Give an example of a physical
situation that might produce this type of motion. (NOTE: Do this
problem “by hand.” Do not use MAPLE or a graphing calculator.)
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Repeat this problem for m2 > m1 and m2 >> m1.

2. Find rsun − rcm and µ for the Sun–Earth system. Compare rsun − rcm

to the radius of the Sun and to the distance from the Sun to the Earth.
Repeat the calculation for the Sun–Jupiter system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 CENTRAL FORCES

Our ultimate goal is to solve the equations of motion for two masses m1 and
m2 subject to a central force acting between them. When you considered this
problem in introductory physics, you assumed that one of the masses was so
large that it effectively remained at rest while all of the motion belonged to
the other object. This assumption works fairly well for the Earth orbiting
around the Sun or for a satellite orbiting around the Earth, but in general
we are going to have to solve for the motion of both objects.

In the introduction, we defined a central force to satisfy two character-
istics. We can now write turn these descriptions of the characteristics into
equations:

(a) a central force depends only on the separation between the two bodies

f 21 = −f 12 = f(r2 − r1) (17)
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(b) it points along the line connecting the two bodies

f 21 = −f 12 = f(r2 − r1) = f(r) r̂ (18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. If a central force is the only force acting on a system of two masses (i.e.
no external forces), what will the motion of the center of mass be?

2. Which of the forces which we found in the Static Fields Paradigm (i.e.

~g, q ~E, q~v × ~B) can be central forces? which cannot?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 ANGULAR MOMENTUM

Consider the angular momentum of the reduced mass system L = r × p =
r × µv. How does L change with time? We have:

dL

dt
=

d

dt
(r × µv) (19)

= r × µv̇ + v × µv (20)

= r × µa (21)

= r × F (22)

= rr̂ × f(r)r̂ (23)

= 0 (24)

(To get from (19) to (20), use the product rule, which is valid for cross
products as long as you don’t change the order of the factors. The second
term in (20) is zero since v×v = 0.) Recall that r×F which occurs in (22)
is called the torque τ . We have shown that in the case of central forces the
time derivative of the angular momentum, and hence the torque, are zero.
Therefore:

τ =
dL

dt
= 0 ⇒ L = constant (25)

i.e. the angular momentum is conserved.
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The force F (r) depends only on the distance of the reduced mass from
the center of mass and not on the orientation of the system in space. There-
fore, this system is spherically symmetric; it is invariant (unchanged) under
rotations. Noether’s theorem states that whenever the laws of physics are
invariant under a particular motion or other operation, there will be a cor-
responding conserved quantity. In this case, we see that the conservation
of angular momentum is related to the invariance of the physical system
under rotations. Noether’s theorem, in general, is most easily discussed us-
ing Lagrangian techniques. You will see this again the Classical Mechanics
Capstone.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. Which of the equations in the derivation of (19)–(24) are valid only for
central forces, and which are true more generally?

2. (Challenging) What invariances of physics are related to conservation
of linear momentum and conservation of energy?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 COORDINATES

The time has come to choose a coordinate system. We have argued that
the problem is spherically symmetric in nature. Therefore, it will be to our
advantage to use spherical coordinates, defined by:

x = r sin θ cosφ (26)

y = r sin θ sinφ (27)

z = r cos θ (28)

(see Figure 2), rather than the more comfortable Cartesian coordinates x, y,
and z.

In fact, in the present classical mechanics context, we can do even better.
For a central force:

F = f(r) r̂ (29)
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θ

x

z

r

r

Spherical Coordinates

y

x=r sin θ cos φ
y=r sin θ sin φ
z=r cos θ

(r,  ,  )θ φ
φ

θ

Figure 2: Spherical Coordinates.

the force, and hence the acceleration, are in the radial direction. Therefore,
the path of the motion (orbit) will be in the plane determined by the position
vector r and velocity vector v of the reduced mass at any one moment of
time. Since there is never a component of force out of this plane, the sub-
sequent motion must remain in the plane. In this plane, choose plane polar
coordinates:

x = r cosφ (30)

y = r sinφ (31)

Notice that many textbooks choose to call the angle of plane polar coordi-
nates θ. See Practice Problem 1.3 for the reason that we choose to call the
angle φ.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Problems

1. Convince yourself that the plane of the orbit is perpendicular to the
angular momentum vector L.

2. Show that a central force is always conservative. Find the scalar po-
tential U corresponding to the central force F = f(r) r̂ and show that
it depends only on the distance from the center of mass U = U(r).

3. Show that the plane polar coordinates we have chosen are equivalent
to spherical coordinates if we make the choices:

(a) The direction of z in spherical coordinates is the same as the
direction of L.

(b) The θ of spherical coordinates is chosen to be π/2, so that the
orbit is in the equatorial plane of spherical coordinates.

Some textbooks argue that you can obtain plane polar coordinates in
terms of r and the polar angle θ by taking spherical coordinates (26)–
(28) and making the choice dφ = 0. Why is this choice actually mis-
leading? Hint: In spherical coordinates, what is the range of θ? These
textbooks label the angle θ because this is the most common convention
for polar coordinates alone. However, if you do this, polar coordinates
do not correspond in any nice way to spherical coordinates. Because
I want you to see the relationship between classical and quantum me-
chanics and because the quantum version of central forces will require
the use of spherical coordinates, we will call the polar coordinate angle
φ.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 VELOCITY & ACCELERATION

Newton’s Laws require a knowledge of velocity and acceleration. With our
choice of polar coordinates:

x = r cosφ (32)

y = r sinφ (33)
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we must deal with the problem of how to compute velocity and acceleration
as time derivatives of the position vector r in terms of the coordinates r and
φ. A difficulty arises because r̂ and φ̂ are not independent of position and
therefore are not independent of time. This problem does not present itself
in Cartesian coordinates because ı̂, ̂, and k̂ are independent of position. We
can exploit this Cartesian independence to help us in polar coordinates. r̂

and φ̂ are given, in terms of ı̂ and ̂, by

r̂ = cosφ ı̂ + sinφ ̂ (34)

φ̂ = − sinφ ı̂ + cosφ ̂ (35)

j

r

φ

φ

x

y

r
i

Figure 3: The relationship between unit vectors in polar coordinates (r̂, φ̂)
and unit vectors in Cartesian coordinates (ı̂, ̂).

You should recognize this basis change as a rotation performed on the ı̂, ̂

basis. As Figure 3 shows:
(

r̂

φ̂

)

=

(

cosφ sinφ
− sinφ cosφ

)(

ı̂

̂

)

= R(φ)

(

ı̂

̂

)

(36)

Using the chain rule, the general velocity vector is given by:

v =
dr

dt
=

d

dt
(rr̂) =

dr

dt
r̂ + r

dr̂

dt
(37)

To evaluate (37), we need the derivatives of r̂ (and φ̂) with respect to time.
Using the definitions in (36) above, we obtain:

dr̂

dt
=

d

dt
(cosφı̂ + sinφ̂) = − sinφ

dφ

dt
ı̂ + cosφ

dφ

dt
̂ =

dφ

dt
φ̂ (38)
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dφ̂

dt
=

d

dt
(− sinφı̂ + cosφ̂) = − cosφ

dφ

dt
ı̂ − sinφ

dφ

dt
̂ = −dφ

dt
r̂ (39)

Combining this with equation (37) gives:

v = ṙr̂ + rφ̇ φ̂ (40)

Notice that we have used the convenient notation of putting a dot over a
symbol to denote time derivative.

Taking another derivative of (40) with respect to time shows that the
acceleration is given by:

a = v̇ = r̈ =
(

r̈ − rφ̇2
)

r̂ +
(

rφ̈+ 2ṙφ̇
)

φ̂ (41)

(40) can be used to show that the kinetic energy T of the reduced mass in
polar coordinates is given by:

T =
1

2
µ v2 =

1

2
µv · v =

1

2
µ (ṙ2 + r2φ̇2) (42)

Similarly, the magnitude of the angular momentum L of the reduced mass
µ is given in polar coordinates by:

|L| = |r × µv| = l = µr2φ̇ (43)

Since the angular momentum is a constant in central force problems, it’s
magnitude l is also constant. Therefore (43) can be used to rewrite differential
equations, getting rid of φ̇’s in favor of the variable r and the constant l.

Kepler’s second law says that the areal velocity of a planet in orbit is
constant in time. This is equivalent to equation (43). To see why, read in
section 8.3 of Marion and Thornton, page 294, from equation 8.10 to the
bottom of the page.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Work through the steps deriving equations (41), (42), and (43) from
(40).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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9 EQUATIONS OF MOTION: F = µa

The problem is now to the point where we can write the equations of motion
in a form we can solve. However, the importance of the preceding sections
cannot be stressed enough. The strategies that we used are important to the
success of problem solving in many complicated physics situations. Drawing
a picture, exploiting symmetries, choosing a convenient origin, and using the
most appropriate coordinate system all combine to make the analysis as easy
as possible. These and other tricks should always be regarded as a good
beginning to any problem.

