Activity 4: Solution for magnetic vector potential

Find the magnetic vector potential in all space due to a ring with total charge Q and radius R rotating with a period T

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=\frac{\mu_{0}}{4 \pi} \int_{\text {ring }} \frac{\overrightarrow{\boldsymbol{I}}\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right) d l^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \tag{1}
\end{equation*}
$$

where $\overrightarrow{\boldsymbol{r}}$ denotes the position in space at which the magnetic vector potential is measured and $\overrightarrow{\boldsymbol{r}}^{\prime}$ denotes the position of the current segment.

For the current

$$
\begin{align*}
\overrightarrow{\boldsymbol{I}}\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right) & =\lambda(\overrightarrow{\boldsymbol{r}}) \overrightarrow{\boldsymbol{v}}=\frac{Q}{2 \pi} \frac{2 \pi R}{T} \hat{\phi}=\frac{Q R}{T} \hat{\phi} \tag{2}\\
& =\frac{Q R}{T}\left(-\sin \phi^{\prime} \hat{\mathbf{i}}+\cos \phi^{\prime} \hat{\mathbf{j}}\right) \tag{3}
\end{align*}
$$

In cylindrical coordinates, $d l^{\prime}=R d \phi^{\prime}$, and, as discussed in previous solutions,

$$
\begin{equation*}
\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|=\sqrt{r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}} \tag{4}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=\frac{\mu_{0}}{4 \pi} \int_{0}^{2 \pi} \frac{Q R}{T} \frac{\left(-\sin \phi^{\prime} \hat{\mathbf{i}}+\cos \phi^{\prime} \hat{\mathbf{j}}\right) R d \phi^{\prime}}{\sqrt{r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}}} \tag{5}\\
& \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=\frac{\mu_{0}}{4 \pi} \frac{Q R^{2}}{T} \int_{0}^{2 \pi} \frac{\left(-\sin \phi^{\prime} \hat{\mathbf{i}}+\cos \phi^{\prime} \hat{\mathbf{j}}\right) d \phi^{\prime}}{\sqrt{r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}}} \tag{6}
\end{align*}
$$

1 The z axis
For points on the z axis, $r=0$ and the integral simplifies to

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=\frac{\mu_{0}}{4 \pi} \frac{Q R^{2}}{T} \int_{0}^{2 \pi} \frac{\left(-\sin \phi^{\prime} \hat{\mathbf{i}}+\cos \phi^{\prime} \hat{\mathbf{j}}\right) d \phi^{\prime}}{\sqrt{R^{2}+z^{2}}} \tag{7}
\end{equation*}
$$

Doing the integral results in

$$
\begin{equation*}
\vec{A}(\vec{r})=0 \tag{8}
\end{equation*}
$$

2 The x axis
For points on the x axis, $z=0$ and $\phi=0$, so the integral simplifies to

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=\frac{\mu_{0}}{4 \pi} \frac{Q R^{2}}{T} \int_{0}^{2 \pi} \frac{\left(-\sin \phi^{\prime} \hat{\mathbf{i}}+\cos \phi^{\prime} \hat{\mathbf{j}}\right) d \phi^{\prime}}{\sqrt{r^{2}-2 r R \cos \phi^{\prime}+R^{2}}} \tag{9}
\end{equation*}
$$

This results in a very similar situation as the case for electric field on the x axis, except that now we will address the $\hat{\boldsymbol{\imath}}$ component instead of the $\hat{\boldsymbol{\jmath}}$ component. Using the same process we let $u=x^{2}-2 x R \cos \phi^{\prime}+R^{2}$, then $d u=2 x R \sin \phi^{\prime} d \phi^{\prime}$, and for the $\hat{\boldsymbol{\imath}}$ component the integral becomes

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}}_{x}(\overrightarrow{\boldsymbol{r}})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \frac{-1}{2 x} \int_{0}^{2 \pi} \frac{d u \hat{\boldsymbol{\jmath}}}{u^{1 / 2}} \tag{10}
\end{equation*}
$$

Doing the integral, we find

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}}_{x}(\overrightarrow{\boldsymbol{r}})=0 \tag{11}
\end{equation*}
$$

Thus the $\hat{\boldsymbol{\imath}}$ component disappears and we are left with an elliptic integral with only a $\hat{\boldsymbol{\jmath}}$ component

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{\cos \phi^{\prime} \hat{\boldsymbol{\jmath}} d \phi^{\prime}}{\sqrt{r^{2}-2 r R \cos \phi^{\prime}+R^{2}}} \tag{12}
\end{equation*}
$$

