Spin Correlation and Bell’s Inequality
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Nonlocality: The spin correlation persists even if the two particles are well
separated and have no interaction.

Example:

(i) Decay of 7 meson into muon pair: 7 — u*+ u- o7 I iw i >polarlzatlon

(i) Parametric down conversion in nonlinear crystal
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Spin-Singlet States
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Spin correlation in a spin-singlet state
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Particle 1 Particle 2

(1) Measurement of particle 1 spin, S, .

— wave vector collapse |y/) :%QT¢>—HT>) = ‘T¢>

— Determine particle 2 spin state instantly even if two particles are
macroscopically separated.

(i1) Measurement of S_ and S, \l//> = %QTU —‘¢T>)= %QT¢>)¢ —‘¢T>x)

« A measures S, and B measures S, : completely random correlation

e A measures S, and B measures S, : 100 % (opposite sign) correlation
» A makes no measurement — B’s measurements are random.

Measurement even in local system determines state of whole system.



2. Einstein’s locality principle and Bell’s inequality

Einstein’s locality principle

The real factual situation of the system §, is independent of what is done with the
system S, which is spatially separated from the former.
“Einstein-Podolsky-Rosen (EPR) paradox™

Model to explain the spin-correlation measurement w/o violating the locality principle

A: particle 1 B: particle 2
(z+, x+) > (z—, x-) 25%
(z+, x—) > (z—, x+) 25%
(z—, x+) > (z-+, x-) 25%
(z—, x—) > (z+, x+) 25%

e When we measure S,, we do not measure S, and vice versa.
= Impossible to determine S, and S, simultaneously

B’s result is predetermined independently of A’s choice as to what to
measure.




Bell’s inequality: spin measurement on direction of three unit vectors

o Population A: particle 1 B: particle 2

2’ N, (a+,b+,ct) > (a=b—c-)

e N, (a+,b+,c-) > (a=b—ct)

N (a+,b—c+) > (a=b+,c-)

N, (a+,b—c-) > (a=b+,ct)

N (a=b+,ct) > (a+,b—c-)

e, A (a=b+,c-) > (a+,b—ct)

N, (a=b—ct) > (a+,b+,c-)

(x, ) > (a, b, c) N (a=b—c)  © (a+.b+ c+)

If A measures (a+, b—), number of particles N; + N,
Since N;>0, N;+ N, < (N, + N,) + (N3 + N;)
P(a+ ; b+) : probability that observer A measures a+ and observer B measures b+
N+ N N,+ N N, +N
P(a+b+)=——=, Plat;c+)="ZL—=, P(c+b+)=

i=1" 1 i=1" 1 i=1

= | P(a+;b+) < P(a+;c+) + P(c+;b+) | Bell’s inequality (from locality principle)




Quantum mechanics and Bell’s inequality
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Bell’s inequality 2.01

P(a+;b+) < P(a+,c+) + P(c+;b+) .
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Quantum Theory vs. Locality Principle

* QM predictions are not compatible with Bell’s inequality.

» Experiments confirms that Bell’s inequality can be violated in
such a way that QM predictions are correct.

 Despite the nonlocality, no transmission of useful information
by spin-correlation:
No violation of principles of relativity.

* Nonlocality of spin-correlation (entanglement):
Quantum information theory




