Power Series Coefficients

Consider the power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

expanded around the point z_{0}. In lecture we derived that the coeffcients are given by

$$
c_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)
$$

1. Find the first four nonzero coeffcients for $\sin \theta$ expanded around the origin.
2. Write out the series approximation, correct to fourth order, for $\sin \theta$ expanded around the origin.

$$
\sin \theta=
$$

3. Find the first four nonzero coecients for $\sin \theta$ expanded around $\theta_{0}=\frac{\pi}{6}$.
4. Write out the series approximation, correct to fourth order, for $\sin \theta$ expanded around $\theta_{0}=\frac{\pi}{6}$.

$$
\sin \theta=
$$

5. What does it mean to write a series expansion around the point a?
6. Briefly describe in words how to expand the series approximation for a function, correct to fourth order.
