Quantum Time Evolution

Two particles are under the influence of an interaction with a Hamiltonian $\omega_{0} S_{z}$. At $t=0$, one particle is in the state $|+\rangle$ and the other is in the state $|+\rangle_{x}$.

1. What state is each particle in at a time t later?
2. What is the probability that you would measure each particle to be in the $|+\rangle$ state at time t ? Do these probabilities change with time?
3. What is the probability that you would measure each particle to be in the $|+\rangle_{x}$ state at time t ? Do these probabilities change with time?
4. Given a Hamiltonian, how would you determine which states are stationary states (states that don't change with time)? Under what circumstances do measurement probabilities change with time?