Newton’s second law, reduced and modified for our specific problem is:

f(r)r̂ = µ r̈ = µ
(

(r̈ − rφ̇2)r̂ + (rφ̈+ 2ṙφ̇)φ̂
)

(44)

The vector equation breaks up, in polar coordinates, into two coupled differ-
ential equations for r(t) and φ(t):

f(r) = µ (r̈ − rφ̇2) (45)

0 = µ (rφ̈+ 2ṙφ̇) (46)

Equation (46) is just the polar coordinate statement of angular momen-
tum conservation, which we have already discussed, i.e.:

0 = r µ (rφ̈+ 2ṙφ̇) =
d

dt

(

µ r2φ̇
)

=
dl

dt
(47)

(To derive verify the equalities in (47) it is easiest to work from right to left!)
Therefore

µr2φ̇ = l = constant (48)

(48) can be solved for φ̇ and used in (45) to obtain a messy, second order
ODE for r(t):

r̈ =
l2

µ2r3
+

1

µ
f(r) (49)

In principle, we could now insert the particular form of f(r) we are con-
cerned with, solve equation (49) for r as a function of t, and insert this
value in (48) and solve for φ(t). We would then have solved the equations of
motion for r, and φ, parameterized by the time t. In practice, for any but
the simplest forms of f(r), it is impossible to solve the differential equations
analytically. Computers to the rescue! On Day 4, you will use a Maple work-
sheet which will allow you to explore numerical solutions for some important
physical examples.
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10 SHAPE OF THE ORBIT

If we are only interested in the shape of the orbit, we can do something
simpler than solving the equations of motion for r and φ as functions of t;
we can solve for the shape of the orbit, i.e. instead of using the variable t as
a parameter in (49), we will use the variable φ and solve for r(φ). To do this,
we need to change the time derivatives into φ derivatives.

d

dt
=
dφ

dt

d

dφ
= φ̇

d

dφ
=

ℓ

µr2

d

dφ
(50)

It turns out that the differential equation which we obtain will be much
easier to solve if we also change independent variables from r to

u = r−1 (51)

(There is no way that you could guess this, yourself.) Therefore,

dr

dt
=

ℓ

µr2

dr

dφ
= − ℓ

µ

d r−1

dφ
= − ℓ

µ

du

dφ
(52)

(To verify the second equality, work from right to left.) Then the second
derivative is given by

d2r

dt2
=

d

dt

dr

dt
=
ℓ

µ
u2 d

dφ

(

− ℓ

µ

du

dφ

)

= − ℓ2

µ2
u2 d

2u

dφ2
(53)

Plugging (51) and (53) into (49), dividing through by u2, and rearranging,
we obtain the orbit equation

d2u

dφ2
+ u = − µ

ℓ2
1

u2
f

(

1

u

)

(54)

For the special case of inverse square forces f(r) = −k/r2 (spherical
gravitational and electric sources), it turns out that the right-hand side of
(54) is constant so that the equation is particularly easy to solve. First
solve the homogeneous equation (with f(r) = 0), which is just the harmonic
oscillator equation with general solution

uh = A cos(φ+ δ) (55)
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Add to this any particular solution of the inhomogeneous equation (with
f(r) = −k/r2). By inspection, such a solution is just

up =
µ k

ℓ2
(56)

so that the general solution of (54) for an inverse square force is

r−1 = u = uh + up = A cos(φ+ δ) +
µ k

ℓ2
(57)

Then solving for r in (57) we obtain

r =
1

µk
ℓ2

+ A cos(φ+ δ)
=

ℓ2

µk

1 + A′ cos(φ+ δ)
(58)

You can explore how the graph of this equation depends on the various
parameters using the Maple worksheet conics.mws

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Go through all the steps in the derivation of (54) from (49). (49)
is the same as equation 8.18 in section 8.4 on page 296 of Marion
and Thornton; an alternative derivation of (54) can be found following
equation 8.18. Use whichever technique is easiest for you to follow, but
make sure you understand at least one. This kind of change of variables
is very common in physics.

2. How do the physical constants in (58) correspond to the mathematical
constants: amplitude α, phase δ, and the eccentricity ǫ, from the Maple
worksheet conics.mws?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 EQUATIONS OF MOTION: E = T + U

Another theoretical tool we can use to arrive at an equation for the orbit
is conservation of energy. The central force F is conservative and can be

17



derived from a potential U(r) which depends only on the distance from the
center of mass (see practice problem 1.2):

F = −∇U = −∂U(r)

∂r
(59)

The statement of energy conservation:

E = T + U (60)

becomes, using (42), (43), and (59):

E =
1

2
µ ṙ2 +

1

2

l2

µr2
+ U(r) (61)

(61) can be solved for ṙ to give:

ṙ = ±
√

2

µ
(E − U(r)) − l2

µ2r2
(62)

(62) is an equivalent alternative to (49) as an equation of motion for r(t).
You might be surprised that (62) is a first order differential equation, whereas
(49) is second order. This means that only one initial condition is required
for the solution of (62) whereas two are needed for the solution of (49).
There is nothing surprising going on here. We have already provided the
extra information (the extra initial condition) by specifying the constant
total energy E.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. (Challenging) Show that the equation of motion derived from Newton’s
Law (49) is equivalent to the equation of motion derived from energy
conservation (62). Hint: Multiply (49) by 2ṙ dt and integrate both
sides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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12 EVERYTHING ELSE

You should now work through sections 8.4-8.7 of Taylor. Pay particular
attention to the concept of the effective potential.

There are many areas left to explore if you are interested: questions of
the stability of orbits under perturbations, the precession of the orbit, and
whether it is open or closed. There are many interesting examples, even
within our solar system, that show the varied and unique outcomes of cen-
tral force interactions: Lagrange points, resonant orbits, horseshoe orbits,
to name a few. There are also other types of central forces. The repul-
sive inverse square force was very important to early atomic experiments.
Rutherford bombarded a lattice of gold with alpha particles (helium nuclei).
The repulsive electrostatic interaction can be handled easily by our preced-
ing analysis. The theory fit experiment well until the alpha particle energies
became high enough to overcome the effective potential and hit the nucleus
head-on.

Many of the ideas in our analysis are handled nicely by the Lagrangian
formalism which you will study in the Classical Mechanics Capstone. La-
grangian mechanics provides yet another starting point for obtaining the
equations of motion. The ideas of symmetry and conservation are more
easily recognized and handled within that context, which proves to be very
powerful in more complicated situations. When you reach that point, remem-
ber some of the techniques we used here and then appreciate the simplicity
and beauty provided by the new viewpoint.
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QUANTUM CENTRAL FORCES

Abstract

The Schrödinger equation in a central potential is examined. The
separation of variables procedure is used to turn this partial differential
equation into a set of ordinary differential equations. The angular
equations are solved, first for a particle confined to a ring and then for
a particle confined to a sphere, thereby building up, one dimension at
a time, toward the eigenstates of the hydrogen atom. Special attention
is paid to linear combinations of states and time-dependent states.

The properties of the spherical harmonics are explored, including
a brief introduction to angular-momentum raising and lowering op-
erators. The relationship of spherical harmonics to spin 1 systems is
discussed. The eigenstates on the surface of a sphere are shown to be
the same as the rigid rotor problem and the properties of rotational
spectra are discussed.

The radial equation is solved and the properties of the eigenstates
of the (unperturbed) hydrogen atom are explored.

13 INTRODUCTION

We now begin our analysis of the central force problem in quantum mechan-
ics. We will find that there are some similarities and some differences between
the handling of this problem in classical mechanics and quantum mechanics.
Concepts such as acceleration or Newton’s third law have no counterpart in
quantum physics. However, we shall find that reduction of the two-body
problem to a fictitious one-body problem is also a characteristic of the quan-
tum analysis. And we will again find that angular momentum is a critical
aspect of our description of the motion of the system, related to spherical
symmetry.

As we did in analyzing our classical central force problem, we again as-
sume a two-particle system in which the only interaction is the mutual in-
teraction of the two particles. We assume that this interaction depends only
on the separation distance between the particles and not on any angle or
orientation in space. In this case, as in the classical problem, we will find
that the angular momentum is a constant of the motion, but in quantum
mechanics angular momentum (like energy) is quantized.
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As always in quantum mechanics, we begin with Schrödinger’s equation

HopΨ = ih̄
∂Ψ

∂t

14 Reduced Mass

It is helpful to consider briefly how the quantum two-body problem separates
into an equation governing the center of mass and an equation describing the
system around the center of mass, comparing this process to the classical
problem. The quantum two-body problem in three dimensions is very messy,
but all the essential features of the calculation show up in a simple one-
dimensional model. So, for simplicity, let’s consider a system of two particles,
m1 and m2, lying on a line at positions x1 and x2, and let the interaction
between the particles be represented by a potential energy U that depends
only on x = x1 − x2, the separation distance between the particles. Don’t
worry about how the particles can get past each other on the line—this is a
simple toy model; just imagine that they can pass right through each other.

Our first job, as always, is to identify the Hamiltonian Hop for the system.
Because energies are additive, the kinetic part of the Hamiltonian is just the
sum of the kinetic parts for two individual particles and the potential U(x)
describes the interaction between them. Therefore the Hamiltonian is

Hop = − h̄2

2m1

∂2

∂x2
1

− h̄2

2m2

∂2

∂x2
2

+ U(x) (63)

and the wave function Ψ is a function of the positions of both particles (and
of course time) Ψ = Ψ(x1, x2, t).

Inspired by our experience with classical two-body systems, we will try
rewriting the Hamiltonian (63) in terms of the center-of-mass coordinate X,
given by

X =
m1x1 +m2x2

m1 +m2

(64)

and the relative coordinate x. We will use the chain rule of calculus to
transform the partial derivatives in equation (63) to derivatives with respect
to x and X. (Please see Appendix A , especially the worked example on
plane polar coordinates.) The transformations for first derivatives are:

∂

∂x1

=
∂x

∂x1

∂

∂x
+
∂X

∂x1

∂

∂X
=

∂

∂x
+

m1

m1 +m2

∂

∂X
(65)
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∂

∂x2

=
∂x

∂x2

∂

∂x
+
∂X

∂x2

∂

∂X
= − ∂

∂x
+

m2

m1 +m2

∂

∂X
(66)

It is important to note that we cannot simply write equations (65–66) for the
second derivative, which is what we need for the Hamiltonian (63). To find
the second derivative, we must apply the first derivative rules (65–66) twice:

∂2

∂x2
1

Ψ =
∂

∂x1

∂

∂x1

Ψ (67)

=

(

∂

∂x
+

m1

m1 +m2

∂

∂X

)(

∂

∂x
+

m1

m1 +m2

∂

∂X

)

Ψ (68)

=
∂2

∂x2
Ψ +

2m1

m1 +m2

∂2

∂x∂X
Ψ +

(

m1

m1 +m2

)2
∂2

∂X2
Ψ (69)

∂2

∂x2
2

Ψ =
∂

∂x2

∂

∂x2

Ψ (70)

=

(

∂

∂x
+

m1

m1 +m2

∂

∂X

)(

∂

∂x
+

m1

m1 +m2

∂

∂X

)

Ψ (71)

=
∂2

∂x2
Ψ − 2m1

m1 +m2

∂2

∂x∂X
Ψ +

(

m1

m1 +m2

)2
∂2

∂X2
Ψ (72)

Substituting into the Hamiltonian (63), we obtain for Schrödinger’s equation

{

− h̄2

2µ

∂2

∂x2
− h̄2

2(m1 +m2)

∂2

∂X2
+ U(x)

}

Ψ(X, x, t) = ih̄
∂

∂t
Ψ(X, x, t) (73)

By transforming to these coordinates, the middle terms in equations (69)
and (72) have canceled, enabling us to separate the dependence on x from
the dependence on X. We can now write

Ψ(x,X, t) = ψM(X)ψµ(x)T (t) (74)

After a separation of variables procedure (see Appendix B ) on equation (74),
we find that the ordinary differential equation governing the variable X has
a simple, recognizable form (see Problem 14.3b). The solution has the same
form as the free-particle solution to the Schrödinger equation (also called the
plane-wave solution to the equation)

ψM(X) = eiPXX/h̄ (75)
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where PX represents the momentum associated with the motion of the cen-
ter of mass. All observables in quantum mechanics involve the probability
density, i.e. terms of the form Ψ∗Ψ, so if we are evaluating observables associ-
ated with the relative motion, the pure phase contribution from the center-of
mass has no effect. We can therefore ignore the center-of-mass motion and
concentrate only on the relative motion.

