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Abstract. In upper division electricity and magnetism, the manipulation and interpretation of vector functions is 
pervasive and a significant challenge to students. At CSU San Marcos, using in-class activities adapted from the Oregon 
State University Paradigms in Physics Curriculum, students’ difficulties with vector functions become evident in two 
types of in-class activities: sketching vector functions and relating vector and scalar functions (e.g., electric field and 
electric potential). For many students, the cause of these difficulties is a failure to fully distinguish between the 
components of a vector function and its coordinate variables. To address this difficulty, we implement an additional in-
class activity requiring students to translate between graphical and algebraic representations of vector functions. We 
present our experience with these issues, how to address them, and how in-class activities can provide evidence of 
student thinking that facilitates curricular refinement. 
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INTRODUCTION 

A vector field is an assignment of a vector quantity 
to each point in space. Physical examples from 
electricity and magnetism (E&M) include the electric 
field, magnetic field, and magnetic vector potential. 
Typical upper-level E&M courses require students to 
use and interpret these fields and the related 
mathematics of vector calculus. Vector fields can be 
represented algebraically, through several graphical 
representations, or even kinesthetically (where 
students physically represent the field with their 
bodies). Many upper-level E&M courses emphasize 
the algebraic representation. The Paradigms in Physics 
Curriculum developed at Oregon State University 
includes an explicit focus on graphical representations 
of vector fields in E&M. In particular, course goals 
include having students “develop conceptual and 
geometric understandings of... electrostatic potentials 
and fields, including geometric understanding of 
vector and scalar fields” and “be able to move between 
algebraic and diagrammatic representations of these 
fields… [1]” Many students find this challenging. 

In E&M, common graphical representations of 
vector fields include vector arrows drawn at some 
sampling of points in the space or field lines that start 
and stop at the location of charges and have tangent 
lines at each point that are parallel to the vector field at 
that point. Related representations include contour or 
equipotential plots of scalar functions.  

In this paper, we compare different representations 
of vector fields, what we can learn from students’ use 

of those representations, and how various 
representations can be used to facilitate student 
learning. In particular, we note that some of our 
students’ conceptual difficulties with vector fields only 
become evident when they use certain representations. 
Furthermore, comparing another representation often 
helps resolve these difficulties. We interpret this in 
terms of the affordances and constraints of these 
representations on student learning and classroom 
discourse in upper-level E&M courses. We report on 
student engagement in classroom activities developed 
and administered at Oregon State University (OSU) 
and CSU San Marcos [1-3]. Data include videos of 
these activities recorded at OSU during the fall of 
2008 and 2010, as well as recordings of a CSU San 
Marcos instructor’s reflections on these activities. 
These reflections were recorded in fall 2010 in the few 
days after the activities were done in class. 

DIMENSIONALITY OF THE 
GRADIENT 

The gradient of a scalar field is an important 
concept for upper level E&M because conservative 
vector fields can be written as the gradient of a scalar 
potential field. Understanding how to calculate the 
gradient and interpret it geometrically is an important 
goal in these courses. Before using the gradient to 
relate the electric field and electric potential, students 
are engaged in an activity sequence where they are 
given a 2D scalar function describing the elevation of 



 

 

a hill. For a number of specific points in the 2D space, 
students are asked to find a number of geometric 
features, including some that require using the 
gradient. In one kinesthetic activity, students were 
asked to visualize an elliptical hill in the center of the 
room. They were then asked to imagine their right 
shoulders were points on the hill. Using their right 
arms as vectors, they were asked to point in the 
direction of the gradient of the function that described 
the height of the hill with respect to their location on 
the floor [4]. As seen in Figure 1, many students 
pointed up towards the ceiling while many others 
pointed their arms parallel to the ground. 
(Additionally, many of these students pointed in the 
direction of the highest point of the hill, while many 
others pointed in the direction of the steepest slope at 
their location.)  

FIGURE 1. Students indicating the direction of the gradient.  
 
This activity revealed an important issue related to 

the dimensionality of the gradient. In this case, the 
height of the hill as a function of location is a 2D 
scalar field. For such a field, the gradient is also a 2D 
quantity - it only has components in the coordinate 
plane. Yet, based on their response to the kinesthetic 
activity, many students in the class believed the 
gradient in this case was a 3D quantity. The basis for 
students’ thinking could be the fact that the hill exists 
in 3D, and it’s natural to point parallel to the surface of 
the hill while standing on the hill. Furthermore, this 
example differs from most E&M applications because 
the function (elevation) and the variables (location) 

share the dimensionality (length). The ambiguous yet 
common verbal representation “the gradient points in 
the direction of steepest slope” could also contribute to 
this thinking.  

