GAUSS'S LAW

Suppose you are standing on a hill. You have a topographic map, which uses rectangular coordinates (x; y) measured in miles. Your global positioning system says your present location is at one of the following points (pick one):
A: $(1,4)$
$\mathrm{B}:(4,9)$
$C:(4,9)$
$\mathrm{D}:(1,4) \quad \mathrm{E}:(2,0) \quad \mathrm{F}:(0,3)$

Your guidebook tells you that the height h of the hill, in feet above sea level is given by:

$$
h(x, y)=\left(2 x y-3 x^{2}-4 y^{2}-18 x+28 y+1200\right)
$$

- Where is the top of the hill located?
- How high is the hill?
- Draw a topographic map of the hill (your map should have at least 3 level curves; label your location on the map). What is your height?
- Starting at your present location, in what compass direction (2-D unit vector) do you need in order to climb the hill as steeply as possible?
- How steep is the hill in you start at your present location and go in this direction?
- In what direction in space (3-d vector) would you actually be mov-ing if you started at your present location and walked in the compass direction you found in the previous problem?

