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Abstract. In a 2020 paper, Y. Kovchegov introduced the notion of true positive and
negative skewness for continuous random variables via Fréchet p-means. In this work, we
find novel criteria for true skewness, identify a parameter region for true positive skewness
of the Weibull distribution, and formally establish positive skewness of the Lévy distribution
for the first time. We discuss the complications of extending the notion of true skewness
to discrete random variables and to multivariate settings. Further, several properties of the
p-means of random variables are established.

1. Introduction and Statement of Results

A commonly accepted measure for the skewness of a distribution is given by Pearson’s
moment coefficient of skewness, or the standarized third central moment

Skew[X] := E

[(
X − µ
σ

)3
]
,

where µ is the mean and σ2 is the variance. Usually, we say a distribution is positively skewed
if Skew[X] > 0 and negatively skewed if Skew[X] < 0. It is also expected that positively
skewed distributions satisfy the mean-median-mode inequalities

mode < median < mean.

Similarly, negatively skewed distributions are expected to satisfy

mean < median < mode.

However, the sign of the moment coefficient of skewness does not always imply the corre-
sponding mean-median-mode inequalities. For instance, the Weibull distribution with shape
parameter 3.44 < β < 3.60 has positive moment coefficient of skewness but satisfies the
reverse mean-median-mode inequalities, corresponding to negative skew [5]. This discrep-
ancy is important when comparing with other measures of skewness, such as Pearson’s first
skewness coefficient

mean−mode

standard deviation
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and Pearson’s second skewness coefficient

3× mean−median

standard deviation
.

The direction of skewness can therefore be inconsistent between different skewness measures.
In a recent paper, Y. Kovchegov [8] introduced the notion of true positive and negative

skewness to unify the previous measures in determining the sign of skewness. It relies on
the idea that for skewed distributions, one tail should stochastically dominate the other,
resulting in a tail that “spreads shorter” and another that “spreads longer.” We use a class
of centroids known as Fréchet p-means.

Definition 1.1. For p ∈ [1,∞) and random variable X with finite p-th moment, the Fréchet
p-mean, or simply the p-mean, of X is the quantity

νp := arg min
a∈R

E|X − a|p. (1.1)

Occasionally we write ν(p) to emphasize that ν is a function of p.

The p-mean is uniquely defined for all p ≥ 1 as E|X − a|p is a strictly convex function of a.
Moreover, νp is the unique solution of

E[(X − νp)p−1
+ ] = E[(νp −X)p−1

+ ], (1.2)

which requires only the finiteness of the (p − 1)-st moment. If X has a density function f ,
then we can rewrite (1.2) as∫ νp−L

0

yp−1f(νp − y)dy =

∫ R−νp

0

yp−1f(νp + y)dy (1.3)

where X has support on the possibly infinite interval (L,R). Notice that identically dis-
tributed random variables have the same p-means and that ν1 and ν2 correspond to the
median and mean of the distribution, respectively.

Let
DX := {p ≥ 1 : E|X|p−1 <∞}

be the domain of νp for X. If X has a unique mode, then we denote it by ν0. In this case, we
include 0 in the set DX . We omit the subscript X when the random variable is unambiguous.

Definition 1.2. We say a random variable X (resp. its distribution and density) is truly
positively skewed if νp is a strictly increasing function of p in D, provided D has non-empty
interior. Analogously, X is truly negatively skewed if νp is a strictly decreasing function
of p in D.

Remark 1.3. It may be possible that, for a unimodal distribution, νp is strictly increasing
only on D \ {0} and that there exists p ∈ D \ {0} such that νp < ν0. Kovchegov [8]
differentiates between this case, which is referred to in that work as true positive skewness,
and the case where νp is increasing on all of D, which is referred to as true mode positive
skewness. Because we consider mostly unimodal distributions, for simplicity we take true
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positive skewness to mean true mode positive skewness in the sense of Kovchegov, unless
explicitly mentioned otherwise.

If X has unique mode, true positive skewness guarantees ν0 < ν1 < ν2 < ν4. Thus
Pearson’s first and second skewness coefficients coincide in sign, and the expected mean-
median-mode inequalities are satisfied. The following proposition shows that true positive
skewness unifies these measures of skewness with the moment coefficient of skewness in
determining the direction of skewness.

Proposition 1.4 (Kovchegov [8], 2020). For X with finite third moment, Skew[X] > 0 if
and only if ν2 < ν4.

An additional advantage of the notion of true positive skewness is that it allows us to
characterize the skewness of distributions that have infinite integer moments. Indeed, each
of Pearson’s skewness coefficients requires at least a finite first moment. This excludes a
large class of heavy-tailed distributions from the classical study of skewness. See [11] for a
detailed inquiry into heavy-tailed distributions.

Kovchegov proves the true positive skewness of several distributions: exponential, gamma,
beta (in certain parameter regions), log-normal, and Pareto. Using criteria established in
Kovchegov’s paper, we prove true positive skewness of two additional distributions. In
particular, the Lévy distribution has undefined moment coefficient of skewness because it
has no finite integer moments. Thus, to the authors’ knowledge, its positive skewness is
formally established for the first time in this work.

Theorem 1.5. The Lévy distribution is truly positively skewed.

When considering distribution families, we always assume the location parameter is 0 and
the scale parameter is 1, since they do not affect the direction of skewness.

Theorem 1.6. The Weibull distribution with shape parameter k > 0 is truly positively
skewed if and only if 0 < k < 1

1−log 2
. Moreover, it is not truly negatively skewed for any

k > 0.

It is necessary for practical purposes to develop additional simple criteria for determining
the true skewness of distributions. We disprove a conjecture of Kovchegov that true positive
skewness is preserved under summation, in both discrete and continuous settings. Products
of truly skewed random variables are also considered, and we provide a conjecture on the
behavior of true skewness under multiplication. For concave distributions, i.e. having a
density function decreasing in its support, we prove the following.

Theorem 1.7. Let X be a continuous random variable with density function decreasing on
its support. If u is convex and strictly increasing, then u(X) is truly positively skewed.

We say a random variable X (resp. its distribution and density) is truly non-negatively
skewed if νp is a non-decreasing function of p in D. Note that true positive skewness implies
true non-negative skewness. This property is closed under weak limits, or convergence in
distribution. If Xn converges weakly to X, we write Xn ⇒ X.

Theorem 1.8. Suppose Xn ⇒ X with DX ⊆
⋂
nDXn and {Xp

n}n∈N uniformly integrable for
all p ∈ D. If the Xn’s are truly non-negatively skewed, then so is X.
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A slightly stronger condition yields true positive skewness. Denote by νn(p) the p-mean
of Xn.

Corollary 1.9. Suppose Xn ⇒ X with DX ⊆
⋂
nDXn and {Xp

n}n∈N uniformly integrable for
all p ∈ D. If the Xn’s are truly positively skewed and there exists c > 0 such that ν ′n(p) > c
for all p ∈ D and all n ∈ N, then X is truly positively skewed.

Additionally, we establish a simple criterion for true positive skewness of random variables
supported on the half-line that can be utilized in numerical analyses. In particular, it avoids
using information about νp, which generally has no closed-form expression, except for ν0 and
ν1, which are easily computable. In certain cases, the conditions given below can be relaxed.

Theorem 1.10. Let X have support on (0,∞) with unimodal density f ∈ C2(0,∞) that is
continuous at 0. Suppose f ′′ has exactly two positive roots θ1, θ2 such that θ1 < ν0 < θ2, and

(1) f ′/f > 1/ν0 on (0, θ1),
(2) f ′/f > −1/ν0 on (θ2,∞).

If ν1 > (ν0 + θ2)/2, then X is truly positively skewed.

Corollary 1.11. Let X have support on (0,∞) with unimodal density f ∈ C2(0,∞) that is
continuous at 0. Suppose f ′′ has exactly one positive root θ > ν0. If ν1 > (ν0 + θ)/2, then X
is truly positively skewed.

The article is structured as follows. In Section 2, we restate and extend several previous
results on true skewness, and general properties of νp are shown in Section 3. Proofs of the
true positive skewness of the Lévy and Weibull distributions are given in Section 4. Section
5 reviews transformations, sums, and products of truly skewed random variables, and we
give a proof of Theorem 1.7. In Section 6, we prove Theorem 1.8 and Corollary 1.9. Then,
in Section 7, we prove Theorem 1.10 and Corollary 1.11, and we give some examples on how
they can be used. A discussion of how true skewness can be extended to the discrete and
multivariate settings is given in Section 8. Finally, we suggest a new measure of skewness
based on the notion of true positive skewness in Section 9.

2. Preliminary results

In this section, we restate several results in [8] and provide slight extensions of them, which
will become necessary in later sections. In general, we use f to denote the density function
of a random variable.

Definition 2.1. We say that X stochastically dominates Y (resp. their distributions)
if the distribution function F of X is dominated by the distribution function G of Y , i.e. if
F (x) ≤ G(x) for all x ∈ R. We say that the stochastic dominance is strict if in addition
there exists a point x0 for which F (x0) < G(x0).

We also define a normalizing term Hp as the equal quantities in (1.3), i.e.,

Hp :=

∫ νp−L

0

yp−1f(νp − y)dy =

∫ R−νp

0

yp−1f(νp + y)dy (2.1)

for p ∈ D. The first result establishes the relationship between true positive skewness and
stochastic dominance of the tails of a distribution.
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Theorem 2.2 (Kovchegov [8], 2020). Let X be a continuous random variable supported on
(L,R) with density function f . Fix p ∈ D. If the distribution with density 1

Hp
yp−1f(νp +

y)1(0,R−νp)(y) exhibits strict stochastic dominance over the distribution with density 1
Hp
yp−1f(νp−

y)1(0,νp−L)(y), then ν is increasing at p.

The crux of the proof of Theorem 2.2 is that ν is increasing if and only if∫ R−νp

0

yp−1 log y f(νp + y)dy −
∫ νp−L

0

yp−1 log y f(νp − y)dy > 0. (2.2)

Therefore, weaker versions of stochastic ordering between the tails actually suffice for The-
orem 2.2, in particular the concave ordering. We refer the reader to [9, 11] for overviews on
different stochastic orders.

We heavily utilize the following criterion for true positive skewness.