Importantly, the kinesthetic activity provides an 
opportunity to explore the dimensionality of the 
gradient, because the students can represent the 
gradient vector in a 3D space. Thus, students must 
make a choice about the vertical component of the 
gradient vector. Similar activities that ask students to 
draw the gradient vector on a 2D sheet of paper or 
whiteboard constrain the students to a 2D 
representation of the gradient and do not bring out this 
issue. Overall, these different representations have 
varying freedom; in the kinesthetic activity, students 
face the choice of giving a vertical component and 
only here does the issue become obvious. Constraints 
in the representation can be useful (if they match the 
physics/math), in that they can prevent incorrect 
operations, but they can also prevent student 
conceptual difficulties from being revealed. 

If one were to calculate the gradient from an 
equation describing the height of the hill, this 
dimensionality issue also would not arise. A correct 
computation would result in the gradient field having 
only two components. In this case, drawing parallels 
between two representations - an algebraic 
representation and a 3D geometric representation - 
may help students resolve the conceptual issues that 
arise in one of them.  

LOCALITY OF THE VECTOR 
REPRESENTATION 

Upper-level students are encouraged to think of the 
electric field, magnetic field, and other vector fields in 
a true “field” sense - as vector quantities at every point 
in space. Furthermore, these fields do not represent 
geometric quantities such as lengths, but instead their 
magnitude is associated with their field strength. These 
features have important consequences for geometric 
representations of vector fields in E&M. Unlike a 
scalar field, which can be represented with a 
continuum of points (for instance a 3D surface can 
represent the value of a 2D scalar function), 
representations of vector fields only include vectors at 
a sampling of points. For instance, students are 
encouraged to visualize these fields as arrows located 
at a sampling of points in space, where the base of the 
arrow is the point where the field is being evaluated, 
the arrow points in the direction of the vector field, 
and the length of the arrow indicates the magnitude of 
the vector field. We call this the vector representation. 
One feature of this representation is that the arrow 
represents the field at a single point in space. We refer 



 

 

to this feature as locality. However, in the 
representation, the arrow has a length that takes up 
some “space” which doesn’t correspond to real space. 
These features of the vector representation can cause 
confusion for students. 

For example, in the Concept of Flux [4] activity, 
each student was asked to hold a ruler from the end 
and told to imagine that the ruler represents an electric 
field vector evaluated at the location of their hand. 
This is a direct kinesthetic analog to the graphical 
vector representation. The instructor had a hoop and 
explained that the area enclosed by the hoop was a 
surface. The instructor placed the hoop so that some of 
the rulers stuck through the hoop but the students’ 
hands were not in the plane of the hoop (see Figure 2). 
When the instructor asked what the flux through the 
hoop is, many students said there is a positive flux and 
some said the flux is zero. However, in this vector 
representation, the extent of the arrow does not 
correspond to a physical extent in real space so it can’t 
really “stick through” the surface. Only the points that 
lie in the surface can contribute to the flux. 

 

 

FIGURE 2. Students are asked to consider the flux through 
the hoop. Rulers represent vectors. 

 
This feature of the vector representation also arises 

in drawing a vector field. In drawing a 2D vector field, 
we observed students start by drawing a Cartesian 
grid. They then picked points, identified the x- and y-
coordinates at these points, and plugged those values 
into the vector field function. For drawing the vectors, 
the natural thing to do is to use the same scaling as the 
spatial grid. However, in physics, most vector fields 
(e.g. electric fields) have dimensions that are not 
spatial (i.e., units of newtons/coulomb rather than 
meters). Therefore, the scale of the spatial grid has 
nothing to do with the magnitudes of the vectors - they 
have different dimensions! It is the relative lengths of 
the vectors that matter in this representation.  

While the vector representation is emphasized in 
upper level physics, in lower level physics, the field 

line representation is emphasized for visualizing 
vector fields. When drawing the vector representation, 
we observed some students negotiating how the field 
lines representation is related to the vector 
representation. In a small group activity, students were 
asked to draw the electric field vectors for four 
positive charges arranged in a square. Most groups 
started by drawing field lines. The instructor then 
discussed the difference between field lines and 
vectors for a single point charge, a case where the field 
lines and vectors are co-linear. The discussions in this 
activity were filled with much productive reasoning 
using superposition and symmetry to draw the field 
vector arrows. 