We have arrived at a conclusion in the quantum analysis of the two-
body problem that is similar to our analysis of the classical problem (but for
different reasons). We have again replaced the more complicated two-body
system with a fictitious one-body system, involving the relative coordinate
and the reduced mass. Once we have solved the problem and found ψµ(x)
and T (t), we can then reverse the procedure in this section to find the wave
function Ψ(x1, x2, t) describing the original two-body system. The analysis
in three dimensions is the same, except that we must do the calculation three
times, once for each of the rectangular coordinates.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Problems

1. Work through the steps of the chain rule to show that equation (73)
follows from equation (63)

2. Where does the mass of a particle appear in Schrödinger’s equation?
In equation (73), what is the mass associated with the center-of-mass
coordinate X? what is the mass associated with the relative position
coordinate x? Does this make sense?

3. Use the separation of variables procedure in Appendix B to break equa-
tion (73) up into three ordinary differential equations.

(a) How many separation constants do you have? Is this the number
you expect? Explain.

(b) Solve the equations for ψM(X). What are the possible eigenval-
ues?

(c) Give an appropriate name to the eigenvalues of the (unsolved)
equation for ψµ(x).

(d) Solve the equation for T (t). Discuss how the energy E of the
system depends on the separation constants.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 SCHRÖDINGER’S EQUATION IN SPHER-

ICAL COORDINATES

Schrödinger’s equation is

HopΨ = ih̄
∂Ψ

∂t
(76)

For one-dimensional waves, the Hamiltonian is

Hop = − h̄2

2µ

∂2

∂x2
+ U(x) (77)

In a central potential the role of the second derivative with respect to x is
played by the Laplacian operator ∇2 and the potential energy is a function
only on the separation variable U = U(r), making the Hamiltonian:

Hop = − h̄2

2µ
∇2 + U(r) (78)

Because of the parameter r, this problem is clearly asking for the use of
spherical coordinates, centered at the origin of the central force.

In rectangular coordinates, we know that the Laplacian ∇2 is given by:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(79)

What is the Laplacian in spherical coordinates? Since ∇2 def
= ~∇ · ~∇, we can

combine the spherical coordinate definitions of gradient and divergence

~∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂ (80)

~∇ · ~v =
1

r2

∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ

∂φ
(81)

to obtain:

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
(82)
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For convenience, we will give the combination of angular derivatives which
appears in (82) a new name:

L2
op

def
= −h̄2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(83)

Notice the conventional factor of −h̄2. h̄ is a constant, 1.05459 × 10−27 erg-
sec = 6.58217 × 10−16 eV-sec. Notice that the dimensions of h̄ are those of
angular momentum. With this definition, (82) becomes:

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

− 1

h̄2r2
L2

op (84)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Review the definition of spherical coordinates. Remember that in our
conventions θ is always the angle measured from the z axis and ranges
from 0 to π. φ is the angle in the x-y plane measured from the x axis
towards the y axis and ranges from 0 to 2π.

2. Review the definition of gradient and divergence in spherical coordi-
nates. See Griffiths E&M, Appendix A, for a nice derivation. What is
the fastest place to look-up expressions for gradient, etc. in spherical
and cylindrical coordinates?

3. Using the definition of gradient (80) and divergence (81) in spherical
coordinates, derive equation (82).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 SEPARATION OF VARIABLES

We will use the “separation of variables” procedure (see Appendix B ) on
the Schrödinger equation in a central potential. Most of the calculation will
involve using this procedure on the Laplacian operator. Since the Laplacian
comes up in almost all physics problems with spherical symmetry, you will
find yourself using the results of this section many times in your career.
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Because there are several spatial dimensions, the procedure requires a
number of rounds, each consisting of the same set of six steps. In the first
round, we will separate out an ordinary differential equation in the time
variable.

Step 1: Write the partial differential equation in appropriate coordinate
system. For Schrödinger’s equation in any potential we have:

HopΨ = ih̄
∂Ψ

∂t
(85)

Step 2: Assume that the solution Ψ can be written as the product of
functions, at least one of which depends on only one variable, in this case t.
The other function(s) must not depend at all on this variable, i.e. assume

Ψ(r, θ, φ, t) = ψ(r, θ, φ)T (t) (86)

Plug this assumed solution (255) into the partial differential equation
(85). Because of the special form for Ψ, the partial derivatives each act on
only one of the factors in Ψ.

(Hopψ)T = ih̄ψ
dT

dt
(87)

Any partial derivatives that act only on a function of a single variable may
be rewritten as total derivatives.

Step 3: Divide by Ψ in the form of (255).

1

ψ
(Hopψ) = ih̄

dT

dt

1

T
(88)

Step 4: Isolate all of the dependence on one coordinate on one side of
the equation. Do as much algebra as you need to do to achieve this. In our
example, notice that in (257), all of the t dependence is on the right-hand
side of the equation while all of the dependence on the spatial variable is on
the other side. In this case, the t dependence is already isolated, without any
algebra on our part.

Step 5: Now imagine changing the isolated variable t by a small amount.
In principle, the right-hand side of (257) could change, but nothing on the
left-hand side would. Therefore, if the equation is to be true for all values
of t, the particular combination of t dependence on the right-hand side must
be constant. By convention, we call this constant E.

1

ψ
(Hopψ) = ih̄

dT

dt

1

T
def
= E (89)
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In this way we have broken our original partial differential equation up into a
pair of equations, one of which is an ordinary differential equation involving
only t, the other is a partial differential equation involving only the three
spatial variables.

1

ψ
Hopψ = E (90)

ih̄
dT

dt

1

T
= E (91)

The separation constant E appears in both equations.
Step 6: Write each equation in standard form by multiplying each equa-

tion by its unknown function to clear it from the denominator.

Hopψ = Eψ (92)

dT

dt
= − i

h̄
ET (93)

Notice that (261) is an eigenvalue equation for the operator Hop. You may
never have thought of the derivation of this “time independent version of the
Schrödinger equation” from the Schrödinger equation as just a simple exam-
ple of the separation of variables procedure. At the moment, the eigenvalue
E could be anything. Much of the rest of the Paradigm will be directed
toward finding the possible values of E!

Now we must repeat the steps until each of the variables has been sepa-
rated out into its own ordinary differential equation. In the next round, we
will isolate the r dependence.

Step 1: Since we want to isolate the r dependence, we must rewrite Hop

to show the r dependence explicitly using (84)

− h̄2

2µ

[

1

r2

∂

∂r

(

r2 ∂

∂r

)

− 1

h̄2r2
L2

op

]

ψ + U(r)ψ = Eψ (94)

Step 2: Assume ψ(r, θ, φ) = R(r)Y (θ, φ).

− h̄2

2µ

[

1

r2

d

dr

(

r2dR

dr

)

Y − 1

h̄2r2
R(L2

opY )

]

+ U(r)RY = ERY (95)

Step 3:

− h̄2

2µ

[

1

r2

d

dr

1

R

(

r2dR

dr

)

− 1

h̄2r2

1

Y
(L2

opY )

]

+ U(r) = E (96)
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Step 4: To isolate the r dependence we must first clear the r dependence
from the angular term (involving angular derivatives in Lop and angular
functions in Y ). To do this, we need to multiply (96) by r2 to clear this
factor out of the denominators of the angular pieces. Further rearranging
(96) to get all of the r dependence on the right-hand side, we obtain:

− 1

h̄2

1

Y
(L2

opY ) = − d

dr

(

r2dR

dr

)

1

R
− 2µ

h̄2 (E − U(r))r2 (97)

Step 5: In this case, I have called the separation constant A.

− 1

h̄2

1

Y
(L2

opY ) = − d

dr

(

r2dR

dr

)

1

R
− 2µ

h̄2 (E − U(r))r2 def
= A (98)

In principle, A can be any complex number.
Step 6: Rearranging (98) slightly, we obtain the radial and angular

equations in the more standard form:

d

dr

(

r2dR

dr

)

+
2µ

h̄2 (E − U(r))r2R + AR = 0 (99)

L2
opY + h̄2AY = 0 (100)

Notice that the only place that the central potential enters the set of differ-
ential equations is in the radial equation (99). (99) is not yet in the form
of an eigenvalue equation since it contains two unknown constants E and A.
(100) is an eigenvalue equation for the operator L2

op with eigenvalue h̄2A; it
is independent of the form of the central potential.

