Activity 1: Solutions for potential due to 2 point charges

All solutions will begin the electrical potential due to point charges

$$
\begin{equation*}
V(\overrightarrow{\boldsymbol{r}})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}_{i}\right|} \tag{1}
\end{equation*}
$$

$\overrightarrow{\boldsymbol{r}}$ denotes the position in space at which the potential is measured and $\overrightarrow{\boldsymbol{r}}_{i}$ denotes the position of the charge. In Cartesian coordinates this becomes

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}}} \tag{2}
\end{equation*}
$$

Because we are considering only the x, y plane, $z=0$ and because the two charges are on the x-axis, then $y_{i}, z_{i}=0$, and $N=2$

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{2} \frac{q_{i}}{\sqrt{\left(x-x_{i}\right)^{2}+y^{2}}} \tag{3}
\end{equation*}
$$

$1 x$-axis

This section looks at the four cases for the potential on the x-axis. since $y=0$, then for all four cases on the x-axis,

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{2} \frac{q_{i}}{\sqrt{\left(x-x_{i}\right)^{2}}} \tag{4}
\end{equation*}
$$

1.12 positive charges, $+Q$, one at D and one at $-D,|x| \ll D$

With both charges equal to $+Q$, Eq. 4 leads to

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{\sqrt{(x-D)^{2}}}+\frac{1}{\sqrt{(x+D)^{2}}}\right) \tag{5}
\end{equation*}
$$

Because $|x| \ll D$, this leads to

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{D-x}+\frac{1}{D+x}\right) \tag{6}
\end{equation*}
$$

Factoring out D from the denominator yields

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(\frac{1}{1-\frac{x}{D}}+\frac{1}{1+\frac{x}{D}}\right) \tag{7}
\end{equation*}
$$

Which can be rewritten as

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(\left(1-\frac{x}{D}\right)^{-1}+\left(1+\frac{x}{D}\right)^{-1}\right) \tag{8}
\end{equation*}
$$

Using the power series $(1+z)^{p}=1+p z+\frac{p(p-1)}{2!} z^{2}+\ldots$ results in

$$
\begin{align*}
V(x, y, z)= & \frac{Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(1+\frac{x}{D}+\frac{x^{2}}{D^{2}}+\frac{x^{3}}{D^{3}}+\ldots\right) \\
& +\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(1-\frac{x}{D}+\frac{x^{2}}{D^{2}}-\frac{x^{3}}{D^{3}}+\ldots\right) \tag{9}
\end{align*}
$$

The odd powers cancel to produce the expansion

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{2}{D}\left(1+\frac{x^{2}}{D^{2}}+\frac{x^{4}}{D^{4}}+\ldots\right) \tag{10}
\end{equation*}
$$

1.2 Opposite charges, $+Q$ at $+D,-Q$ at $-D,|x| \ll D$

Eq. 4 now leads to the same results for Eq. 5 except for a sign change, becoming

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{\sqrt{(x-D)^{2}}}-\frac{1}{\sqrt{(x+D)^{2}}}\right) \tag{11}
\end{equation*}
$$

Using the same procedure as in Eq. $6-9$ before, we now have

$$
\begin{align*}
V(x, y, z)= & \frac{Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(1+\frac{x}{D}+\frac{x^{2}}{D^{2}}+\frac{x^{3}}{D^{3}}+\ldots\right) \\
& -\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(1-\frac{x}{D}+\frac{x^{2}}{D^{2}}-\frac{x^{3}}{D^{3}}+\ldots\right) \tag{12}
\end{align*}
$$

Now the even powers cancel to become

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{2}{D}\left(\frac{x}{D}+\frac{x^{3}}{D^{3}}+\frac{x^{5}}{D^{5}}+\ldots\right) \tag{13}
\end{equation*}
$$

1.32 positive charges, $+Q$, one at D and one at $-D, x \gg D$

Starting with Eq.5, but now with $x \gg D$,

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{x-D}+\frac{1}{x+D}\right) \tag{14}
\end{equation*}
$$

Factoring out x from the denominator yields

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{x}\left(\frac{1}{1-\frac{D}{x}}+\frac{1}{1+\frac{D}{x}}\right) \tag{15}
\end{equation*}
$$

