Activity 5: Solution for magnetic field

Find the magnetic field in all space due to a ring with total charge () and radius
R rotating with a period T’
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where 7 denotes the position in space at which the magnetic field is measured and #’ denotes the position
of the current segment. As described in previous solutions,
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1 The z axis
For points on the z axis, r = 0 and ¢ can be arbitrarily taken as zero. Thus, the integral simplifies to
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Doing the integral results in
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2 The z axis

For points on the = axis, z = 0 and ¢ = 0. Because z = 0 the ¢ and j components disappear and the integral
simplifies to
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