In the last round, we must separate the θ dependence from the φ de-
pendence. I will leave this as an important Practice Problem. The answer
is:

sin θ
d

dθ

(

sin θ
dP

dθ

)

− A sin2 θP −BP = 0 (101)

d2Φ

dφ2
+BΦ = 0 (102)

(102) is an eigenvalue equation for the operator d2/dφ2 with eigenvalue B.
(101) is not yet in the form of an eigenvalue equation since it contains two
unknown constants A and B.
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We started with a partial differential equation in four variables and we
ended up with four ordinary differential equations (262), (99), (101), (102)
by introducing three separation constants (E, A, and B). You should al-
ways get one fewer separation constant than the number of variables you
started with; each separation constant should appear in two of the final set
of equations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Work carefully through all of the derivations in this section.

2. Use the separation of variables procedure on (100) to obtain (101) and
(102).

3. Consider the problem of the motion of a quantum particle of mass µ
confined to move on a ring of radius r0. Redo the separation of variables
procedure in this section, assuming that r = r0 is a constant and θ = π

2

is a constant so that Ψ = T (t)Φ(φ) only. How do the equations you
get differ from the equations of this section? The solutions of these
equations will be the subject of the next section.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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17 Motion on a Ring

To begin our study of the angular properties of the solutions of Schrödinger’s
equation, we consider the motion of a quantum particle of mass µ confined
to move on a ring of constant radius r0. As with classical orbits, let’s assume
that the ring lies in the x, y plane, so that in spherical coordinates θ =
π
2

=const. Then, since Ψ is independent of r and θ, derivatives with respect
to those variables give zero and Schrödinger’s equation reduces to

HopΨ = − h̄2

2µ

1

r2
0

∂2

∂φ2
Ψ + U(r0)Ψ = ih̄

∂Ψ

∂t
(103)

Redoing the separation of variables procedure of the last section (see
Practice Problem 1.3), and assuming that Ψ = T (t)Φ(φ) only, we obtain the
following separated ordinary differential equations

d2Φ

dφ2
= −2I

h̄2 (E − U(r0)) Φ (104)

dT

dt
= − i

h̄
ET (105)

where we have used the substitution µr2
0 = I, in which I would be the

moment of inertia of a classical particle of mass µ traveling in a ring about
the center-of-mass.

Alternatively, we could have obtained equations (104) and (105) from the
results of our original separation of variables procedure (262), (99), (101),
(102), by restricting the variables r and θ to the equator, noticing that the
functions R and P are therefore constant, and that equation (99) reduces to:

A =
2µ

h̄2 (E − U(r0)) r
2
0

and equation (101) then reduces to:

B = −2µ

h̄2 (E − U(r0)) r
2
0

Since the coefficient of Φ on the right-hand-side of (104) is a constant

√

2I

h̄2 (E − U(r0)) = constant (106)

30



the solutions of the Φ equation (104), are

Φm(φ)
def
= N eimφ (107)

where

m = ±
√

2I

h̄2 (E − U(r0)) (108)

and N is a normalization constant.
There is no ”boundary” on the ring, on which we can impose bound-

ary conditions. However, there is one very important property of the wave
function that we can invoke: it must be single-valued. The variable φ is
geometrically an angle, so that φ + 2π is physically the same point as φ. If
we go once around the ring and return to our starting point, the value of the
wave function must remain the same. Therefore the solutions must satisfy
the periodicity condition Φm(φ+ 2π) = Φm(φ). This is impossible unless m
is real so that the solutions are oscillatory, i.e. E − U(r0) > 0. Furthermore,
the solutions must have the correct period, i.e.

m ∈ {0,±1,±2, . . .} (109)

The quantum numberm is called the azimuthal or magnetic quantum number.
Note that the solution permits both positive and negative values of m as well
as zero.

Solving (108) for the possible eigenvalues of energy, we obtain

Em =
h̄2

2I
m2 + U(r0) (110)

For this simplified ring problem, we can choose the potential energy U(r0)
to be zero, but we will have to remember that we should not make this
choice when we are working on the full hydrogen atom problem. There is
a degeneracy that arises in this calculation. Note that the wave functions
corresponding to +|m| and −|m| have the same energy but represent (as we
will see) different states of the motion.

As usual, we choose the normalization N in (107) so that, if the particle is
in an eigenstate, the probability of finding it somewhere on the ring is unity.

1 =

∫ 2π

0

Φ∗
m(φ) Φm(φ) r0dφ =

∫ 2π

0

N∗e−imφNeimφ r0dφ = 2πr0|N |2 (111)

⇒ N =
1√
2πr0

(112)
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This is a one-dimensional problem, just like the problem of a particle-in-
a-box which you solved in the Waves Paradigm (now in φ instead of x) and
the solutions have the same oscillatory form. Everything that you learned
in that Paradigm is immediately applicable here. As in that problem, the
energy eigenvalues are discrete because of a boundary condition. The only
difference is that the boundary condition appropriate to this problem is pe-
riodicity, since φ is a physical angle, rather than Ψ(x) = 0 at the boundaries,
appropriate to an infinite potential.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Show that (107) and (108) are solutions of (104).

2. Why is there a factor of r0 in the integral in (111)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 ANGULAR MOMENTUM OF THE PAR-

TICLE ON A RING

Classically, a particle moving in a circle has an angular momentum perpen-
dicular to the plane of the circle, which for a ring in the x, y–plane would be
in the z direction. Since angular momentum is defined by ~L = ~r×~p, we have
Lz = xpy − ypx. To make the transition to quantum mechanics, we replace
px and py by their operator equivalents:

Lz = xpy − ypx ⇒ x
h̄

i

∂

∂y
− y

h̄

i

∂

∂x
(113)

Using a straightforward application of the chain rule (see Practice Problems,
below) to replace the Cartesian partial derivatives with their polar represen-
tations, we obtain

L̂z =
h̄

i

∂

∂φ
(114)

The effect of operating on the ring eigenfunctions with this operator is:
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h̄

i

∂

∂φ

(

1√
2π

eimφ

)

= mh̄

(

1√
2π

eimφ

)

(115)

The energy eigenfunctions Φm(φ) are thus also eigenfunctions of L̂z with
eigenvalues mh̄ . Because the Φm(φ) are eigenfunctions of both energy and
angular momentum, we can make simultaneous determinations of the eigen-
values of energy and angular momentum.

Considering the angular momentum helps us understand the degeneracy
of the eigenfunctions with respect to energy. The ±m degeneracy of the
energy eigenstates corresponds to Lz = +mh̄ and Lz = −mh̄. That is,
the two degenerate states represent particles rotating in opposite directions
around the ring.

For a classical particle rotating in a circular path in the x, y-plane, the
kinetic energy is T = 1

2
Iω2 = L2

z/2I , where I is the rotational inertia
(moment of inertia). The rotational inertia of a single particle of mass µ
moving in a circle of radius r0 is I = µr2

0. The Hamiltonian for the system
is thus

H = T + U =
L2

z

2I
+ U = − h̄2

2µr2
0

∂2

∂φ2
+ U0 (116)

It is apparent from this approach that the energy and the angular momen-
tum have simultaneous eigenvalues because they are commuting operators.
Clearly [L2

z, Lz] = 0, so that E and Lz have the same eigenfunctions. There-
fore, we see that (104) and (115) are the position-space representations of
the eigenvalue equations

Ĥ |m〉 = Em|m〉 (117)

L̂z |m〉 = h̄m |m〉 (118)

Because the Φm are simultaneous eigenstates of both Ĥ and L̂z, it is possible
to make simultaneous measurements of both the energy and the z-component
of angular momentum.

In setting up the problem of the particle on the ring, we constrained the
motion to the x, y-plane, so that the angular momentum vector is in the
z direction. However, according to quantum mechanics (yet another form
of the Heisenberg uncertainty relationships) it is not possible to know the
direction of the angular momentum vector. Our knowledge of the angular
momentum vector is limited to its length and any one component. If the
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vector lies along the z-axis, then we would know all three of its components
(the x and y components being zero). We’ll see how the three-dimensional
problem solves this contradiction.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Using a the chain rule for partial derivatives, show that (113) is indeed
the same as (114), thereby showing that this operator is the quantum
analogue of the z-component of angular momentum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 TIME DEPENDENCE OF RING STATES

We know, from the theory of Fourier series, that we can write any initial
probability distribution, which is necessarily periodic, as a sum of the energy
eigenstates.

Φ(φ) =
∞
∑

m=−∞

cm Φm(φ) =
∞
∑

m=−∞

cm

(

1√
2π r0

eimφ

)

(119)

where, for the probability distribution to be normalized, we must have:

∞
∑

m=−∞

|cm|2 = 1 (120)

To find the time evolution of the eigenstates Φm(φ), we must solve the
t equation (105). Since, for each Φm, we have now found the value of the
constant E = Em, given by (110), we can solve (105) trivially.

T (t) = e−
i

h̄
Emt (121)

A deep theorem in the theory of partial differential equations states that if
you have found an expansion of the initial probability density in terms of the
eigenstates of the Hamiltonian, then the time evolution of that probability
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density is simply obtained by multiplying each eigenstate individually by the
appropriate time evolution.

Φ(φ, t) =
∞
∑

m=−∞

cm Φm(φ) e−
i

h̄
Emt (122)

BE CAREFUL! There are an infinite number of different values for the en-
ergy, depending on the eigenstate of the Hamiltonian. It is incorrect to
multiply the initial state (119) by a single over-all exponential time factor.
Each term in the series gets its own time evolution.

20 Motion on a Sphere

We will now relax the restriction that the mass be confined to the ring,
and instead, let it range over the surface of a sphere of radius r0. The
results of this analysis yield predictions that can be successfully compared
with experiment for molecules and nuclei that rotate more than they vibrate.
For this reason, the problem of a mass confined to a sphere is often called
the rigid rotor problem. Furthermore, the solutions that we will find for
equations (101) and (102), called spherical harmonics, will occur whenever
one solves a partial differential equation that involves spherical symmetry.

For homework, you will write down the Schrödinger equation for a particle
restricted to a sphere and use the separation of variables procedure to obtain
an equivalent set of ordinary differential equations. One of the equations you
obtain will be (102), with solutions exactly as we found them for the ring.
The other equation will be (101) with slightly different labels for the unknown
constants. So, to solve either Schrödinger’s equation for the hydrogen atom
or for a particle restricted to a sphere, we need to solve (101). This will be
the job of the next five sections.