Lemma 2.3 (Kovchegov [8], 2020). Let X be a continuous random variable supported on
(L,R) with density function f . Fix p ∈ D. Suppose there exists c > 0 such that f(νp − c) =
f(νp + c), and f(νp − x) > f(νp + x) for x ∈ (0, c) while f(νp − x) < f(νp + x) for x > c.
Suppose also that νp − L ≤ R− νp. Then ν is increasing at p.

The following is a special case.

Proposition 2.4 (Kovchegov [8], 2020). If f is strictly decreasing on its support, then X is
truly positively skewed.

The requirement of strict monotonicity in the proposition can be relaxed, which will be
necessary when we consider uniform mixtures in a later section.

Proposition 2.5. If f is non-increasing on its support (L,R), and there exist any two points
y1, y2 ∈ (L,R), y1 < y2, such that f(y1) > f(y2), then X is truly positively skewed.

Proof. Clearly L is finite, otherwise f could not be a non-increasing density function. Notice
that νp < (L+R)/2 for all p ∈ D. Otherwise (1.3) fails to hold since f(νp + y) ≤ f(νp − y)
and R− νp < νp − L by assumption.

Now the existence of y1 < y2 such that f(y1) > f(y2) implies that there exists a non-
singleton interval in (0, νp − L) on which f(νp + y) < f(νp − y). Then strict stochastic
dominance of 1

Hp
yp−1f(νp + y)1(0,R−νp)(y) over 1

Hp
yp−1f(νp − y)1(0,νp−L)(y) follows by inte-

grating each density, applying monotonicity of the integral, and using equation (2.1). �

The strict inequalities in Lemma 2.3 can be relaxed in a similar manner.

3. Properties of p-means

In this section, we prove several simple but fundamental properties of p-means and their
behavior. Here and throughout this work, let νXp denote the p-mean of a random variable
X whenever defined. We use νp when the random variable in question is unambiguous. The
first result bounds νp in the support of X.

Proposition 3.1. Let X be a random variable with support contained in (L,R) for possibly
infinite L,R. Then νp ∈ (L,R) for all p ∈ D.
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Proof. If νp ≤ L, then E[(νp −X)p−1
+ ] = 0 while E[(X − νp)p−1

+ ] > 0, contradiction. Similar
if νp ≥ R. �

Another important fact that will frequently be used is that νp is a continuously differen-
tiable function for p > 1. This was used implicitly in [8], but we provide a proof here for
completeness.

Proposition 3.2. The map ν(p) ≡ νp is continuously differentiable on D ∩ (1,∞).

Proof. Consider the function Φ : R×D → R given by

Φ(a, p) := E[(X − a)p−1
+ ]− E[(a−X)p−1

+ ].

Let (X,Ω, P ) be our probability space. We can rewrite Φ as

Φ(a, p) =

∫
Ω

(X − a)p−11{X > a}dP −
∫

Ω

(a−X)p−11{X < a}dP.

Both integrands are continuously differentiable functions of a and p for all ω ∈ Ω and are
dominated by an integrable function by the finiteness of E|X|p. Using the Leibniz integral
rule, note that

∂

∂a
Φ(a, p) = −(p− 1)

(
E[(X − a)p−2

+ ] + E[(a−X)p−2
+ ]
)

(3.1)

is strictly negative and finite for all a ∈ R and p > 1. The map p 7→ (νp, p) is the zero level
curve of Φ and so p 7→ νp is countinuously differentiable by the implicit function theorem. �

One must be careful about the domain of p. The expectations in (3.1) are not necessarily
finite for p ≤ 1. Moreover, it is not generally true that νp is continuous at p = 0 for unimodal
distributions.

When investigating specific distribution families, we will assume that the scale and location
parameters are 1 and 0 respectively unless otherwise noted. This is justified by the following,
which implies that true positive skewness is preserved under positive affine transformations.

Proposition 3.3. For any c, s ∈ R and p ∈ DX , νcX+s
p = cνXp + s.

Proof. It is easy to see that DX = DcX+s =: D. We have for all p ∈ D that

E[((cX + s)− (cνXp + s))p−1
+ ] = cp−1E[(X − νXp )p−1

+ ] =

= cp−1E[(νXp −X)p−1
+ ] = E[((cνXp + s)− (cX + s))p−1

+ ]

and the result follows. �

Next, we consider the asymptotic behavior of νp as p→∞. This requires X to have finite
moments of all orders, which clearly holds if X has bounded support. We consider only
continuous random variables, but we can obtain similar results in the discrete case.

Proposition 3.4. Let X be a continuous random variable with support on (L,R) for finite
L,R. Then νp → (L+R)/2 as p→∞.
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Proof. It suffices to show the statement for X with support on (0, 1) and νp → 1/2 by
Proposition 3.3.

Let ε > 0 be given. If ε ≥ 1/2 then it holds trivially that νp ∈ (1/2 − ε, 1/2 + ε). Thus
assume 0 < ε < 1/2 and suppose for the sake of contradiction that there exists a subsequence
νpk such that νpk < 1/2− ε for all k ∈ N. Note that for pk > 1,

E[(X − νpk)pk−11{X > νpk}] > E[(X − 1/2 + ε)pk−11{X > 1− ε}]
> E[2−(pk−1)1{X > 1− ε}]
= 2−(pk−1)P (X > 1− ε) (3.2)

and

E[(νpk −X)pk−11{X < νpk}] < E[(1/2− ε)pk−11{X < 1/2− ε}]
= (1/2− ε)pk−1P (X < 1/2− ε). (3.3)

From (3.2) and (3.3), we have

E[(νpk −X)pk−11{X < νpk}]
E[(X − νpk)pk−11{X > νpk}]

<
P (X < 1/2− ε)
P (X > 1− ε)

· (1− 2ε)pk−1 → 0

as k → ∞. This contradicts (1.1). Thus every subsequence has only finitely many points
that fall below 1/2− ε. We can similarly show that every subsequence has only finitely many
points that fall above 1/2 + ε. Taking ε→ 0, it follows that every subsequence converges to
1/2, which proves the proposition. �

Suppose instead X has infinite support that is bounded below. We have an analogous
proposition if the support is instead bounded above.

Proposition 3.5. Let X be a continuous random variable with support on (L,∞) for finite
L. If X has finite moments of all orders, then νp →∞.

Proof. We may assume L = 0. Suppose for the sake of contradiction that there exists M > 0
such that νp < M for all p ≥ 1. By Proposition 3.3, we may assume M = 1/2. Note that

νp −X < 1/2 on {X < νp}, so by the bounded convergence theorem E[(νp −X)p−1
+ ]→ 0 as

p→∞. On the other hand,

E[(X − νp)p−1
+ ] ≥ E[(X − νp)p−11{X > νp + 1}] ≥ P (X > 3/2) > 0,

hence (1.2) fails to hold for large p and we attain the contradiction. �

A consequence of Proposition 3.5 is that no distribution with support on the positive
half-line is truly negatively skewed. Similarly, no distribution with support on the negative
half-line is truly positively skewed.

4. Examples: Lévy and Weibull distributions

As an example, we demonstrate the true positive skewness of the Lévy distribution using
Lemma 2.3.
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Proof of Theorem 1.5. The density function of the Lévy distribution over x ≥ 0 is

f(x) =
1

x2/3
√

2π
e−1/(2x).

The log density ratio is given by

gp(x) := log

(
f(νp − x)

f(νp + x)

)
= log(f(νp − x))− log(f(νp + x))

= −2

3
log(νp − x)− 1

2(νp − x)
+

2

3
log(νp + x) +

1

2(νp + x)
,

To find the extrema, we take g′p(x) and set it to zero:

2

3(νp − x)
− 1

2(νp − x)2
+

2

3(νp + x)
− 1

2(νp + x)2
= 0,

Equivalently,

4(νp − x)(νp + x)2 − 3(νp + x)2 + 4(νp + x)(νp − x)2 − 3(νp − x)2 = 0.

We can simplify this equation further to obtain a quadratic equation in x,

(3 + 4νp)x
2 + 3ν2

p − 4ν3
p = 0.

One can verify that the only positive root of this equation is

x∗ =

√
4ν3

p − 3ν2
p

3 + 4νp
.

Observe that limx→νp− gp(x) = −∞ and gp(0) = 0, with the only positive extremum of gp
being x∗. By (1.3), we cannot have gp(x) ≤ 0 for all x > 0. This implies x∗ maximizes g.
We have that g(x) is increasing on [0, x∗) and decreasing on (x∗, νp). The intermediate value
theorem implies the existence of a point c ∈ (x∗, νp) such that g(c) = 1. This satisfies the
conditions in Lemma 2.3 and holds for all p ∈ D, so true positive skewness follows. �

Next, we demonstrate necessary and sufficient conditions on the shape parameter of a
Weibull distribution for true positive skewness, again using Lemma 2.3. The Rayleigh dis-
tribution, as a special case of Weibull for shape parameter k = 2, is truly positively skewed
as an immediate consequence.

The density function for shape parameter k > 0 is given by

f(x) = kxk−1e−x
k

1(0,∞)(x).

Moments of all orders are finite. Formulas for the median and mode are also well-known for
k > 1:

ν0 =

(
k − 1

k

)1/k

, (4.1)

ν1 = (log 2)1/k. (4.2)

Notice that ν0 < ν1 if and only if k < (1 − log 2)−1. We refer the reader to [10] for general
properties of the Weibull distribution.
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Proof of Theorem 1.6. The “only if” part follows from (4.1) and (4.2). For k ≤ 1, f is
strictly decreasing, so we are done by Proposition 2.4. Consider k > 1.

Let p ≥ 1 be given and consider the log density ratio

gp(x) := log

(
f(νp − x)

f(νp + x)

)
defined on x ∈ [0, νp). Plugging in the Weibull density function for f , we have

gp(x) = (k − 1) log(νp − x)− (k − 1) log(νp + x)− (νp − x)k + (νp + x)k;

g′p(x) = k(νp − x)k−1 + k(νp + x)k−1 − k − 1

νp − x
− k − 1

νp + x
.

