Quantum Time Evolution

Two particles are under the influence of an interaction with a Hamiltonian that is proportional to \hat{S}_{z}. At $t=0$, one particle is in the state $|+\rangle$ and the other is in the state $|+\rangle_{x}$.

1. What state is each particle in at a later time t ?
2. What is the probability that you would measure $S_{x}=\frac{\hbar}{2}$ state at time t ? Does this probability change with time?
3. What is the probability that you would measure $S_{z}=\frac{\hbar}{2}$ at time t ? Does this probability change with time?
4. Given a Hamiltonian, how would you determine which states are stationary states (states where no probabilities change with time)? Under what circumstances do measurement probabilities change with time?