21 Change of Variables

Since we have solved the φ equation (102) and found the possible values of
the separation constant

√
B = m ∈ {0,±1,±2, . . .}, the θ equation becomes

an eigenvalue/eigenfunction equation for the unknown separation constant
A and the unknown function P (θ).
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(

sin θ
∂

∂θ

(

sin θ
∂

∂θ

)

− A sin2 θ −m2

)

P (θ) = 0 (123)

We start with a change of independent variable z = cos θ where z is the
usual rectangular coordinate in three-space. As θ ranges from 0 to π, z ranges
from 1 to −1. We see from Figure 4 that:

θ
1

z

1-z 2

Figure 4: Relationship between z and θ.

√
1 − z2 = sin θ (124)

Using the chain rule for partial derivatives, we have:

∂

∂θ
=
∂z

∂θ

∂

∂z
= − sin θ

∂

∂z
= −

√
1 − z2

∂

∂z
(125)

Notice, particularly, the last equality: we are trying to change variables from
θ to z, so it is important to make sure we change all the θ’s to z’s. Multiplying
by sin θ we obtain:

sin θ
∂

∂θ
= −

(

1 − z2
) ∂

∂z
(126)

Be careful finding the second derivative; it involves a product rule:

sin θ
∂

∂θ

(

sin θ
∂

∂θ

)

=
(

1 − z2
) ∂

∂z

(

(

1 − z2
) ∂

∂z

)

=
(

1 − z2
)2 ∂2

∂z2
− 2z

(

1 − z2
) ∂

∂z
(127)

Inserting (124) and (127) into (123), we obtain a standard form of the
Associated Legendre’s equation:

(

(

1 − z2
) ∂2

∂z2
− 2z

∂

∂z
− A− m2

(1 − z2)

)

P (z) = 0 (128)
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In §22 and §25, we will solve this equation. After we have found the
eigenfunctions P (z), we will substitute z = cos θ everywhere to find the
eigenfunctions of the original equation (123).

22 SERIES SOLUTIONS OF ODE’S

The simplest possible φ–dependence on the ring is, of course, Φ(φ) = constant,
which corresponds in equation (123) to m = 0. We will first find solutions
for this special case, which is known as Legendre’s equation.

(

(

1 − z2
) ∂2

∂z2
− 2z

∂

∂z
− A

)

P (z) = 0 (129)

Let’s use series methods to find a solution of (129), i.e. let’s assume that
the solution can be written as a Taylor series

P (z) =
∞
∑

n=0

an z
n (130)

and solve for the coefficients an. Then we have

dP

dz
=

∞
∑

n=0

an n z
n−1 (131)

d2P

dz2
=

∞
∑

n=0

an n(n− 1) zn−2 (132)

and then plug (130)–(132) into (129) to obtain

0 =
∞
∑

n=0

an n(n−1) zn−2−z2

∞
∑

n=0

an n(n−1) zn−2−2z
∞
∑

n=0

an n z
n−1−A

∞
∑

n=0

an z
n

(133)
In (133), the summation variable n is a dummy variable (just like a

dummy variable of integration). Therefore, in the first sum, we can shift
n→ n+ 2.

∞
∑

n=0

an n(n− 1) zn−2

37



→
∞
∑

n=−2

an+2(n+ 2)(n+ 1)zn

= a−2(−2 + 2)(−2 + 1)z−2 + a−1(−1 + 2)(−1 + 1)z−1 +
∞
∑

n=0

an+2(n+ 2)(n+ 1)zn

=
∞
∑

n=0

an+2(n+ 2)(n+ 1)zn

Pay special attention to what happened to the lower limit of the sum. The
new sum would start at n = −2, but since the factor of (n + 2) in the first
term and the factor of (n+1) in the second term means that these terms are
zero and we can eliminate them from the sum. At the same time, bring any
overall factors of z into the corresponding sums. Finally, since each sum now
has a factor of zn and runs over the same range, group the sums together.

∞
∑

n=−2

an+2 (n+ 2)(n+ 1) zn −
∞
∑

n=0

an n(n− 1) zn − 2
∞
∑

n=0

an n z
n − A

∞
∑

n=0

an z
n(134)

=
∞
∑

n=0

[an+2 (n+ 2)(n+ 1) − an n(n− 1) − 2 an n− Aan] zn = 0(135)

Now comes the MAGIC part. Since (135) is true for all values of z, the
coefficient of zn for each term in the sum must separately be zero, i.e.

an+2 (n+ 2)(n+ 1) − an n(n− 1) − 2 an n− Aan = 0 (136)

and therefore we can solve for an+2 in terms of an

an+2 =
n(n+ 1) +A

(n+ 2)(n+ 1)
an (137)

By plugging successive even values of n into the recurrence relation (137)
allows us to find a2, a4, etc. in terms of the arbitrary constant a0 and suc-
cessive odd values of n allow us to find a3, a5, etc. in terms of the arbitrary
constant a1. Thus, for the second order differential equation (129) we obtain
two solutions as expected. a0 becomes the normalization constant for a solu-
tion with only even powers of z and a1 becomes the normalization constant
for a solution with only odd powers of z. For example:

a2 =
A

2
a0 (138)
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a4 =
6 + A

12
a2 =

(

6 + A

12

)(

A

2

)

a0 etc. (139)

a3 =
2 + A

6
a1 (140)

a5 =
12 + A

20
a2 =

(

12 + A

20

)(

6 + A

12

)

a0 etc. (141)

so that

P (z) = a0

[

A

2
z0 +

(

6 + A

12

)(

A

2

)

z2 + . . .

]

(142)

+ a1

[

2 + A

6
z1 +

(

12 + A

20

)(

2 + A

6

)

z3 + . . .

]

(143)

In general, the solutions of an ordinary linear differential equation can
blow-up only where the coefficients of the equation itself are singular, in this
case at z = ±1, which correspond to the north and south poles θ = 0, π.
But there is nothing special about physics at these points, only the choice of
coordinates is special there. Therefore, we want to choose solutions of (129)
which are regular (non-infinite) at z = ±1. This is an important example of
a problem where the choice of coordinates for a partial differential equation
end up imposing boundary conditions on the ordinary differential equation
which comes from it. Therefore, the infinite series (130) could possibly blow
up at the endpoints z = ±1, but a polynomial could not. So if we choose
the special values for the separation constant A to be A = −ℓ(ℓ + 1) where
ℓ is a non-negative integer, we see from (137) that for n ≥ ℓ the coefficients
become zero and the series terminates in a polynomial. The solutions for
these special values of A are polynomials of degree ℓ, denoted Pℓ, and called
Legendre polynomials.

23 LEGENDRE POLYNOMIALS

It turns out that the Legendre polynomials can also be found from Rodrigues’
formula

Pℓ(z) =
1

2ℓℓ!

dℓ

dzℓ

(

z2 − 1
)ℓ

(144)

(The proof is lengthy, but beautiful. Ask!) Rodrigues’ Formula can be used
to generate solutions quickly. To do this, write

(

z2 − 1
)ℓ

= (z − 1)ℓ(z + 1)ℓ = aℓbℓ (145)
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and use the product rule

dℓ

dzℓ

(

z2 − 1
)ℓ

=

(

dℓaℓ

dzℓ

)

bℓ + ℓ

(

dℓ−1aℓ

dzℓ−1

)(

dbℓ

dz

)

(146)

+
ℓ(ℓ− 1)

2!

(

dℓ−2aℓ

dzℓ−2

)(

d2bℓ

dz2

)

+ ...+ aℓ

(

dℓbℓ

dzℓ

)

where the coefficient of the ith term in the product rule is the binomial
coefficient

(

ℓ

i

)

=

(

ℓ

ℓ− i

)

=
ℓ!

(ℓ− i)! i!
(147)

The first few Legendre polynomials are:

P0(z) = 1 (148)

P1(z) = z (149)

P2(z) =
1

2
(3z2 − 1) (150)

P3(z) =
1

2
(5z3 − 3z) (151)

P4(z) =
1

8
(35z4 − 30z2 + 3) (152)

P5(z) =
1

8
(63z5 − 70z3 + 15z) (153)

There are several useful patterns to the Legendre polynomials:

• The overall coefficient for each solution is conventionally chosen so that
Pℓ(1) = 1. As discussed in the next section, this is an inconvenient

convention that we are stuck with!

• Pℓ(z) is a polynomial of degree ℓ.

• Each Pℓ(z) contains only odd or only even powers of z, depending on
whether ℓ is even or odd. Therefore, each Pℓ(z) is either an even or an
odd function.

• Since the differential operator in (129) is Hermitian (unproven), we
are guaranteed by a deep theorem of mathematics that the Legendre
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polynomials are orthogonal for different values of ℓ (just as with Fourier
series) 1 , i.e.

1
∫

−1

P ∗
k (z)Pℓ(z) dz =

δkℓ

ℓ+ 1
2

(154)

The “squared norm” of Pℓ is just 1/(ℓ+ 1
2
). To normalize each Pℓ(z) it

should be multiplied by
√

ℓ+ 1
2
.

Notice that the differential equation

∂2P

∂z2
− 2z

1 − z2

∂P

∂z
+
ℓ(ℓ+ 1)

1 − z2
P = 0 (155)

is a different equation for different values of ℓ. For a given value of ℓ, you
should expect two solutions of (155). Why? We have only given one. It turns
out that the “other” solution for each value of ℓ is not regular (i.e. it blows
up) at z = ±1. In cases where the separation constant A does not have the
special value l(l + 1) for non-negative integer values of ℓ, it turns out that
both solutions blow up. We discard these irregular solutions as unphysical
for the problem we are solving.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Practice Problems

1. Use Rodrigues’ formula, by hand, to find the first 5 Legendre polyno-
mials.

2. Go through the worksheet legendre.mws. You do not need to turn
anything in. However, there are two things you should get out of this
worksheet:

(a) Get a feel for what the Legendre polynomials look like. There are
some questions in the worksheet to help guide your exploration.