Roots of g′p remain the same after we multiply by (νp − x)(νp + x), so we consider the roots
of

g∗p(x) := (νp − x)(νp + x)g′p(x) =

= k(ν2
p − x2)

[
(νp − x)k−1 + (νp + x)k−1

]
− 2(k − 1)νp. (4.3)

for x ∈ [0, νp). This domain means the binomial series for (νp − x)k−1 and (νp + x)k−1

converge, hence

(νp − x)k−1 + (νp + x)k−1 = 2
∞∑
n=0

(
k − 1

2n

)
νk−2n−1
p x2n,

where
(
a
b

)
:= a(a−1)...(a−b+1)

b!
is the generalized binomial coefficient.

Expanding,

g∗p(x) = 2k
∞∑
n=0

(
k − 1

2n

)
νk−2n+1
p x2n − 2k

∞∑
n=1

(
k − 1

2n− 2

)
νk−2n+1
p x2n − 2(k − 1)νp

= 2k
∞∑
n=1

((
k − 1

2n

)
−
(
k − 1

2n− 2

))
νk−2n+1
p x2n + 2kνk+1

p − 2(k − 1)νp. (4.4)

where (
k − 1

2n

)
−
(
k − 1

2n− 2

)
=
k(k − 1) . . . (k − 2n+ 2)(k + 1− 4n)

(2n)!
. (4.5)

We analyze the sign changes of the coefficients in (4.4) to determine the number of real
positive roots of g∗p by splitting into several cases for the value of k.

Case 1: 2 < k < 3. Then k, k − 1, k − 2 are positive and k − 3, . . . , k − 2n + 2 are
negative. There are an even number (possibly zero, if n = 1, 2) of negative factors in
k(k− 1) . . . (k− 2n+ 2), so it is positive. Also note k+ 1− 4n < 0 for all n ≥ 1, hence (4.5)
is negative for all n ≥ 1.

For the series expression g∗p(x) =
∑∞

m=0 amx
m, we have shown that am < 0 for non-zero

even m and am = 0 for odd m. By Descartes’ rule of signs for infinite series, g∗p has no
positive real roots if a0 ≤ 0 and has at most one positive real root if a0 > 0.

Suppose a0 ≤ 0 such that g∗p has no positive real roots. By extension, g′p has no positive
real roots, so gp has no positive extrema and is strictly monotonic on [0, νp). Since gp(0) = 0
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and limx→νp− gp(x) = −∞, then gp is strictly negative on [0, νp), hence f(νp−x) < f(νp +x)
for all x ∈ (0, νp). By monotonicity of the integral, this contradicts (1.3). Thus a0 > 0 and
g∗p has exactly one real root c′ ∈ (0, νp).

We know g′p also has exactly one positive real root since it shares roots with g∗p. Moreover,
g′p(0) = a0 > 0 and g′p → −∞ as x → νp, so g′p(x) > 0 for x ∈ (0, c′) and g′p(x) < 0 for
x ∈ (c′, νp). Thus c′ is a maximum and the only positive extremum.

Since gp(0) = 0 and limx→νp− gp(x) = −∞, then gp(c
′) > 0. The intermediate value

theorem implies that gp has a root c ∈ (c′, νp). Moreover, since c′ is the only positive
extremum of gp, then gp(x) > 0 for x ∈ (0, c) and gp(x) < 0 for x ∈ (c, νp). This satisfies the
conditions of Lemma 2.3.

The above holds for all p ≥ 1. Moreover, the positivity of

a0 = 2kνk+1
p − 2(k − 1)νp = 2νp(kν

k
p − k + 1)

in our above calculations implies νp >
(
k−1
k

)1/k
= ν0 for all p ≥ 1, and we are done.

Case 2: 1 < k < 2. The inequality k + 1 − 4n < 0 still holds for all n ≥ 1, but we now
have k, k − 1 > 0 and k − 2, . . . , k − 2n+ 2 < 0. If n > 1, then there are an odd number of
negative factors in k(k − 1) . . . (k − 2n + 2), so the numerator of (4.5) is positive. If n = 1,
then the numerator is simply k(k − 3) < 0.

Thus our coefficients in g∗p(x) =
∑∞

m=0 amx
m are positive for even m > 2 and zero for odd

m with a2 < 0. By Descartes’ rule of signs, g∗p has at most two positive real roots if a0 > 0
and at most one if a0 ≤ 0.

Suppose a0 ≤ 0. If g∗p has a single positive real root, then limx→νp− g
∗
p(x) > 0. But by

continuity this limit tends to −2(k − 1)νp < 0. If instead g∗p has no positive real roots,
then by the same argument above we contradict equation (9) in [?]. Thus a0 > 0. In this
case, if g∗p has zero or two positive real roots, then again limx→νp− g

∗
p(x) > 0 and we reach

a contradiction. Hence g∗p has exactly one positive real root. We may now conclude in the
same fashion as in Case 1.

Case 3: 3 < k < 1
1−log 2

. We again look at the numerator of (4.5). If n = 1, the numerator

is k(k − 3) > 0. If n = 2, the numerator is k(k − 1)(k − 2)(k − 7) < 0. If n > 2, then
k(k − 1) . . . (k − 2n + 2) has positive factors k, . . . , k − 3, and an odd number of negative
factors k − 4, . . . , k − 2n+ 2. Additionally, k + 1− 4n < 0 when n > 2, so the numerator of
(4.5) is positive.

Our coefficients in g∗p(x) =
∑∞

m=0 amx
m are zero for odd m, positive for even m ≥ 6,

negative for m = 4, and positive for m = 2. This yields two sign changes and hence at most
two positive real roots of g∗p if a0 > 0. Recall that a0 > 0 if and only if νp > ν0.

Since g∗p is negative at the right limit of its domain, then it must have exactly one positive
real root if νp > ν0. If this holds for some p0, then νp is increasing at p = p0 by Lemma 2.3.
It would then follow that νp must be increasing for all p ≥ p0 since νp is continuous. Since
k < 1

1−log 2
, then ν1 > ν0 by (4.1) and (4.2); hence νp is increasing for all p ≥ 1 and we are

done.
Case 4: k = 2. We can plug k = 2 directly into (4.3) and solve g∗p = 0 to obtain the roots

x2 = ν2
p −

1

2
= ν2

p − ν2
0
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The argument in Case 1 can be adapted to show that νp > ν0 for all p ≥ 1, hence g∗p has

exactly one positive root
√
ν2
p − ν2

0 . We conclude as in Case 1 that νp is increasing for all

p ≥ 1.
Case 5: k = 3. Similarly, we plug k = 3 into (4.3) and obtain the roots of g∗p:

x4 = ν4
p −

2

3
νp = νp(ν

3
p − ν3

0)

One can again check that there is exactly one positive root for any p ≥ 1. The rest of the
argument is the same. �

Remark 4.1. Applying Descartes’ rule of signs for infinite series is permissible as long as the
number of sign changes is finite, see [3]. Moreover, it is generally untrue in the infinite case
that the difference between the number of positive roots and the number of sign changes is
even.

The parameter region for which the Weibull distribution is truly positively skewed is
consistent with previous findings on the Weibull distribution’s positive skewness; see [14] for
an overview. Indeed, the upper bound (1− log 2)−1 is derived from requiring the median to
be greater than the mode. Our result essentially shows that the median-mode inequality is
sufficient to conclude positive skewness for the Weibull distribution under any of Pearson’s
skewness coefficients.

5. Transformations, Sums, and Products

In this section, we investigate the effect transformations, sums, and products have on truly
skewed random variables.

5.1. Transformations of Truly Skewed Random Variables. Before tackling operations
on multiple random variables, we begin with transformations of a single random variable.
By Proposition 3.3, we already know that positive affine transformations of a truly positively
skewed random variable preserve true positive skewness.

Consider a continuous random variable X with density fX with support (0, R) for possibly
infinite R. Let Y = u(X) where u is a measurable, invertible function defined on (0, R). Let
w = u−1. By a change of variables, the density of Y is

fY (y) = fX(w(y)) · |w′(y)| (5.1)

We prove the following theorem, again using Lemma 2.3.

Proof of Theorem 1.7. Note that DX = DY = [1,∞) since both X and Y have bounded
support. We write D for this domain. Let fY be the density of Y . It suffices to show that

log

(
fY (νp − y)

fY (νp + y)

)
(5.2)

changes sign exactly once on the interval (0,∞), for all p ∈ D.
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First note that as y increases, νp − y approaches 0. Once y > νp, fY (νp − y) = 0. Thus,
on the interval y ∈ (νp,∞),

log

(
fY (νp − y)

fY (νp + y)

)
= −∞

Moreover, we have {νp − y} ∈ [0, νp), and {νp + y} ∈ [νp, 2νp). We expand fY :

log

(
fY (νp − y)

fY (νp + y)

)
= log

(
−fX [w(νp − y)]w′(νp − y)

−fX [w(νp + y)]w′(νp + y)

)
= log

(
fX [w(νp − y)]

fX [w(νp + y)]

)
+ log

(
w′(νp − y)

w′(νp + y)

)
(5.3)

We show that the left side of (5.3) is positive. The function w is increasing, so

w(νp − y) < w(νp + y)

Because fX is strictly decreasing,

fX [w(νp − y)] > fX [w(νp − y)] (5.4)

Now, we show that the right side of (5.3) is positive. Because u is convex and increasing, w
is concave, and therefore w′ is decreasing. It follows that

w′(νp − y) > w′(νp + y)

Therefore (5.2) is strictly positive on (0, νp] and strictly negative on (νp,∞). This satisfies
Lemma 2.3 for all p ∈ D, so we obtain true positive skewness. �

We have a similar result if fX is strictly increasing.

Corollary 5.1. Let X be a continuous random variable with strictly increasing density func-
tion fX with bounded support. If u is a measurable, strictly decreasing, and convex function
on the support of X, then Y = u(X) is truly positively skewed.

Proof. The proof is analogous to that of Theorem 1.7. �

Example 5.2. Consider exponential random variable X with density function

fX(x) = e−x1(0,∞)

and u(x) = x2, where u(x) is clearly strictly increasing and convex. By the change of variable
formula, random variable Y = u(X) has probability density function

fY (y) = e−
√
y 1

2
√
y

which is truly positively skewed by Theorem 1.7. It also happens to be decreasing, which we
know implies true positive skewness.
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Figure 5.1. fY (y) = e−
√
y 1

2
√
y

5.2. Sums of Truly Skewed Random Variables. LetX and Y be two continuous random
variables with density functions fX and fY . The density function of their sum Z = X + Y
is given by

fZ(z) =

∫
fX(x)fY (z − x)dx.

