Activity 1: Solutions for potential due to 2 point charges

All solutions will begin the electrical potential due to point charges
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7 denotes the position in space at which the potential is measured and #; denotes the position of the charge.
In Cartesian coordinates this becomes
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Because we are considering only the z,y plane, z = 0 and because the two charges are on the z-axis, then
Yi,zi =0, and N =2
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This section looks at the four cases for the potential on the z-axis. since y = 0, then for all four cases on
the z-axis,
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1.1 2 positive charges, +@Q, one at D and one at —D, |z| << D

With both charges equal to +@Q, Eq. 4 leads to
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Because |z| << D, this leads to
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Factoring out D from the denominator yields
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Which can be rewritten as
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Using the power series (1+ 2)P =1+ pz + %22 + ... results in
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The odd powers cancel to produce the expansion
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1.2 Opposite charges, +Q at +D, —Q at —D, || << D

Eq. 4 now leads to the same results for Eq. 5 except for a sign change, becoming
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Using the same procedure as in Eq.6 - 9 before, we now have
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Now the even powers cancel to become
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1.3 2 positive charges, +@Q, one at D and one at —D, x >> D
Starting with Eq.5, but now with = >> D,
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Factoring out z from the denominator yields
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Using the Laurent series expansion now results in
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The odd powers of the expansion cancel to become
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However, it should noted that this is an odd function, and multiplying through by % results in
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1.4 Opposite charges, +Q at +D, —Q at —D, x >> D

Changing the sign in Eq. 14 results in the even powers of the expansion cancelling and
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2 y-axis

This section looks at the four cases for the potential on the y-axis, where we now consider that x = 0 and
Eq. 3 becomes
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Because x; = £D
2

1 i
Viz,y,z) = 22
@05) = e X s (22)

1 20
Vv = _— 23
Factor out D from the denominator yields
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Using the power series (1 4+ 2)P =1+ pz + %22 + ... results in
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2.2 Opposite charges, +Q at +D, —Q at —D, either || << D or z >> D

Either inspection or calculation reveals that the potential is always zero on the y-axis for this case
V(z,y,2)=0 (27)

2.3 2 positive charges, +@Q, one at D and one at —D, y >> D

Beginning with Eq. 24, Factoring out y from the denominator yields
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Following the same method as in Eq. 25 and 26 results is the Laurent series expansion
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