(b) Learn the syntax for writing a “loop” in Maple. There is a dis-
cussion of this in the worksheet. Loops are one of the most useful
of all computer programming techniques.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1One shows this using Rodrigues’ Formula and repeated integration by parts, noting

that the “surface terms” always vanish.
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24 LEGENDRE POLYNOMIAL SERIES

There is a very powerful mathematical theorem which says that any suffi-
ciently smooth function f(z), defined on the interval −1 < z < 1, can be
expanded as a linear combination of Legendre polynomials

f(z) =
∞
∑

ℓ=0

cℓ Pℓ(z) (156)

(This theorem is the analogue of the theorem which says that any sufficiently
smooth periodic function can be expanded in a Fourier series.) You will
have several occasions in physics to expand functions in Legendre polynomial
series, so we will explore the technique in this section.

We can find the coefficients cℓ by taking the inner product of both sides
of (156) in turn with each “basis vector” Pk and using (154). This yields

1
∫

−1

P ∗
k (z) f(z) dz =

1
∫

−1

P ∗
k (z)

∞
∑

ℓ=0

cℓ Pℓ(z) dz (157)

=
∞
∑

ℓ=0

cℓ

1
∫

−1

P ∗
k (z)Pℓ(z) dz (158)

=
∞
∑

ℓ=0

cℓ
δkℓ

ℓ+ 1
2

(159)

=
ck

k + 1
2

(160)

or equivalently

ck =

(

k +
1

2

)

1
∫

−1

P ∗
k (z) f(z) dz (161)

This expression should be compared with the exponential version of a Fourier
series for f(z) on the same interval −1 ≤ z ≤ 1, namely

f(z) =
∞
∑

n=−∞

Cn e
inπz (162)
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where

Cn =
1

2

1
∫

−1

e−inπzf(z) dz (163)

Note the analogous role played by the normalization constants k + 1
2

and 1
2
.

If we had made an unconventional, but more convenient, choice for the nor-
malization for the Legendre polynomials such that the value of the integrals
in (154) were simply δkℓ, then we would not need to carry around the extra
factor of k + 1

2
in (161).

1 Example: Legendre Expansion of ε(z)

Consider the step function

ε(z) = 2 Θ(z) − 1 =

{

+1 (z > 0)
−1 (z < 0)

(164)

where Θ is the Heaviside step function; note that ε(z) is an odd function of
z. Using (161) leads to

cℓ =

(

ℓ+
1

2

)

1
∫

−1

P ∗
ℓ (z) ε(z) dz (165)

= −
(

ℓ+
1

2

)

0
∫

−1

P ∗
ℓ (z) dz +

(

ℓ+
1

2

)

1
∫

0

P ∗
ℓ (z) dz (166)

and each integral in the final expression is an elementary integral of a poly-
nomial. Furthermore, it is easily seen that these two integrals cancel if ℓ is
even, and add if ℓ is odd, so that

cℓ =















0 (ℓ even)

2

(

ℓ+
1

2

)

1
∫

0

P ∗
ℓ (z) dz (ℓ odd)

(167)

These coefficients are easily evaluated on Maple for as many values of ℓ as
desired.
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25 ASSOCIATED LEGENDRE FUNCTIONS

We now return to equation (128) to consider the cases with m 6= 0. We
can solve these equations with (a slightly more sophisticated version of) the
series techniques from them = 0 case. We would again find solutions that are
regular at z = ±1 whenever we choose A = −ℓ(ℓ+ 1) for ℓ ∈ {0, 1, 2, 3, . . .}.
With this value for A, we obtain the standard form of Legendre’s associated
equation, namely

(

∂2

∂z2
− 2z

1 − z2

∂

∂z
+
ℓ(ℓ+ 1)

1 − z2
− m2

(1 − z2)2

)

P (z) = 0 (168)

Recall that this equation was obtained by separating variables in spherical
coordinates. Solutions of this equation which are regular at z = ±1 are called
associated Legendre functions, and turn out to be given by

Pm
ℓ (z) = P−m

ℓ (z) = (1 − z2)m/2 d
m

dzm
(Pℓ(z)) (169)

= (1 − z2)m/2 d
m+ℓ

dzm+ℓ

(

(z2 − 1)ℓ
)

(170)

where m ≥ 0. 2 Note that if z = cos θ, then Pℓ(z) is a polynomial in cos θ,
while

(1 − z2)m/2 = (sin2θ)m/2 = sinmθ (171)

so that Pm
ℓ (z) is a polynomial in cos θ times a factor of sinmθ. Some other

properties of the associated Legendre functions are

• Pm
ℓ (z) = 0 if |m| > ℓ

• P−m
ℓ (z) = Pm

ℓ (z)

• Pm
ℓ (±1) = 0 for m 6= 0 (cf. factor of (1 − z2)m/2)

• Pm
ℓ (−z) = (−1)ℓ−mPm

ℓ (z) (behavior under parity)

•
1
∫

−1

Pm
ℓ (z)Pm

q (z) dz =
2

(2ℓ+ 1)

(ℓ+m)!

(ℓ−m)!
δℓq

The last property shows that for each given value ofm, the Associated Legen-
dre functions form an orthonormal basis on the interval −1 ≤ z ≤ 1. Any
function on this interval can be expanded in terms of anyone of these bases.

2Some authors define P
−m

ℓ
(z) with a different phase.
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26 SPHERICAL HARMONICS

We have found that normalized solutions of the φ equation (102) satisfying
periodic boundary conditions are

Φ(φ) =
1√
2π

eimφ (m = 0,±1,±2, ...) (172)

and normalized solutions of the θ equation (101 which are regular at the
poles are given by

P (cos θ) =

√

(2ℓ+ 1)

2

(ℓ− |m|)!
(ℓ+ |m|)! P

m
ℓ (cos θ) (173)

Combining these yields via multiplication (we assumed solutions of this type
when we first did the separation of variables procedure), we obtain the spher-

ical harmonics

Y m
ℓ (θ, φ) = (−1)(m+|m|)/2

√

(2ℓ+ 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)! P

m
ℓ (cos θ) eimφ (174)

where the somewhat peculiar choice of phase is conventional.
The spherical harmonics are orthonormal on the unit sphere:

2π
∫

0

π
∫

0

(

Y m1

ℓ1

)∗
Y m2

ℓ2
sin θ dθ dφ = δℓ1ℓ2δm1m2

(175)

since dz = sin θ dθ. They are complete in the sense that any sufficiently
smooth function f on the unit sphere can be expanded in a Laplace series as

f(θ, φ) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓm Y
m
ℓ (θ, φ) (176)

where

aℓm =

2π
∫

0

π
∫

0

(Y m
ℓ )∗ f(θ, φ) sin θ dθ dφ (177)
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1 Example

Suppose you want a function of (θ, φ) which satisfies

f(θ, φ) =
{

sin θ 0 < θ < π
2

0 otherwise
(178)

Then f takes the form (176), and the constants aℓm can be determined from
(177), yielding

aℓm =

2π
∫

0

π/2
∫

0

(Y m
ℓ )∗ sin2θ dθ dφ (179)

= Nℓm

2π
∫

0

e−imφ dφ

π/2
∫

0

Pm
ℓ (cos θ) sin2θ dθ (180)

where

Nℓm = (−1)(m+|m|)/2

√

(2ℓ+ 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)! (181)

Thus,

aℓm =















0 (m 6= 0)

√

(2ℓ+ 1)π

π/2
∫

0

Pℓ(cos θ) sin2θ dθ (m = 0)
(182)

For m = 0, the integral is most easily computed with the substitution
z = cos θ; the first few coefficients are:

a00 =
π

8
a10 =

1

2
a20 = −5π

64

a30 = − 7

12
a40 = − 9π

512
a50 =

77

240
(183)

(each of which should be multiplied by
√

4π/(2ℓ+ 1) ). As you can check
by graphing, however, it requires at least twice this many terms to obtain a
good approximation.
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27 ANGULAR MOMENTUM

1 Classical Angular Momentum

Consider the angular momentum of the reduced mass system L = r × p =
r × µv. We have:

dL

dt
=

d

dt
(r × µv) (184)

= r × µv̇ + v × µv (185)

= r × µa (186)

= r × F (187)

= rr̂ × f(r)r̂ (188)

= 0 (189)

(The second term in (185) is zero since v × v = 0.) r × F which occurs in
(187) is called the torque. We have shown that in the case of central forces
the time derivative of the angular momentum, and hence the torque, are
zero. Therefore:

τ =
dL

dt
= 0 ⇒ L = constant (190)

i.e. the angular momentum is conserved.
The force F (r) depends only on the distance of the reduced mass from

the center of mass and not on the orientation. Therefore, this system is
spherically symmetric; it is invariant (unchanged) under rotations. Noether’s
theorem states that whenever the laws of physics are invariant under a par-
ticular motion or other operation, there will be a corresponding conserved
quantity. In this case, we see that the conservation of angular momentum is
related to the invariance of the physical situation under rotations. Noether’s
theorem, in general, is most easily discussed using Lagrangian techniques.
You will see this again the Classical Mechanics Capstone.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Practice Problem

1. (Challenging) Can you guess what invariances of physics are related to
conservation of linear momentum and conservation of energy?
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2 Quantum Angular Momentum

In quantum mechanics, momentum p becomes the differential operator h̄
i
∇.