One can think about the convolution of two random variables as a representation of the area
under the intersection of both probability density functions as one moves over the other (see
Figure ??).

Figure 5.2. Convolution

Kovchegov proposes an intuitive conjecture that true positive skewness is preserved under
summation.

Conjecture 5.3. If X and Y are truly positively skewed, then so is X + Y .

However, this statement is false in general. We present two counterexamples, one for
discrete random variables and one for continuous.

Example 5.4. Let X and Y be independent Bernoulli random variables with parameter 1/3.
We have shown elsewhere that Bernoulli distributions with parameter less than 1/2 are truly
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positively skewed. The sum Z = X + Y is a 2-binomial distribution with parameter 1/3.
The median of Z is unique and equal to [n/3] = 1 due to Kaas & Buhrman [6, Theorem 1].
However, the mean of Z is n/3 = 2/3. Thus ν2 < ν1, so Z is not truly positively skewed.

Example 5.5. Set λ ∈ (1
2
, 1) and define the density function

f(x) :=


λ 0 < x ≤ 1

1− λ 1 ≤ x < 2

0 otherwise.

(5.5)

Let X and Y be independent random variables with density f , so by Proposition 2.5, X and
Y are truly positively skewed. However, it is not always true that X + Y is truly positively
skewed.

The density function of Z = X + Y is given by the convolution of f with itself. One can
check that

fZ(x) := (f ∗ f)(x) =



λ2x 0 < x < 1

λ(2− 3λ)x− 2λ(1− 2λ) 1 ≤ x < 2

(1− λ)(1− 3λ)x− 2(1− λ)(1− 4λ) 2 ≤ x < 3

−(1− λ)2x+ 4(1− λ)2 3 ≤ x < 4

0 otherwise.

Notice that fZ is strictly increasing on (0, 1) and strictly decreasing on (2, 4) regardless of
the value of λ. On (1, 2), fZ is strictly increasing if λ ∈ (1

2
, 2

3
) and strictly decreasing if

λ ∈ (2
3
, 1).

Take λ = 3
5
. Since f is continuous, there exists a unique median ν1 which by solving a

straightforward integral equation can be shown to be

ν1 =
2(2λ− 1)

3λ− 2
−

√
4λ3 − 2λ2 − 3λ+ 2

λ(3λ− 2)2

when λ > 2
3
. For our choice of λ, we have ν1 ≈ 1.786. Recall that ν is increasing at p if and

only if (2.2) holds. Simply taking p = 1 and using our calculated value for the median, we
find that ∫ 4−ν1

0

log y fZ(ν1 + y)dy −
∫ ν1

0

log y fZ(ν1 − y)dy ≈ −0.000699,

hence νp is decreasing at p = 1 and so X + Y is not truly positively skewed. Numerical
computations of νp for small values of p confirm our findings.∗

There are certain classes of functions for which true positive skewness is indeed preserved
under summation. One simple example is that of decreasing linear densities of the form

f(x) = h− h2x

2
, x ∈ [0, 2/h]. (5.6)

for h > 0. Visually, these densities are right-facing right triangles with corner at the origin
and height h. They are clearly truly positively skewed by Proposition 2.4, and we can prove

∗Computations were performed using the software Wolfram Mathematica.
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that the sum of any two random variables with densities of this form is also truly positively
skewed. The proof is similar to those for the Lévy and Weibull distributions and is rather
tedious, so we leave it for Appendix A.

Proposition 5.6. If X and Y are independent random variables with density functions of
the form (5.6), then X + Y is truly positively skewed.

This suggests the following modified conjecture.

Conjecture 5.7. If X and Y are independent and have strictly decreasing and continuous
density functions, then X + Y is truly positively skewed.

5.3. Products of Truly Skewed Random Variables. Given that sums generally do not
preserve true skewness, we next consider products of truly skewed random variables. Let X
and Y be two independent random variables with density functions fX and fY . The density
function of their product Z = XY is given by

fZ(z) =

∫
1

x
fX(x)fY (z/x)dx (5.7)

We consider several examples to motivate the investigation of product distributions.

Example 5.8. Consider independent log-normal random variables X and Y with density
functions

fX(x) = fY (x) =
1

2πx
exp

(
−(log x)2

2

)
1[0,∞)(x)

It is a special result of log-normal random variables that the product Z = XY is also log-
normally distributed. The log-normal distribution is truly positively skewed [8], hence the
product distribution is truly positively skewed.

Example 5.9. Consider independent X and Y uniformly distributed on (0, 1). The product
Z = XY has density

fZ(z) =

∫ 1

z

1

x
dx = − log(z)1(0,1)(z)

Since fZ is decreasing, then Z is truly positively skewed by Proposition 2.4.

Example 5.10. Consider independent X and Y with increasing density functions

fX(x) =
x

2
1(0,2)(x), fY (x) =

x3

4
1(0,2)(x)

The product Z = XY has density

fZ(z) =
3z

8

∫ 2

z/2

dx =
z

4
− z3

64

for z ∈ (0, 4). One can numerically approximate the median ν1 ≈ 2.165 and the mode
ν0 ≈ 2.309. Thus Z is not truly positively skewed.

In Example 5.9, we see that the 1
x

factor in (5.7) dominates the density functions, which are
not increasing. However, in Example 5.10, one of the functions in the integrand is quadratic,
which in turn dominates the 1

x
factor. This motivates the following conjecture.
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Conjecture 5.11. Let X and Y be independent random variables with monotonic density
functions fX and fY that have “appropriately” bounded rate of increase. Then XY is truly
positively skewed.

What this “appropriate” bound on the rate of increase needs to be determined.

6. True Skewness under Weak Limits

It is reasonable to conjecture that true skewness is preserved under uniform, if not point-
wise, limits of distribution functions since Lemma 2.3 implies that true skewness is, in effect,
a feature of a random variable’s density function. However, this is not always true. Let
Xn ∼ Gamma(n, λ) be a sequence of independent gamma random variables with identical
second parameter such that each Xn can be expressed as a sum of n i.i.d. exponential random
variables. We know from [8] that the Xn’s are truly positively skewed, but the central limit
theorem implies that their weak limit, after normalization, is Gaussian and thus symmetric.

Therefore, we introduce the notion of true non-negative skewness to refer to a random
variable whose p-means are non-decreasing, i.e., dνp/dp ≥ 0, as opposed to the strict in-
creasingness required by true positive skewness. Notice that truly positively skewed as well
as symmetric distributions are truly non-negatively skewed. To prove Theorem 1.8, we rely
on the following well-known result.

Lemma 6.1 ([2], Theorem 25.12). If Xn ⇒ X and {Xr
n}n∈N is uniformly integrable for

some r > 1, then E[Xp
n] → E[Xp] for all 1 ≤ p ≤ r. In particular, {Xp

n}n∈N is uniformly
integrable.

By uniform integrability we mean in the typical sense that, for any ε > 0, there exists
K > 0 such that E[|Xn|1{|Xn| ≥ K}] < ε for all n ∈ N. We prove our own simple result.

Lemma 6.2. If {Xr
n}n∈N is uniformly integrable for some r > 1, then for any a ∈ R,

{(Xn − a)r}n∈N is uniformly integrable.

Proof. Let ε > 0 be given. Choose large K ≥ |a|r such that

E[|Xn|r1{|Xn|r ≥ K}] < ε/2r

for all n ∈ N. Let K ′ = (K1/r + |a|)r, so |Xn − a|r ≥ K ′ implies |Xn|r ≥ K by the triangle
inequality. For |Xn| ≥ |a|, we obtain

|Xn − a|r ≤ (|Xn|+ |a|)r ≤ 2r|Xn|r.
Since K ≥ |a|r, then |Xn|r ≥ K =⇒ |Xn| ≥ |a|, so it follows that

E[|Xn − a|r1{|Xn − a|r ≥ K ′}] ≤ 2rE[|Xn|r1{|Xn|r ≥ K}] < ε

for all n ∈ N. �

The continuous mapping theorem implies that if Xn ⇒ X, then (Xn− a)r ⇒ (X − a)r, so
we arrive at the following corollary via Lemma 6.1 and Lemma 6.2.

Corollary 6.3. If Xn ⇒ X with {Xr
n}n∈N uniformly integrable for some r > 1, then

E|Xn − a|p → E|X − a|p

for all 1 ≤ p ≤ r.
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Suppose an is a sequence of numbers converging to a. For ε > 0, there exists large N
such that for all n ≥ N , we have ||X − an|r − |X − a|r| < ε/2 by continuity and hence
|E|X − an|r − E|X − a|r| < ε/2 by Jensen’s inequality. With Corollary 6.3 we get the next
result.

Corollary 6.4. Let an → a and Xn ⇒ X with {Xr
n}n∈N uniformly integrable for some r > 1.

Then
E|Xn − an|p → E|X − a|p

for all 1 ≤ p ≤ r.

The theorem now follows in typical analytical style.

Proof of Theorem 1.8. For fixed p ∈ D, define

fn(a) := E|Xn − a|p, a ∈ R; νn := arg min
a∈R

fn(a);

f(a) := E|X − a|p, a ∈ R; ν := arg min
a∈R

f(a);

so that νn and ν are the p-means of Xn and X respectively by Definition 1.1.
Suppose for now that the νn’s are contained in a compact interval, so every subsequence

νnk
has a limit point ν∗. Since fnk

(νnk
) ≤ fnk

(a) for all a ∈ R, then by taking k → ∞ we
obtain f(ν∗) ≤ f(a) for all a ∈ R via Corollaries 6.3 and 6.4. Then ν∗ minimizes f , and since
the minimizer of f is unique, we actually have ν∗ = ν. Every subsequence of νn converges
to ν, hence νn → ν.

Consider νn and ν as functions of p, so νn converges pointwise to ν. True non-negative
skewness of Xn implies νn is non-decreasing, and the pointwise limit of monotone functions
is monotone, hence ν is non-decreasing.

It remains to show that the νn’s are contained in a compact interval. Suppose otherwise,
so we have a subsequence νnk

→ ∞ as k → ∞. (The argument is similar if νnk
→ −∞.)