Using the Laurent series expansion now results in

$$
\begin{align*}
V(x, y, z)= & \frac{Q}{4 \pi \epsilon_{0}} \frac{1}{x}\left(1+\frac{D}{x}+\frac{D^{2}}{x^{2}}+\frac{D^{3}}{x^{3}}+\ldots\right) \\
& +\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{x}\left(1-\frac{D}{x}+\frac{D^{2}}{x^{2}}-\frac{D^{3}}{x^{3}}+\ldots\right) \tag{16}
\end{align*}
$$

The odd powers of the expansion cancel to become

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{2}{x}\left(1+\frac{D^{2}}{x^{2}}+\frac{D^{4}}{x^{4}}+\ldots\right) \tag{17}
\end{equation*}
$$

However, it should noted that this is an odd function, and multiplying through by $\frac{1}{x}$ results in

$$
\begin{equation*}
V(x, y, z)=\frac{2 Q}{4 \pi \epsilon_{0}}\left(\frac{1}{x}+\frac{D^{2}}{x^{3}}+\frac{D^{4}}{x^{5}}+\ldots\right) \tag{18}
\end{equation*}
$$

1.4 Opposite charges, $+Q$ at $+D,-Q$ at $-D, x \gg D$

Changing the sign in Eq. 14 results in the even powers of the expansion cancelling and

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{2}{x}\left(\frac{D}{x}+\frac{D^{3}}{x^{3}}+\frac{D^{5}}{x^{5}}+\ldots\right) \tag{19}
\end{equation*}
$$

Which can be rewritten as

$$
\begin{equation*}
V(x, y, z)=\frac{2 Q}{4 \pi \epsilon_{0}}\left(\frac{D}{x^{2}}+\frac{D^{3}}{x^{4}}+\frac{D^{5}}{x^{6}}+\ldots\right) \tag{20}
\end{equation*}
$$

$2 y$-axis
This section looks at the four cases for the potential on the y-axis, where we now consider that $x=0$ and Eq. 3 becomes

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{2} \frac{q_{i}}{\sqrt{x_{i}^{2}+y^{2}}} \tag{21}
\end{equation*}
$$

Because $x_{i}= \pm D$

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{2} \frac{q_{i}}{\sqrt{D^{2}+y^{2}}} \tag{22}
\end{equation*}
$$

2.12 positive charges, $+Q$, one at D and one at $-D,|y| \ll D$

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{2 Q}{\sqrt{D^{2}+y^{2}}} \tag{23}
\end{equation*}
$$

Factor out D from the denominator yields

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{D} \frac{2 Q}{\sqrt{1+\frac{y^{2}}{D^{2}}}} \tag{24}
\end{equation*}
$$

Which can be rewritten as

$$
\begin{equation*}
V(x, y, z)=\frac{2 Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(1+\frac{y^{2}}{D^{2}}\right)^{\frac{-1}{2}} \tag{25}
\end{equation*}
$$

Using the power series $(1+z)^{p}=1+p z+\frac{p(p-1)}{2!} z^{2}+\ldots$ results in

$$
\begin{equation*}
V(x, y, z)=\frac{2 Q}{4 \pi \epsilon_{0}} \frac{1}{D}\left(1-\frac{1}{2} \frac{y^{2}}{D^{2}}+\frac{3}{8} \frac{y^{4}}{D^{4}}+\ldots\right) \tag{26}
\end{equation*}
$$

2.2 Opposite charges, $+Q$ at $+D,-Q$ at $-D$, either $|x| \ll D$ or $x \gg D$

Either inspection or calculation reveals that the potential is always zero on the y-axis for this case

$$
\begin{equation*}
V(x, y, z)=0 \tag{27}
\end{equation*}
$$

2.32 positive charges, $+Q$, one at D and one at $-D, y \gg D$

Beginning with Eq. 24, Factoring out y from the denominator yields

$$
\begin{equation*}
V(x, y, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{y} \frac{2 Q}{\sqrt{1+\frac{D^{2}}{y^{2}}}} \tag{28}
\end{equation*}
$$

Following the same method as in Eq. 25 and 26 results is the Laurent series expansion

$$
\begin{equation*}
V(x, y, z)=\frac{2 Q}{4 \pi \epsilon_{0}} \frac{1}{y}\left(1-\frac{1}{2} \frac{D^{2}}{y^{2}}+\frac{3}{8} \frac{D^{4}}{y^{4}}+\ldots\right) \tag{29}
\end{equation*}
$$