During a whole class discussion of the activity, one 
student suggested that you should draw more vectors 
in the region where the field has a large magnitude. 
This led to a comparison of how the two 
representations handle the magnitude of the field. With 
field lines, the density of the lines represents 
magnitude (the closer the lines are to each other, the 
larger the magnitude of the field - though the exact 
relationship only works if the lines are drawn in a 3D 
space [5]); in the vector representation, the arrows’ 
lengths represent the magnitude of the field. This 
student’s suggestion may indicate not understanding 
that the vectors in the vector representation come from 
an arbitrary sampling of points.  

Another student suggested that electric field 
vectors cannot cross. This idea could come from either 
his knowledge of electric field lines or equipotential 
surfaces. This suggestion illustrates a lack of 
understanding of the locality feature of the 
representation. The extent of the arrows does not 
correspond to 3D space and it does not matter if the 
arrows cross or overlap. 

In sum, we have noted two limitations of the vector 
representation of vector fields. First, the representation 
only shows the vectors for some sample of points. 
Second, the vector arrows are represented with a 
physical extent that does not correspond to a geometric 
length. The student conceptual difficulties described 
above seem to arise from a too-literal interpretation of 
these aspects of the vector representation.  

COORDINATES VS. COMPONENTS 

In E&M, we are typically interested in functions of 
spatial coordinates (typically x, y, z) in two or three 
dimensions. A 3D vector field function has three 
components, and each component may depend on the 
three spatial coordinates. Students often struggle to 
untangle the coordinates from the components. 
Particularly confusing is the case of “mixed” 
dependencies, for example when Ex is a function of 



 

 

the y-coordinate. Electric fields often vary in the same 
direction the field points (e.g. the electric field for a 
positive point charge falls off radially and the field 
points radially away from the charge). Magnetic fields 
more often have mixed dependencies (e.g. the 
magnetic field for an infinite current carrying wire 
falls off radially but points azimuthally [6]). 

Students’ difficulties with coordinates and 
components were evident during an in-class activity 
where students were given algebraic expressions for 
2D vector field functions and asked to sketch them. 

Students were given expressions such as 

F  yî  xĵ ; 


F  (î  ĵ) 2 ; 


F  xî  yĵ ; 


F  yî ; and 


F  xĵ [7]. 

Many students struggled to begin translating the 
algebraic formula into a graph. After a few minutes, 
the instructor offered an interpretation of the vector 
function expression as shorthand for three equations, 
one for each component of the vector field. He then 
suggested that students adopt a routine for sketching 
the functions that involved explicitly picking a point in 
the plane, evaluating each component of the vector 
function with the coordinates of that point, sketching 
the resulting vector, and then considering what 
changes at different points. Interestingly, after students 
were able to complete one of these sketches, further 
examples presented much less difficulty, suggesting 
that students had a breakthrough in understanding that 
was consolidated on subsequent items.  

Why does this sketching activity both reveal and 
provide an opportunity to resolve students’ confusion 
about components and coordinates? The graphical 
vector representation allows separate tracking of 
components and coordinates by using the vector 
arrows in addition to the 2D coordinate space. 
Apparently, in the algebraic representation, the x’s and 

î ’s are indistinct for some students. We conjecture 
that the understanding students gain through the 
graphing activity would result in their greater 
understanding of the algebraic expression; however, 
we do not have evidence to support this. 

DISCUSSION 

Different representations have different affordances 
and constraints. Algebraic representations of vector 
fields are easy to manipulate but students do not easily 
interpret differences between components and 
coordinates. Drawing a 2D vector representation of a 
field disambiguates components and coordinates but 
constrains students to thinking and representing in a 
plane. Kinesthetic activities allows students to use a 3rd 
dimension to represent vectors, but allows for 
representing direction of the field more easily than the 
magnitude or functional dependencies (and is not 

readily preserved for further analysis). In order to 
understand and use any representation, the user must 
understand how information about the phenomenon is 
presented. We have seen that different representations 
allow students to consider different choices in 
expressing their understanding of the situation. These 
choices can illuminate different aspects of student 
thinking and give instructors more information about 
student ideas. This will hopefully lead to more 
opportunities to address student difficulties and deeper 
conceptual and analytic learning. Further, different 
representations can help resolve the conceptual 
uncertainties that arise during the use of other 
representations. Thus, we expect that as students 
become familiar with different representations of 
vector fields and how to translate from one 
representation to another, their sense-making skills 
will become more versatile.  
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