Corollary 6.3 gives the pointwise convergence fn → f , so we fix ε > 0 and choose large
enough K such that νnk

> ν and |fnk
(ν) − f(ν)| < ε for all k ≥ K. Since fnk

is strictly
convex with minimizer νnk

, then fnk
(a) < f(ν) + ε for all a ∈ [ν, νnk

].
Clearly f →∞ as a→∞, so choose x > νnK

> ν large enough such that f(x) > f(ν)+2ε.
For any N > 0, there exists k > K large enough such that nk > N and νnk

> x such that
fnk

(x) < f(ν) + ε < f(x) − ε as shown above. This contradicts the pointwise convergence
fnk

(x)→ f(x), and so concludes the proof. �

If we strengthen the conditions of Theorem 1.8, we can conclude that the limiting distri-
bution is truly positively skewed, which is stated in Corollary 1.9. As expected, this requires
each Xn to be truly positively skewed.

Proof of Corollary 1.9. The proof is the same as Theorem 1.8, but also notice that for any
p, q ∈ D, p < q, we have νn(q)− νn(p) > c(q − p) for all n ∈ N by the mean value theorem.
We showed that νn → ν pointwise, hence taking limits, we find ν(q)− ν(p) ≥ c(q − p) > 0.
It follows easily that for all p ∈ D,

ν ′(p) := lim
q↓p

ν(q)− ν(p)

q − p
≥ c > 0.
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�

Remark 6.5. The phrasing in Theorem 1.8 that {Xp
n}n∈N be uniformly integrable for all

p ∈ D matters only when D is unbounded. If D is bounded, then we only need to show that
{Xs

n}n∈N is uniformly integrable for some s such that s > p for all p ∈ D.

An application of Theorem 1.8 regards parameter regions of true skewness for distribution
families. If we show that a distribution family is truly positively skewed in an open interval
in one of its parameters, then we can conclude also that the distribution is truly non-
negatively skewed on the closure of this open interval. For example, the theorem applied to
the Weibull distribution, using the parameter regions established in Theorem 1.6, implies
true non-negative skewness when k = (1− log 2)−1.

7. Criterion Using Logarithmic Derivatives

Theorem 1.10 establishes a novel criterion for true positive skewness that does not rely
on the p-means of a distribution other than its mode and median. It also does not re-
quire knowledge of the density f expressed in terms of elementary functions, which has
conveniently been provided in each of the specific distributions previously examined. In par-
ticular, this theorem may have applications in numerically checking true positive skewness
for stable distributions, for which very little descriptive information is known in general,
given specific parameter values.

We begin with some notation. Assume X is a continuous unimodal random variable with
density f . For p ∈ D, define

hp(c) := f(νp + c)− f(νp − c), c ∈ [0, νp]

and

Sp := {c > 0 : hp(c) > 0}.

If Sp is non-empty, then its infimum cp := inf Sp exists and is non-negative. Note that if f
is continuous, then so is hp. Then Sp is the preimage of an open set under hp, so Sp is also
open and cp /∈ Sp. Since hp(0) = 0, then continuity implies

hp(cp) = 0. (7.1)

Similarly, if f is differentiable, then so is hp. Because hp(c) ≤ 0 for all c < cp, then

h′p(cp) ≥ 0. (7.2)

Remark 7.1. Before we prove Theorem 1.10, we discuss ways in which certain conditions can
be relaxed, at the potential cost of practical ease. In particular, the following require one to
compute c1.

(a) The condition ν1 > (ν0 + θ2)/2 serves to guarantee that f is convex at νp + cp for all
p, but the required convexity can certainly be achieved for a weaker lower bound on
ν1. Indeed, one can see in the proof below that ν1 + c1 > θ2 is sufficient; we obtain
(7.3) by using Lemma 7.5. Note that this is not always a weaker lower bound.
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(b) The quantity ν0 in conditions (1) and (2) can be replaced by ν1 − c1.† As we show
later, ν1 − c1 < ν0, so actually this replacement creates a stronger condition on the
lower bound of f ′/f to the left of the mode and a weaker condition on the lower
bound of f ′/f to the right of the mode. This replacement is useful when the density
has a steeper right tail.

(c) Similarly, condition (2) only needs to hold on (ν1 + c1,∞).

To prove the theorem, we will require several lemmas.

Lemma 7.2. The density f is convex on (0, θ1) ∪ (θ2,∞), concave on (θ1, θ2), strictly in-
creasing on (0, ν0), and strictly decreasing on (ν0,∞).

Proof. Since f is positive on its support, then it must be increasing on (0, ν0). If f is concave
on (0, θ1), then it is convex on (θ1, θ2), contradicting the fact that ν0 ∈ (θ1, θ2). The convexity
part of the lemma follows, and since θ2 > ν0 and f is unimodal, then f is decreasing on
(ν0,∞). Moreover, since f ′ > 0 near 0 and f ′ < 0 near infinity, then f ′ has an odd number of
zeroes. Integrability of f implies f ′ → 0, hence f ′ is non-zero everywhere on (0,∞) except
at ν0, otherwise f would have at least three inflection points. This proves the strictness
part. �

Since f is C2 on (0,∞), then (7.1) and (7.2) hold. Moreover, hp is C2. Let

D∗ := {p ∈ D : νp > (ν0 + θ2)/2}.‡

By assumption 1 ∈ D∗. We show that membership in D∗ is sufficient to make (7.2) a strict
inequality.

Lemma 7.3. h′p(cp) > 0 for all p ∈ D∗.

Proof. First we locate νp + cp and νp − cp. Note that f(νp − c) is increasing and f(νp + c)
is decreasing for c ∈ (0, νp − ν0). The fact that hp is negative near 0 and hp(cp) = 0 implies
cp > νp − ν0. By assumption νp > (ν0 + θ2)/2, so it follows that

νp + cp > θ2. (7.3)

On the other hand, we easily have νp − cp > 0, otherwise hp(cp) = f(νp + cp) > 0. If
νp − cp > ν0, then f(νp − cp) > f(νp + cp) by Lemma 7.2, again contradicting hp(cp) = 0.
Thus

0 < νp − cp < ν0. (7.4)

Now suppose for the sake of contradiction that h′p(cp) = 0. Either νp − cp ∈ (0, θ1) or
νp − cp ∈ [θ1, ν0) by (7.4). If the latter holds, then f ′′(νp − cp) < 0, and (7.3) implies
f ′′(νp + cp) > 0. Note that h′′p(cp) = f ′′(νp + cp) − f ′′(νp − cp), hence h′′p(cp) > 0. By
continuity of h′′p and (7.1), hp is strictly convex and thus positive in a neighborhood of cp
(excluding cp itself), contradicting the minimality of cp in Sp.

† This makes the proof significantly lengthier; in fact, Lemmas 7.3, 7.4, and 7.5 are otherwise unnecessary.
In the proof below we present the most general argument.

‡ If as in the remark we use the condition ν1 + c1 > θ2 instead of ν1 > (ν0 + θ2)/2, then instead let
D∗ := {p ∈ D : νp ≥ ν1 + c1}. The following arguments still apply with trivial modifications.



20 Negrón, Pertel, Wang

Suppose instead that νp−cp ∈ (0, θ1). Then from conditions (1) and (2) and equations (7.3)
and (7.4), we have the inequalities ν0f

′(νp− cp) > f(νp− cp) and ν0f
′(νp+ cp) > −f(νp+ cp).

It follows that ν0h
′
p(cp) > −hp(cp) = 0 and we obtain a contradiction. �

Next, we prove some properties of cp.

Lemma 7.4. The map p 7→ cp is continuously differentiable in D∗.

Proof. Define ψ : D∗ × R+ by ψ(p, c) := hp(c). By Proposition 3.2, ψ is differentiable and
has partial derivatives

∂

∂c
ψ(p, c) = f ′(νp + c) + f ′(νp − c) = h′p(c),

∂

∂p
ψ(p, c) = (f ′(νp + c)− f ′(νp − c))

dνp
dp

,

both of which are jointly continuous in p and c. Thus ψ is continuously differentiable. By
Lemma 7.3, ∂

∂c
ψ(p, cp) > 0 for all p ∈ D∗ and so the continuous differentiability of p 7→ cp

follows from (7.1) and the implicit function theorem. �

As expected, cp travels “faster” than νp as a function of p.

Lemma 7.5. For any p ∈ D∗, dcp
dp

and dνp
dp

have the same sign, and
∣∣dcp
dp

∣∣ > ∣∣dνp
dp

∣∣ if they are
non-zero.

Proof. By (7.1), we have f(νp + cp) − f(νp − cp) = 0. The left side is differentiable in p by
Lemma 7.4, so taking derivatives, we obtain

f ′(νp + cp)

(
dνp
dp

+
dcp
dp

)
− f ′(νp − cp)

(
dνp
dp
− dcp
dp

)
= 0. (7.5)

Rearranging yields
dcp
dp

=
dνp
dp

(
f ′(νp − cp)− f ′(νp + cp)

f ′(νp − cp) + f ′(νp + cp)

)
,

where the fraction is well-defined with positive denominator by Lemma 7.3. The numerator
is positive by Lemma 7.2, (7.3), and (7.4), so dcp

dp
has the same sign as dνp

dp
. If dνp

dp
, dcp
dp

> 0,

then one can see immediately from (7.5) that dcp
dp
> dνp

dp
. The reverse also follows. �

Our final lemma concerns a criterion for pointwise increasingness of νp.

Lemma 7.6. Fix p ∈ D \ {0}. If

(νp − cp)
f ′(νp + cp)

f(νp + cp)
> −1, (7.6)

then ν is increasing at p.