Under this correspondence, the components of L = r × p become the oper-
ators

Lx = ypz − zpy 7−→ h̄

i

(

y
∂

∂z
− z

∂

∂y

)

(191)

Ly = zpx − xpz 7−→ h̄

i

(

z
∂

∂x
− x

∂

∂z

)

(192)

Lz = xpy − ypx 7−→ h̄

i

(

x
∂

∂y
− y

∂

∂x

)

= −ih̄ ∂
∂φ

(193)

which we also call Lx, etc. Direct computation, which you will verify for
homework, shows that

[Lx, Ly]f = ih̄Lzf (194)

and cyclic permutations. But the operator

L2 = L · L = L2
x + L2

y + L2
z

= −h̄2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2

]

(195)

does commute with L, that is

[L2, Lz] = 0 (196)

and so forth.
This (Lie) algebra is the same as the algebra of the spin matrices

Sx =
h̄

2

(

0 1
1 0

)

Sy =
h̄

2

(

0 −i
i 0

)

Sz =
h̄

2

(

1 0
0 −1

)

(197)

that is
[Sx, Sy] = ih̄Sz (198)

and cyclic permuations.
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3 Eigenvalues

What are the eigenvalues and eigenfunctions of the angular momentum op-
erators? As you will show for homework,

L2Yℓm = h̄2ℓ(ℓ+ 1)Yℓm (199)

LzYℓm = h̄mYℓm (200)

(201)

28 The Radial Equation

So far we have obtained solutions to the angular (θ and φ) parts of the
Schrödinger equation. The Ylm(θ, φ)’s describe the spatial variation of the
wave function on the surface of a sphere. Now we turn to the radial equation
(99), plugging in the value of the separation constant A = −ℓ(ℓ+ 1) that we
obtained when solving the θ equation.

d

dr

(

r2dR

dr

)

+
2µ

h̄2 (E − U(r))r2R− ℓ(ℓ+ 1)R = 0 (202)

The solution to equation (99) will depend on the potential energy U(~r);
for central forces, the potential energy U depends only on r and is indepen-
dent of θ and φ. As a result, the Ylm(θ, φ)’s are solutions to the angular part
for any central force.

We can rewrite equation(202) as:

d2R

dr2
+

2

r

dR

dr
+

2µ

h̄2

[

E − U(r) − h̄2l(l + 1)

2µr2

]

R = 0 (203)

which resembles the one-dimensional Schrödinger equation corresponding to
an effective potential energy Ueff :

Ueff(r) = U(r) +
h̄2l(l + 1)

2µr2
(204)

The term h̄2ℓ(ℓ + 1)/2µ r2 is the centrifugal contribution to the effective
potential energy. It behaves like a repulsive force, and it increases with ℓ in
exact analogy with classical mechanics.
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We will solve the radial equation for a potential energy characteristic of
an atom consisting of a single electron interacting with a nucleus of charge
+Ze (H, He+, Li++, etc.):

U(r) = − Ze2

4πε0r
(205)

**Insert Graph**
Practice Question:

As l increases, do you think the expectation value of r will increase or
decrease? Later we will use the radial wave functions to calculate the expec-
tation value of r, and we will see if the calculated value is consistent with
your expectation.

With this choice of U(r), we can write the radial equation as:

d2R

dr2
+

2

r

dR

dr
+

2µ

h̄2

[

E +
k

r
− h̄2l(l + 1)

2µr2

]

R = 0 (206)

where k = Ze2/4πε0.

29 ASYMPTOTIC SOLUTIONS TO THE RA-

DIAL EQUATION

At first glance there seems to be no obvious direct approach to solving equa-
tion (206), so let’s see if we can get some clues to the form of the solution by
looking at the limiting behavior of the solutions for large r and for small r.

For large r, the terms in equation (206) involving r−1 and r−2 can be
neglected, so equation (206) becomes approximately

d2R

dr2
+

2µE

h̄2 R = 0 (207)

It is helpful to remind ourselves that E < 0 by writing equation (207) as

d2R

dr2
=

2µ |E|
h̄2 R (208)

which has the familiar exponential solutionsR(r) = e±br with b =
√

2µ|E|/h̄2.

Note the ± symbol in the exponential, which is there because equation
(208) involves the second derivative of R. Can we eliminate one of these
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signs? As r goes to infinity, e+br blows up. We will eventually want our
solutions for the wave functions to give us reasonably behaved probability
densities (that is, they must be finite everywhere), and we must therefore
discard any solution that leads to an infinite probability. Our solution for
the radial wave function in this limit then becomes:

R(r) ∼ e−br (larger) (209)

Now let’s look at the behavior of the solutions when r is small. In this
limit, the r−2 term will dominate and we can neglect the other terms in the
square brackets in equation (206). In this case, we obtain

d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R = 0 (210)

Practice Question: The solution to this equation apparently doesn’t de-
pend on h̄. Don’t all quantum-mechanical results depend in some way on
Planck’s constant?

By inspection, you can see that a solution of the form R(r) = rq can be
made to satisfy equation (210) - note that for this choice of R(r) each term
in equation (210) will then depend on rq−2 and the three terms can sum to
zero. With this substitution, we obtain

q(q − 1)rq−2 +
2

r
qrq−1 − l(l + 1)

r2
rq = 0 (211)

or
q(q + 1) − l(l + 1) = 0 (212)

This quadratic equation for q yields two solutions: q = l and q = l − 1. For
small r, r − l − 1 blows up, so we discard this solution. We then have

R(r) ∼ rl (smallr) (213)

Combining equations (209) and (213), we expect the radial solution to
look something like R(r) ∼ rle−br. Note that we have not violated the proper
behavior at the limits by combining these two solutions; R(r) remains well-
behaved for r = 0 and r → ∞. What else do we need to complete the
solution? Perhaps an additional function H(r), which gives the remaining
radial dependence and is well-behaved by not blowing up at r = 0 (or blowing
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up more slowly than r−l) nor as r → ∞ (or blowing up more slowly than
ebr). Let us therefore seek solutions of the radial equation of the form

R(r) = rle−brH(r) (214)

Our next goal is to determine H(r).
Practice Question:

Other than its asymptotic behavior, what other properties do you expect
for R(r)? If we expect R(r) to be a radial WAVE function, what type of
behavior is missing from the other parts of R(r) that H(r) must provide?

30 SOLVING THE RADIAL EQUATION

Before we begin substituting into equation (206), we’ll need the first two
derivatives of R(r).

dR

dr
= lrl−1e−brH(r) − brle−brH(r) + rle−brH ′(r) (215)

where H ′(r) = dH/dr, and

d2R

dr2
= l(l − 1)rl−2e−brH(r) − 2blrl−1e−brH(r) + 2lrl−1ebrH ′(r)(216)

+ b2rle−brH(r) − 2brle−brH ′(r) + rle−brH ′′(r) (217)

Substituting equations (215) and (217) into equation (206) and clearing
terms, the result is

rH ′′ + [2(l + 1) − 2br]H ′ +

[

−2b(l + 1) +
2µ

h̄2 k

]

H = 0 (218)

It is convenient at this point to re-write this equation in terms of the dimen-
sionless variables ρ = 2br and λ = µk/h̄2b:

ρ
d2H

dρ2
+ (2l + 2 − ρ)

dH

dρ
+ (λ− l − 1)H(ρ) = 0 (219)

In analogy with our solution to the θ equation, equation (101), we’ll use
a power series expansion to find the solution to equation (219):

H(ρ) =
∞
∑

j=0

cjρ
j (220)
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Taking derivatives, we obtain

H ′(ρ) =
∞
∑

j=1

jcjρ
j−1 and H ′′(ρ) =

∞
∑

j=2

j(j − 1)cjρ
j−2 (221)

and substituting into equation (219 we find

∞
∑

j=2

j(j − 1)cjρ
j−1 + (2l + 2)

∞
∑

j=1

jcjρ
j−1 −

∞
∑

j=1

jcjρ
j + (λ− l − 1)

∞
∑

j=0

cjρ
j = 0

(222)
Expanding each of the sums gives a power series in ρ. For all terms of

the series to add to zero for any and all values of ρ, the coefficient of each
power of ρ must be zero. Before we develop the solution, let’s write out the
first few terms of equation (222):

[(2l + 2)c1 + (λ− l − 1)c0]ρ
0 + [(4l + 6)c2 (223)

+ (λ− l − 2)c1]ρ
1 + [(6l + 12)c3 + (λ− l − 3)c2]ρ

2 + . . . = 0 (224)

Each term in square brackets must be zero for this equation to be valid for any
value of ρ. From the first term in square brackets, we obtain a relationship
between c1 and c0, from the second term in square brackets, we obtain a
relationship between c2 and c1, from the third term in square brackets, we
obtain a relationship between c3 and c2, and so forth. The value of c0 thus
determines the values of all of the remaining cj.

Now let’s find the complete solution to equation (222). It is convenient
to begin by rewriting equation (222) so that all sums are given in terms of
powers of ρj. We can accomplish this by replacing j with j + 1 in the first
two sums:

∞
∑

j=1

(j + 1)(j)cj+1ρ
j + (2l + 2)

∞
∑

j=0

(j + 1)cj+1ρ
j (225)

−
∞
∑

j=1

jcjρ
j + (λ− l − 1)

∞
∑

j=0

cjρ
j = 0 (226)

Once again, the coefficient of each term in the sum must vanish. The coeffi-
cient of the general term ρj is

(j + 1)(j)cj+1 + (2l + 2)(j + 1)cj+1 − jcj + (λ− l − 1)cj = 0 (227)
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This leads to the recursion relation

cj+1 =
j − λ+ l + 1

(j + 1)(j + 2l + 2)
cj (228)

which agrees with the results we obtained from the first few terms in the
expansion of equation (222). As we deduced from that analysis, choosing c0
determines all of the remaining expansion coefficients.

In our study of the polar wave functions, we found we had to force the
series to terminate to prevent the wave function from becoming infinite. So
far we have assumed that the upper limit of the series expansion of H(ρ)
is infinity. However, our analysis for the expansion coefficients does not
depend on whether the series is finite or infinite. Let’s see how we can use
the properties of R(r) to make this determination.

