Magnetic Field Due to a Ring of Charge

Question

Calculate the magnetic vector potential Z due
to a spinning ring of charge at some point P in
space. Given that the ring has a constant linear
charge density A, a constant angular velocity @

, and a constant tangential velocity y for any

point along the ring. The ring has a total charge
Q. See Figure I for a schematic diagram of the
problem. Simplify the solution into an equation
that a mathematical program like Maple can
compute.

Figure I: Ring of Charge in Space
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Solution

There is a right hand rule that states if you point
your thumb in the direction of current around a
ring and curl your fingers around the ring, your
fingers will point in the direction of the magnetic
field B induced by the current flowing through
the wire. In this case we’re given no direction of
current, so I'm going to say that it is flowing in
the counterclockwise (CCW) direction. Thus, the
right hand rule for the ring of charge in our
given coordinate system can be seen in figure IL

Figure II: Magnetic Field Lines due to Ring of
Charge in Space
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In general the equation for the magnetic vector
potential —A is as follows,
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The Current I for the ring is equal to the

tangential velocity v multiplied by the charge per
unit length of the ring A .
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The linear charge density of the ring A can be
found very easily in knowing
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In other words, if it is known for some line of
charge that the linear charge density is constant
throughout then the linear charge density is
simply the total charge Q on the ring divided
over the length of the ring.

The velocity can be found with respect to some
period T at constant angular momentum. Since
velocity is simply the distance travelled per unit

time and velocity is in the @, direction. Thus

tangential velocity is simply the circumference of
the ring divided by the period. Where the period
T is the time it takes any point on the ring to
complete a single revolution.
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Since we already know how to find the current I
in terms of A and v we can now simply plug in
our values for A and v to derive an equation for
the current in the ring.
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The Idﬁ,| component of our integrand can easily

be obtained by symmetry arguments. In



cylindrical coordinates,

dr =drf+ rdg¢ + dz2

In the case of our current problem, as seen in
figure I. The dr, is zero because there is no
change in ry as the vector traces out every point
on the ring. In addition the way we have our
problem set up, the ring is strictly in the xy-
plane which means dz, is zero as well. Thus

dfy = dr,f +r,dg, ¢+ dz,z = 0+ r,d@,$ +0

And so our Idﬁ,l component of the integrand is
simply ryd¢, .

Looking at figure 1 again, we need to find vector
equations for the r and r, vectors. We know that
at all points along the r, vector the z, component
is equal to zero. Thus the general equations for
the two vectors in space are below
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Now we can simply plug all of the parts we
calculated into equation 1 as follows
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Note: The denominator is simply the solution of

|F - 7‘0| in cylindrical coordinates which is as
follows

[F=7|=yr? +r2 -2, cos(¢ — @) +(z — 2,

We can now simplify our problem by inserting
things that we know about the problem. We know
that r,,Q, and T are all constants and can be
treated like such throughout the problem. We
also know that z, is equal to zero. We incur a
problem though. Even a mathematically
calculating program like maple cannot compute
this integral in the form we currently have it. A
simple fix is to change our coordinate systems.
We will convert from the cylindrical coordinate

. System to the rectangular coordinate system. The

only thing we need to convert is the @, into
rectangular coordinates. First we will draw a
picture of what the @, direction looks like and

convert it to rectangular coordinates. In general
a table that gives you this conversion can be
found. We will rely on symmetry arguments
however. If we draw some tangent line along the
unit circle, arbitrarily choosing a small angle
for ¢ we can draw a line parallel to the x axis
and perpendicular to the y axis that intersects
our circle at the point M. We know the angle a
by the rule of opposite interior angles is equal to
@(thus ¢= a). We then use geometry arguments
to determine that the angle y is also equal to ¢ as
well. So we have an end result of 9= a= y. See
Figure III below.

Figure III: Cylmqtlcal &fctangular
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Solve for x and y components using the SOH
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We now take the x and y components of our @,

direction vector. These point in the | and j

rectangular vector directions respectively. Using
simple trigonometry in the form of SOH CAH
TOA we find these components to be as follows.
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Thus we obtain two much simpler integrals to
compute. The final integral components
plugging in all of the components we’ve solved
for. The end result after plugging in our
unknowns is as follows
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This is an equation that a program designed to
compute mathematical equations can obtain a
solution to.

The magnetic vector potential decreases in size
as the radius away from the ring in any given
direction is increased. This makes physical sense
because it is an analog of the magnetic field
which decreases as the distance away from the
ring of constant current is increased. If we
analyze the integrand and say that it is for a
point along the positive x axis a radius r away
from the ring our expression simplifies down
since our r components of our vectors are
constants, our z is equal to zero, and we are left
with two simple integrals, one in the x direction
and one in the y direction as follows
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And the other vector component of the magnetic
potential along the x axis would be
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Let Maple compute these integrals and it is
simple to analyze the behavior of the magnetic
potential due to a ring of current in the xy-plane
along the x axis. If you perform similar tricks for
a few different points in space you can see that
the general behavior of the magnetic potential

simply points in the @, direction at all points

and is therefore tangent to the ring at all given
points in space. To be clearer, the magnetic
potential is tangent to the current flowing
through the ring in a given direction. This makes
physical sense because the magnetic field is
perpendicular to the ring and the magnetic
potential compared to the magnetic field is an
analog of the electric potential compared to the
electric field which is perpendicular.