Proof. Since f(νp + cp) = f(νp − cp), we may rearrange to obtain

−f(νp − cp)
νp − cp

< f ′(νp + cp).
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Define the line

`(x) := −xf(νp − cp)
νp − cp

+
2νpf(νp − cp)

νp − cp
, x ≥ νp + cp,

and note that

`(νp + cp) = f(νp − cp) = f(νp + cp),

`(2νp) = 0 = f(0).
(7.7)

Note that (7.6) implies f ′(νp + cp) = `′(νp + cp), so by convexity of f on (θ2,∞), we have
f ′ > `′ on (νp + cp,∞). Via integration we obtain

f(νp + c) > `(νp + c) (7.8)

for c > cp. We now split into two cases to show f(νp + c) > f(νp − c) for c > cp.
Case 1. Suppose νp − cp ∈ (0, θ1]. By (7.7) and the convexity of f on this interval,

we have `(x) > f(2νp − x) for x ∈ (νp + cp, 2νp), making use of the fact that convexity
is preserved under reflection and translation. A change of variables gives the inequality
`(νp + c) > f(νp − c) for c ∈ (cp, νp). Combining with (7.8) yields f(νp + c) > f(νp − c) for
c ∈ (cp, νp). If c ≥ νp, then f(νp + c) > 0 = f(νp − c) and we are done.

Case 2. Suppose instead νp− cp ∈ (θ1, ν0). If it happens that `(νp + c) > f(νp− c) for all
c ∈ (cp, νp), then the argument in Case 1 applies and we are done. Otherwise, let

˜̀(x) := −(x− νp − cp)f ′(νp − cp) + f(νp + cp), x ≥ νp + cp,

be the line such that
˜̀(νp + cp) = f(νp + cp)

and
˜̀(νp + cp + f(νp + cp)/f

′(νp − cp)) = 0.

Lemma 7.3 and convexity imply f ′(νp + c) > ˜̀′(νp + c) and thus f(νp + c) > ˜̀(νp + c) for

all c > cp. By concavity of f near νp − cp, one can easily see that ˜̀(νp + c) > f(νp − c) for

c ∈ (cp, νp − θ1]. It remains to show ˜̀(νp + c) > f(νp − c) for c ∈ (νp − θ1, νp).
We have by assumption that f(νp− c) > `(νp + c) for c in a right neighborhood of cp. We

also have by (7.7) that f(νp − cp) = `(νp + cp). It follows that

−f ′(νp − cp) > `′(νp + cp) = −f(νp − cp)
νp − cp

.

Substituting with f(νp − cp) with f(νp + cp) and rearranging yields

νp + cp +
f(νp + cp)

f ′(νp − cp)
> 2νp.

The left side is precisely the root of ˜̀ whereas the right side is a root of f . We showed
previously that ˜̀(2νp − θ1) > f(θ1). Convexity of f on (0, θ1) implies ˜̀(νp + c) > f(νp − c)
for c ∈ (νp − θ1, νp), and we are done.

We have now shown that, in general, f(νp + c) > f(νp − c) for c > cp. We also know by
definition of cp that f(νp + c) ≤ f(νp − c) for c < cp. Thus the conditions of Lemma 2.3 are
satisfied and so ν is increasing at the point p. �

We are now ready to prove the main theorem.
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Proof of Theorem 1.10. It suffices to show (7.6) for all p ∈ D∗ and that D∗ = D \ {0}.
If we have conditions (1) and (2) as they are written, then (7.6) holds for all p ∈ D∗

immediately by (7.3) and (7.4).
Suppose instead we only have the weaker condition as stated in Remark 7.1(b):

f ′/f > 1/(ν1 − c1) on (0, θ1),

f ′/f > −1/(ν1 − c1) on (ν1 + c1,∞).

Let u(p) := νp− cp on D∗, so u is differentiable on its domain. Also note that u > 0 by (7.4).
Suppose for some p′ ∈ D∗ that u(p′) ≤ ν1 − c1. Then

(νp′ − cp′)
f ′(νp′ + cp′)

f(νp′ + cp′)
> −1,

i.e., (7.6) holds for p′ and so νp is increasing at p′. Lemma 7.5 implies u is decreasing at
p′. It follows that for all p ≥ p′, u is decreasing and so u(p) ≤ ν1 − c1. In particular, νp is
increasing for all p ≥ p′.

By assumption, 1 ∈ D∗ and trivially u(1) ≤ ν1−c1. Since D∗ ∈ [1,∞), then νp is increasing
for all p ∈ D∗. Recall that p ∈ D∗ if νp > (ν0 + θ2)/2. Since νp is increasing at p = 1 and for
all p ∈ D∗, then νp > (ν0 + θ2)/2 for all p ∈ D \ {0}, hence D \ {0} = D∗.§ �

The proof directly extends to the case where f ′′ only has a single root θ > ν0 by setting
θ1 = 0. In fact, conditions (1) and (2) are not necessary. Indeed, we use them once in the
proof of Lemma 7.3 in the case νp − cp ∈ (0, θ1), but this is no longer relevant if f ′′ has
only one root. The only other time we use the conditions is to prove that (7.6) holds for
all p ∈ D∗. However, if f ′′ has only one root then (7.6) holds automatically. Note that f is
concave and increasing near νp − cp for all p ∈ D∗, hence

f(νp − cp)
νp − cp

> f ′(νp − cp).

Since f ′(νp + cp) < 0, then by substituting f(νp + cp) = f(νp − cp), we have

(νp − cp)
f ′(νp + cp)

f(νp + cp)
>
f ′(νp + cp)

f ′(νp − cp)
.

The right side dominates −1 as a consequence of Lemma 7.3, so we arrive at (7.6). This
proves Corollary 1.11.

We show how Theorem 1.10 and Corollary 1.11 can be used to determine true positive
skewness, both numerically and analytically.

Example 7.7 (Beta prime distribution). The beta prime distribution, also known as the
inverted beta distribution or the beta distribution of the second kind, is supported on (0,∞)
and, for parameters α, β > 0, has density function

f(x) =
xα−1(1 + x)−α−β

B(α, β)

§ Clearly the argument for D∗ = D \ {0} still applies if we use the alternative definition for D∗.
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on (0,∞), where B is the beta function. One can verify analytically that f is unimodal,
continuous at 0, twice continuously differentiable, and has two positive inflection points.
Take α = 4 and β = 5. We can numerically calculate that

θ1 ≈ 0.17267,

θ2 ≈ 0.82733,

ν0 = 0.5,

ν1 ≈ 0.78621,

inf
x∈(0,θ1)

f ′(x)/f(x) ≈ 9.69909,

inf
x∈(θ2,∞)

f ′(x)/f(x) ≈ −1.60770.

We find that the inflection points lie on either side of the mode, that the median lies to
the right of the mode, and that the logarithmic derivatives satisfy conditions (1) and (2) of
Theorem 1.10. Of course, this is not a formal proof, but we have good reason to believe that
the beta prime distribution with parameters α = 4, β = 5 is truly positively skewed. This
technique can be applied to many different scenarios.

Example 7.8 (Log-logistic distribution). The log-logistic distribution with shape parameter
β > 0 has density function

f(x) =
βxβ−1

(1 + xβ)2
, x ≥ 0

If 0 < β ≤ 1, then f strictly decreasing and true positive skewness follows from Proposition
2.4. Suppose β > 1. One can verify that f is unimodal with mode

ν0 =

(
β − 1

β + 1

)1/β

,

median ν1 = 1, and inflection points

θ± =

(
2β2 − 2± β

√
3β2 − 3

β2 + 3β + 2

)1/β

.

Straightforward computations show that θ− ≤ 0 if and only if β ≤ 2 and θ+ > ν0 if and only
if β > 1. Moreover, θ+ ≤ 1 if and only if 1 ≤ β ≤ 2. Therefore, the log-logistic distribution
is truly positively skewed if 1 < β ≤ 2 by Corollary 1.11.

8. True Skewness Beyond Continuous Univariate Distributions

In this section we present preliminary results concerning how one might widen the scope of
true skewness theory to include a broader class of random variables. We present some results
on true skewness for discrete univariate random variables and discuss the inherent challenges
with showing a given discrete random variable is truly skewed. We also present preliminary
numerical computations in order to illustrate how true skewness may be interpreted for
multivariate distributions.

We first consider the problem of extending true skewness to univariate discrete random
variables by way of an example distribution.
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8.1. Bernoulli distribution. In this case, we can calculate a closed-form expression for νp.

Proposition 8.1. Let X ∼ Bernoulli(λ). Then

νp =

(
λ

1−λ

)1/(p−1)

1 +
(

λ
1−λ

)1/(p−1)
,

and X is truly positively skewed if and only if λ < 1/2.

Proof. We first compute νp directly. Recall that νp is the unique solution to (1.2) and the
probability mass function of X is

f(x;λ) =

{
λ, x = 1

1− λ, x = 0.

Equation (1.2) is

(1− νp)p−1
+ λ+ (−νp)p−1

+ (1− λ) = (νp − 1)p−1
+ λ+ (νp)

p−1
+ (1− λ). (2)

By Proposition 3.1, 0 < νp < 1. With these bounds on νp, the equation above becomes

(1− νp)p−1λ = νp−1
p (1− λ) ⇐⇒

(
νp

1− νp

)p−1

=
λ

1− λ
.

Solving for νp, we can isolate

νp =

(
λ

1−λ

)1/(p−1)

1 +
(

λ
1−λ

)1/(p−1)
,

which has derivative

dνp
dp

=
−
(

λ
1−λ

)1/(p−1)
log
[

λ
1−λ

]
(p− 1)2

(
1 +

(
λ

1−λ

)1/(p−1)
)2 .

Because it can be written as a square, the denominator is positive. The numerator is positive
if and only if log

(
λ

1−λ

)
< 0, which is true if and only if λ < 1

2
. Therefore dνp/dp > 0 if and

only if λ < 1/2. �

Remark 8.2. From (1.2), νp can be understood as a generalized central moment, which
suggests a connection to the moment problem. In particular, it is possible that under certain
conditions, the p-means of a random variable uniquely characterize its distribution. Since
we have a precise closed-form expression of νp for the Bernoulli distribution, we can express
the characteristic function of X ∼ Bernoulli(λ) as a function of νp:

ϕ(t) = λ

((
νp

1− νp

)p−1

+

(
νp

1− νp

)2p−2

eit

)
.

Thus, a Bernoulli distribution can be uniquely defined in terms of its p-means. In gen-
eral, however, it is unclear what connection exists between νp and the moments of a given
distribution. We refer the reader to [13] for an overview of the moment problem.
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To prove a given continuous distribution is truly skewed, a powerful tool is the combination
of Theorem 2.2 and Lemma 2.3. We obtain the next result which extends Theorem 2.2 to
discrete random variables.