How does the recursion relationship, equation (228), behave in the limit of
large j? As j → ∞, equation (228) becomes approximately cj+1 ∼ cj/j + 1.
That is, c1 = c0, c2 = c1/2 = c0/2, c3 = c2/3 = c0/3!, and so forth. In
general, then, for large j, cj ∼ c0/j! and because

∑∞
j=0 ρ

j/j! = eρ we have
H(ρ) = c0e

ρ. Recalling that ρ = 2br, equation (214) gives the behavior of
R(r) for large r as R(r) ∼ rle−bre2br, which clearly blows up for large r. We
cannot allow this to happen, and we can prevent it by arranging for the series
expansion of H(ρ) to terminate at some value jmax such that the numerator
of the recursion relationship, equation (228), goes to zero:

jmax − λ+ l + 1 = 0 (229)

Because j and l are integers, equation (229) can be satisfied only if λ is also
an integer. Let’s call this integer n:

jmax = n− l − 1) (230)

Using our previous definition of λ = µk/h̄2b with λ = n, we have

n =
µk

h̄2b
=

µ(Ze2/4πε0)

h̄2
√

2µ |E| /h̄2
(231)

or

En = − Z2e4µ

32π2ε2
0h̄

2

1

n2
(232)
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This is the quantization condition on the energy levels of the hydrogenic
atom, which agrees with the semi-classical condition of the Bohr model. Note
that E depends only on n and not on l (even though R(r) depends on both
n and l). For Z = 1 and µ = me (the electron mass), the numerical factors
in equation (232) evaluate to 13.6 eV.
Practice Question: What property did we impose on the radial wave func-
tions that ultimately resulted in energy quantization?

It is also convenient at this point to define the quantity

a0 =
4πε0h̄

2

µe2
(233)

a0 has the dimension of length and provides a convenient length scale for
atomic systems. When µ = me, a0 is known as the Bohr radius and has the
value 0.0529 nm = 52.9 pm. In terms of a0, the parameter b can be written

b =

√

2m |E|
h̄2 =

µZe2

4πε0h̄
2n

=
Z

a0n
(234)

Before we discuss the general results for H(ρ), let’s look at the form of
some of the solutions for particular values of n.

n=1:
In this case, equation (230) gives jmax = −l, and since neither j nor l can

be negative, the only possible solution is j = l = 0. In this case, H(ρ) = c0
and R(r) becomes

R10(r) = c0e
−Zr/a0 (235)

We have labeled the radial wave functions as Rnl using the indices n and l.
The constant c0 can be determined from the normalization condition.

n=2:
In this case, jmax = 1 − l. The possible l values are l = 0 (in which

case jmax = 1) and l = 1 (in which case jmax = 0). For l = 1, only j = 0
contributes and H(ρ) = c0. We then have

R21(r) = c0re
−Zr/2a0 (236)

For l = 0, jmax = 1 and thus H(ρ) = c0 + c1 . We can use the recursion
formula, equation (228), to determine c1 in terms of c0:

c1 =
0 − 2 + 0 + 1

(1)(0 + 0 + 2)
c0 = −1

2
c0 (237)
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so that H(ρ) = c0
1
2
c0ρ = c0(1− 1

2
ρ) or H(r) = c0(1−Zr/2a0). We thus have

R20(r) = c0e
−Zr/2a0(1 − Zr/2a0) (238)

Practice problems:
Continue this process for n = 3 and show

R30(r) = c0

[

1 − 2Zr

3a0

+
2

27

(

Zr

a0

)2
]

e−Zr/3a0 (239)

R31(r) = c0r

(

1 − Zr

6a0

)

e−Zr/3a0 (240)

R32(r) = c0r
2e−Zr/3a0 (241)

31 THE COMPLETE RADIAL SOLUTION

The general solution of equation (219) is the associated Laguerre polynomial.
First let’s look at the ordinary Laguerre polynomials of degree q, which are
obtained from the generating function

Lq(ρ) = eρ d
q

dρq

(

ρqe−ρ
)

(242)

The associated Laguerre polynomials are then defined as

Lp
q(ρ) =

dp

dρp
Lq(ρ) (243)

which is a polynomial of degree q−p. The general solution of equation (219)
is the associated Laguerre polynomial:

H(ρ) = L2l+1
n+l (ρ) (244)

a polynomial of degree (n+l)−(2l+1) = n−l−1, as expected corresponding
to the value of jmax given by equation (230).

The complete solution for R(r) is then

Rnl(r) = Nnlr
le−Zr/na0L2l+1

n+l (2Zr/na0) (245)
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where Nnl is a normalization constant. Because the Y m
l (θ, φ) are separately

normalized, the normalization of ψ(r, θ, φ) = Rnl(r)Y
m
l (θ, φ) then requires

that the Rnl(r) be normalized:
∫ ∞

0

r2 dr [Rnl(r)]
2 = 1 (246)

Following a tedious but straightforward calculation,

Nnl =

{

(

2Z

na0

)3
(n− l − 1)!

2n[(n+ l)!]3

}1/2
(

2Z

na0

)l

(247)

so that the complete solution for R(r) is then

Rnl(r) =

{

(

2Z

na0

)3
(n− l − 1)!

2n[(n+ l)!]3

}1/2

e−Zr/na0

(

2Zr

na0

)l

L2l+1
n+l (2Zr/na0)

(248)
The solution to the Schrödinger equation for the hydrogenic atom is

ψnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ) (249)

The solution to the time-dependent equation is

Ψnlm(r, θ, φ, t) = Rnl(r)Y
m
l (θ, φ)e−iEnt/h̄ (250)

where En are the energy eigenvalues given in equation (232).
As is always the case for quantum systems, it is possible for the atom

to exist in mixed states that are not pure eigenstates. These states can be
described by appropriate linear combinations of the eigenfunctions given in
equation (250):

Ψ(r, θ, φ, t) =
∑

n,l,m

cnlmRnl(r)Y
m
l (θ, φ)e−iEnt/h̄ (251)

Given any arbitrary (but mathematically well-behaved) function f(r, θ, φ)
that represents the state of the atom at t = 0, we can expand f(r, θ, φ) in
terms of the eigenfunctions:

f(r, θ, φ) =
∞
∑

n=1

n−1
∑

l=0

l
∑

m=−l

cnlmRnl(r)Y
m
l (θ, φ) (252)

where

cnlm =

∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφR∗
nl(r)Y

m∗
l (θ, φ) (253)
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32 Appendix A: CHAIN RULE

Please see Riley, Hobsen, & Bence, 2nd edition, section 5.5-5.6 (The Chain
Rule and Change of Variables), especially the worked example on plane polar
coordinates.

33 Appendix B: SEPARATION OF VARI-

ABLES

“Separation of variables” is a procedure that can turn a partial differential
equation (i.e. a differential equation in several variables) into a system of
ordinary differential equations (i.e. a set of differential equations, each in only
a single variable). The procedure only works in very special cases involving
a high degree of symmetry. Remarkably, the procedure works for many
important physics examples. Here, we will use the procedure on the wave
equation, as a simple example that illustrates the basic steps.

Step 1: Write the partial differential equation in an appropriate coordi-
nate system. For the wave equation in one-dimension, we have:

∂2

∂x2
Ψ(x, t) =

1

v2

∂2

∂t2
Ψ(x, t) (254)

Step 2: Assume that the solution Ψ(x, t) can be written as the product
of functions, at least one of which depends on only one variable, in this case
t; the other function(s) must not depend at all on this variable, i.e. assume

Ψ(x, t) = X(x)T (t) (255)

This is a very strong assumption. Not all solutions will be of this form.
However, it turns out that all of the solutions can be written as linear com-
binations of solutions of this form. The study of when and why this works is
called Sturm-Liouville theory.

Plug this assumed solution (255) into the partial differential equation
(254). Because of the special form for Ψ, the partial derivatives each act on
only one of the factors in Ψ = X(x)T (t).

d2X(x)

dx2
T (t) =

1

v2
X(x)

d2T (t)

dt2
(256)
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Notice that the partial derivatives ∂2

∂x2 and ∂2

∂t2
have turned into total deriv-

atives d2

dx2 and d2

dt2
. Any partial derivatives that act only on a function of a

single variable may be rewritten as total derivatives.
Step 3: Divide by Ψ in the form of (255). The rest of the procedure

doesn’t work if you omit this step. Many, many students forget. Don’t be
one of them!

1

X(x)

d2X(x)

dx2
=

1

v2

1

T (t)

d2T (t)

dt2
(257)

Step 4: Isolate all of the dependence of one coordinate on one side of
the equation. Do as much algebra as you need to do to achieve this. In our
example, notice that in (257), all of the t dependence is on the right-hand
side of the equation while all of the dependence on the spatial variable x is
on the other side. In this case, the t dependence is already isolated, without
any algebra on our part.

Step 5: Now imagine changing the isolated variable t by a small amount.
In principle, the right-hand side of (257) could change, but nothing on the
left-hand side would. (This argument is the magic of the separation of vari-
ables procedure–make sure that the logic is clear to you.) Therefore, if the
equation is to be true for all values of t, the particular combination of t
dependence on the right-hand side must be constant.

1

X(x)

d2X(x)

dx2
=

1

v2

1

T (t)

d2T (t)

dt2
def
= A (258)

In this way we have broken our original partial differential equation up into a
pair of equations, one of which is an ordinary differential equation involving
only x, the other is an ordinary differential equation involving only t.

1

X(x)

d2X(x)

dx2

def
= F (259)

1

v2

1

T (t)

d2T (t)

dt2
def
= F (260)

The separation constant F appears in both equations.
Step 6: Write each equation in standard form by multiplying each equa-

tion by its unknown function to clear it from the denominator.

d2X(x)

dx2

def
= F X(x) (261)

d2T (t)

dt2
def
= F T (t) (262)
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Notice that (261) is an eigenvalue equation for the operator d2

dx2 . At the
moment, all we have done is mathematics and the eigenvalue F could be
anything. Next we need to solve the system of ordinary differential equations
and use physical information to find the possible values of F . In general the
solution to the X equation will be

X(x) = A cos(−
√
Fx) +B sin(−

√
Fx) = A cos kx+B sin kx

where k is a conventional name for the constant −
√
F and the allowed values

of k are determined by the boundary conditions. We can then plug this value
of F into the equation for T . Since we now know the value of F , the equation
for T is not an eigenvalue equation. The solutions for T are, of course

T (t) = C cos(−
√
Fvt) +D sin(−

√
Fvt) = C cos kvt+D sin kvt

If the original partial differential equation had had more than two vari-
ables, we could have repeated the steps until each of the variables had been
separated out into its own ordinary differential equation.
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