8.2. A Discrete Analogue for Theorem 2.2. The main idea of Theorem 2.2 is the
following. Given p ∈ D, reflect the left tail of the distribution about νp, shift both the right
and left tails backward by νp, then show that the (scaled) right tail stochastically dominates
the reflected (scaled) left tail. We describe an extension this idea to a discrete distribution.

Let X be a random variable with probability mass function f(x) supported on {l, . . . , r},
where l < r are integers. Fix p ∈ D. Once we reflect the left tail about νp, the mass falls on
points in the set

L :=
{
νp − bνpc+m : m ∈ {0, 1, . . . bνpc − l}

}
.

Similarly, the mass of the right tail falls on points in the set

R :=
{
dνpe − νp +m : m ∈ {0, 1, . . . r − dνpe}

}
.

The function representing the reflected/shifted left tail is f(νp−x)1L(x) and the function
representing the shifted right tail is f(νp + x)1R(x). We need to scale these functions by an
appropriate factor analogous to (2.1) that turns each into a valid probability mass function.
Define

Jp :=

νp−l∑
y=νp−bνpc

yp−1f(νp − y) =

r−νp∑
y=dνpe−νp

yp−1f(y + νp).

Then we have the following.

Lemma 8.3. The functions

1

Jp
yp−1f(νp − y)1L(y) and

1

Jp
yp−1f(νp + y)1R(y)

are probability mass functions.

Proof. We prove

∞∑
y=−∞

1

Jp
yp−1f(νp − y)1L(y) = 1,
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and note that the computation for the other function is similar. We have

∞∑
y=−∞

1

Jp
yp−1f(νp − y)1L(y) =

νp−l∑
y=νp−bνpc

1

Jp
yp−1f(νp − y)

=

νp−l∑
y=νp−bνpc


1

νp−l∑
ỹ=νp−bνpc

ỹp−1f(νp − ỹ)

yp−1f(νp − y)



=

νp−l∑
y=νp−bνpc

yp−1f(νp − y)

νp−l∑
ỹ=νp−bνpc

ỹp−1f(νp − ỹ)

= 1.

�

Theorem 8.4. Let Y be a discrete random variable with probability mass function f(y)
supported on {l, . . . , r} with l < r ∈ Z. Suppose p ∈ D. If the random variable with probability
mass function

1

Jp
yp−1f(νp + y)1R(y)

exhibits strict stochastic dominance over the random variable with probability mass function

1

Jp
yp−1f(νp − y)1L(y),

then the function ν(p) ≡ νp is increasing at p.

Proof. Since νp is the unique solution to (1.2), taking d
dp

to both sides we have

0 =
d

dp

(
E
[
(νp − Y )p−1

+

]
− E

[
(Y − νp)p−1

+

])
=

d

dp

bνpc∑
y=l

(νp − y)p−1f(y)−
r∑

y=dνpe

(y − νp)p−1f(y)


=

d

dp

bνpc∑
y=l

(νp − y)p−1f(y)

− d

dp

 r∑
y=dνpe

(y − νp)p−1f(y)

 .

We handle the derivatives of each of these sums individually. Consider the sum on the left
first. Define g(p, y) = (νp−y)p−1f(y). If bνpc = l+k for some integer k such that l+k ≤ r−1,
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then

d

dp

bνpc∑
y=l

g(p, y) =

bνpc∑
y=l

g′(p, y)

=

bνpc∑
y=l

(
(p− 1)(νp − y)p−1dνp

dp
+ (νp − y)p−1 log(νp − y)

)
f(y)

=
dνp
dp

bνpc∑
y=l

[
(p− 1)(νp − y)p−1f(y)

]
+

bνpc∑
y=l

[
(νp − y)p−1 log(νp − y)f(y)

]
.

Similarly, for the derivative of the other sum we have

d

dp

r∑
y=dνpe

(y − νp)p−1f(y) = −
r∑

y=dνpe

(
(p− 1)(y − νp)p−2dνp

dp
+ (y − νp)p−1 log(y − νp)

)
f(y)

= −dνp
dp

r∑
y=dνpe

[
(p− 1)(y − νp)p−2f(y)

]

+
r∑

y=dνpe

[
(y − νp)p−1 log(y − νp)f(y)

]
.

Hence

0 =
dνp
dp

bνpc∑
y=l

[
(p− 1)(νp − y)p−1f(y)

]
+

r∑
y=dνpe

[
(p− 1)(y − νp)p−2f(y)

]
+

bνpc∑
y=l

[
(νp − y)p−1 log(νp − y)f(y)

]
−

r∑
y=dνpe

[
(y − νp)p−1 log(y − νp)f(y)

]
.

Rearranging,

dνp
dp

=

r∑
y=dνpe

[
log(y − νp)(y − νp)p−1f(y)

]
−
bνpc∑
y=l

[
log(νp − y)(νp − y)p−1f(y)

]
bνpc∑
y=l

[
(p− 1)(νp − y)p−1f(y)

]
+

r∑
y=dνpe

[
(p− 1)(y − νp)p−2f(y)

]

=

r−νp∑
y=dνpe−νp

[
log(y) yp−1f(νp + y)

]
−

νp−l∑
y=νp−bνpc

[
log(y) yp−1f(νp − y)

]
bνpc∑
y=l

[
(p− 1)(νp − y)p−1f(y)

]
+

r∑
y=dνpe

[
(p− 1)(y − νp)p−2f(y)

] .
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The denominator is positive, and the numerator is strictly positive under the strict sto-
chastic dominance assumption of the theorem. More explicitly, let Y1 denote the random
variable with probability mass function 1

Jp
yp−1f(νp + y)1R(y) and let Y2 denote the random

variable with probability mass function 1
Jp
yp−1f(νp−y)1L(y). Since Y1 strictly stochastically

dominates Y2, we have by a well-known result [9, Theorem 1.2.8] that

E [h(Y1)] > E [h(Y2)]

for any increasing function h. In particular,

E [log(Y1)] > E [log(Y2)] ,

which implies

1

Jp

r−νp∑
y=dνpe−νp

log(y) yp−1f(νp + y) >
1

Jp

νp−l∑
y=νp−bνpc

log(y) yp−1f(νp − y).

Therefore dνp
dp

> 0. �

In general, for a continuous random variable it is difficult to verify the stochastic dominance
criterion of Theorem 2.2 directly. This difficulty necessitates Lemma 2.3. Likewise for
discrete, the conditions of Theorem 8.4 are difficult to verify. Whereas the main idea of
Theorem 2.2 extends neatly to discrete random variables, the main idea of Lemma 2.3 does
not, since this lemma depends on the continuity of density functions.

The inherent challenge to build analogous tools for discrete random variables suggests
that the true skewness theory developed for continuous random variables may not extend
directly to discrete random variables. Despite these challenges, we prove some elementary
results about binomial random variables.

Lemma 8.5. A binomial random variable X with parameter n and λ of the form k
n+1

where
k ∈ {2, . . . , bn/2c} is bimodal.

Proof. See Appendix B. �

Lemma 8.6. A unimodal binomial random variable X with parameter n and 1
n
≤ λ < 1/2,

has mode less than or equal to its mean.

Proof. See Appendix B. �

By working first with decreasing binomial random variables, we hope to prove a result
similar to Proposition 2.4 for the discrete cae.

Lemma 8.7. The probability mass function of a binomial random variable X with parameters
n > 1 and λ < 1

n+1
is strictly decreasing on its support.
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Proof. We will show that P (X = k)− P (X = k + 1) > 0 for k ∈ {0, . . . , n− 1}.

P (X = k)− P (X = k + 1) =

(
n

k

)
λk(1− λ)n−k −

(
n

k + 1

)
λk+1(1− λ)n−k−1

=
n!λk(1− λ)n−k

k!(n− k)!
− n!λk+1(1− λ)n−k−1

(k + 1)!(n− k − 1)!

=
n!λk(1− λ)n−k−1

k!(n− k − 1)!

[
(1− λ)

(n− k)
− λ

k + 1

]
.

Each term on the left is positive: it remains to show that
[

(1−λ)
(n−k)

− λ
k+1

]
is always positive.

We have that λ < 1/(n+ 1), so[
(1− λ)

(n− k)
− λ

k + 1

]
<

[
n

(n+ 1)(n− k)
− 1

(k + 1)(n+ 1)

]
=

[
nk + k

(n+ 1)(n− k)(k + 1)

]
> 0.

Since P (X = k) > P (X = k + 1) for all k ∈ {0, . . . , n − 1}, then we conclude that the
probability mass function of X is strictly decreasing on its support. �

Proposition 8.8. Let X ∼ Binomial(n, λ) and Y ∼ Binomial(m,λ) be independent. If the
probability mass function of X + Y is strictly decreasing on its support, then the probability
mass functions of X and Y are strictly decreasing on their supports, respectively.

Proof. Let X and Y be Binomial random variables with parameters n and m respectively.
Recall that by Lemma 8.7 their convolution, the binomial random variable X + Y , is a
strictly decreasing distribution if λ < 1

n+m+1
.

λ <
1

n+m+ 1
=⇒ λ <

1

n+ 1
and λ <

1

m+ 1
(8.1)

Thus we have that X and Y are both strictly decreasing. �

However, it is actually not true that a binomial random variable with decreasing prob-
ability mass functions is truly positively skewed. We can show this numerically through
a graph of νp from Mathematica. The following graphical representation of νp is for X ∼
Binomial(2, 1/3) and p = 1.01, 1.02, . . . , 1.24.

Remark 8.9. It is worth discussing that the reason why true skewness does not hold in the
discrete case is because we can express the discrete random variable X as a continuous
random variable with the (generalized) density function

f(x) =
∑
k∈I

P(X = k)δ(x− xk)

where δ(x− xk) denotes the unit point mass at xk. This is seen in the following figure.
Because the Dirac delta function can be used to represent discrete distributions, a discrete

random variable can be thought of not as unimodal, but as having n modes. Where the
disconnect occurs is with our intuition about the “shape” of discrete distributions. It is easy
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nup.png

Figure 8.3. Values of νp for p ∈ [1.01, 1.24]

example.png

Figure 8.4. “Binomial” distribution as mixture of bump functions

to imagine a continuous curve mapped over top of the point masses of a discrete distribution.
From this perspective, it seems clear that our stochastic dominance tools would apply. How-
ever, a more accurate continuous representation of discrete would be to climb and descend
each of the point masses. This is the essence of approximation by the Dirac delta function.
Stochastic dominance is not an intuitive tool for multi-modal distributions of this form.

8.3. True skewness of continuous multivariate distributions. We can extend Defini-
tion 1.1 naturally to multivariate distributions as follows.

Let X ∈ Rk be a random vector. The p-mean νp =
(
ν

(1)
p , ν

(2)
p , . . . , ν

(k)
p

)
of X is defined

νp = arg min
a∈Rk

E‖X− a‖p

similarly to (1.1), where ‖ · ‖ is the usual Euclidean norm.
In the univariate setting, true skewness corresponds to the sign of dνp/dp. However, it

does not make sense to interpret the true skewness of a random vector X as the “sign” of
the vector dνp/dp. We adjust our interpretation of true skewness to emphasize the trajectory
of dνp/dp in Rk.
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Let

τ p :=
dνp
dp

/∥∥∥∥dνpdp
∥∥∥∥

and let τ := {τ p}p∈D denote the trajectory of dνp/dp in Rk. Then we say that random
vector X is truly τ -skewed, where the trajectory τ fully characterizes the skewness of X.

To illustrate this interpretation, consider two bivariate Gaussian mixture distributions
as shown in Figure 8.5. We numerically computed the trajectories τ and plotted them
over the contour plots of the density functions. These trajectories follow the shape of each
distribution. This preliminary numerical demonstration reinforces the idea that the skewness
of a distribution is deeply connected to the trajectory τ .

(a) Simple Gaussian mixture (b) “Curving” Gaussian mixture

Figure 8.5. Trajectories τ (black arrows) plotted tip-to-tail superimposed
on contour plots of two bivariate Gaussian mixture density functions.

9. Metrics of Skewness

In addition to developing tools for showing a large class of random variables are truly
skewed, we also aim to develop a metric for quantifying the degree to which a distribution is
truly skewed. Naturally, this metric will depend on dνp/dp. We highlight that this approach
is consistent with the classical approach to measuring skewness. Recall Pearson’s first and
second skewness coefficients,

γ1 =
ν2 − ν0

(E[(X − ν2)2])1/2
and γ2 =

3(ν2 − ν1)

(E[(X − ν2)2])1/2
.

Each of these metrics are of the form

γ = (normalizing coefficient)× (difference of νp).

Likewise, in determining true skewness, we are also interested in a “difference” of νp, namely
dνp/dp. It follows that a measure of skewness based on the true skewness theory should be
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of the form

γ = (normalizing coefficient)× dνp
dp

.

In line with Arnold & Groeneveld [1], any measure γ ought to obey the following properties:

(I) If X is symmetric, then γ(X) = 0
(II) For any constants c > 0 and b ∈ R, γ(cX + b) = γ(X).

(III) γ(−X) = −γ(X).

To make the notion of true skewness applicable to statistics, we would like our skewness
metric to be defined in such a way that admits statistical estimation. Any metric involving
dνp/dp explicitly will prevent this. To resolve this issue, we consider a measure based on the
average of dνp/dp with respect to a smooth, non-negative, decreasing weight function φ.

Let S = supD. We propose the skewness metric

Γ(X) =

∫ S

1

dνp
dp

φ(p)dp

|ν1 − ν0|
∫ S

1

φ(p)dp

.

Remark 9.1. For a symmetric distribution, νp is constant for all p so that ν1− ν0 = 0. In the
case of a symmetric X, we define Γ(X) = 0.

By considering the average of dνp/dp we can apply integration by parts to the numerator,
which gives

Γ(X) =

νpφ(p)
∣∣∣S
1
−
∫ S

1

νpd(φ(p))

|ν1 − ν0|
∫ S

1

φ(p)dp

.

If X = {x1, . . . , xn} is a given dataset with metric d, we can estimate νp via the p-medioid

ν̂p := arg min
a∈X

n∑
i=1

d(xi, a)p.

Then a candidate estimator for Γ is

Γ̂(X) =

ν̂pφ(p)
∣∣∣S∗
1
−
∫ S∗

1

ν̂pd(φ(p))

|ν̂1 − ν̂0|
∫ S∗

1

φ(p)dp

,

where S∗ = sup
{
p ≥ 1 : 1

n

∑n
i=1 |xi|p <∞

}
. The following proposition demonstrates that Γ

is a suitable metric.
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Proposition 9.2. Let X be a continuous univariate random variable with S = supD. The
skewness metric

Γ(X) =

νpφ(p)
∣∣∣S
1
−
∫ S

1

νpd(φ(p))

|ν1 − ν0|
∫ S

1

φ(p)dp

satisfies the following properties:

(I) If X is symmetric, then Γ(X) = 0
(II) For any constants c > 0 and b ∈ R, Γ(cX + b) = Γ(X).

(III) Γ(−X) = −Γ(X).

Proof. We prove (II) and (III). For simplicity, suppose φ is chosen such that it integrates to
1. Suppose ν̃p is the p-mean of cX + b and νp is the p-mean of X. By Proposition 3.3,

Γ(cX + b) =

∫ S

1

dν̃p
dp

φ(p)dp

|ν̃1 − ν̃0|

=
1

|ν̃1 − ν̃0|

ν̃pφ(p)

∣∣∣∣∣
S

1

−
∫ S

1

ν̃pd(φ(p))


=

1

|cν1 − cν0|

φ(p)(cνp + b)

∣∣∣∣∣
S

1

−
∫ S

1

d(φ(p))(cνp + b)



=
1

c|ν1 − ν0|

c(φ(S)νS − φ(1)ν1) + b(φ(S)− φ(1))− c
∫ S

1

νpdφ− b
∫ S

1

φ′(p)dp︸ ︷︷ ︸
b(φ(S)−φ(1))


=

c

c|ν1 − ν0|

[
φ(S)νS − φ(1)ν1 −

∫ S

1

νpdφ

]

= Γ(X).

It remains to show (III). Let ν̃p be the p-mean of −X. With Proposition 3.3 we have

Γ(−X) =

∫ S

1

dν̃p
dp

φ(p)dp

|ν̃1 − ν̃0|
=

1

−|ν1 − ν0|

−φ(p)νp

∣∣∣∣∣
S

1

−
∫ S

1

(−νp)dφ


= −

 1

|ν1 − ν0|

φ(p)νp

∣∣∣∣∣
S

1

−
∫ S

1

νpdφ


= −Γ(X).
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�

With regards to choosing the weight function φ, note that the classical skewness theory
values νp only for small values of p, specifically p = 0, 1, 2. Intuitively, one might expect νp
to convey less information about the shape of a distribution for larger values of p. It should
be emphasized that “larger values of p” is relative to the distribution in question. For a
distribution finite moments of all orders, then D = [1,∞), so that p may be taken arbitrarily
large in Γ. However, for a distribution such as the Lévy distribution where D = [1, 1.5), in
computing Γ we may only take p as large as 1.5.

Assuming we are dealing with a random variable with finite moments of all orders, the
above discussion suggests that we should choose φ to be a smooth non-negative, decreasing
function of p that takes values close to 1 for small values of p, and values close to 0 for large
values of p. Consider a sigmoid function of the form

φ(p;α, β, κ) =
1

1 + exp{κpα − β}
,

where α, β, κ > 0 are parameters we choose to control the shape of φ. See Figure 9.6.

Figure 9.6. α = 1, β = 4.2, κ = 0.7

It is unclear at this point how to appropriately choose α, β, and γ to be consistent and
meaningful across all distributions.

Appendix A. Proof of Proposition 5.6

Proof. Let X and Y have density functions fX and fY with corresponding heights h1 and
h2, respectively. Assume without loss of generality that h1 ≤ h2.

It is straightforward to compute the convolution

fZ(z) = (fX ∗ fY )(z) =



h1h2z(24− 6(h1 + h2)z + h1h2z
2)

24
z ∈

[
0, 2

h1

]
6h1h2 + 2h2

2 − 3h1h
2
2z

6h1

z ∈
(

2
h1
, 2
h2

]
−(−2(h1 + h2) + h1h2z)3

24h1h2

z ∈
(

2
h2
, 2
h1

+ 2
h2

]
0 otherwise.
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One can see that fZ is continuous everywhere and decreasing on (2/h1, 2/h1 + 2/h2] such
that a maximum exists in [0, 2/h1]. Taking the second derivative readily tells us that fZ is
strictly concave on [0, 2/h1] and so has exactly one maximum, which is attained at

ν0 :=
2

h1

+
2

h2

− 2

√
1

h2
1

+
1

h2
2

.

Notice ν0 ∈ [0, 2/h1], which makes the following computation tedious but elementary:∫ ν0

0

(fZ)(x)dx =
4h1

√
h2

1 + h2
2

3h2
2

+
4h2

√
h2

1 + h2
2

3h2
1

− 4h2
1

3h2
2

− 4h2
2

3h2
1

− 2

3
.

One can verify that this quantity is strictly less than 1/2 for all h1, h2 > 0. It follows that
the median ν1 of fZ satisfies ν1 > ν0.

In the following, we use the term “near” to refer to a small enough neighborhood around a
point. If this is nonsensical because a function is only has a left or right limit at that point,
then we mean a small enough left or right neighborhood, respectively.

Given p ≥ 1, suppose νp > ν0 and consider the function

h(y) := fZ(νp + y)− fZ(νp − y)

defined on [0, νp]. Clearly h(0) = 0. Since fZ is unimodal, then it is decreasing at νp and so
h is negative near 0.

Now notice that fZ(νp+y) = 0 if and only if y > 2
h1

+ 2
h2
−νp and fZ(νp−y) = 0 if and only

if y > νp. Since fZ has support on a bounded interval, one can derive the bound νp <
1
h1

+ 1
h2

using (1.3). Since fZ is strictly positive on its support, then h(νp) = fZ(2νp) > 0. This
implies that h has an odd number of zeroes in (0, νp) by the intermediate value theorem.

We wish to show h has exactly one root in (0, νp), so it suffices to show h′ has at most one
root in this interval by the mean value theorem. Consider h′(y) = f ′Z(νp + y) + f ′Z(νp − y).
This is well-defined and continuous for y ∈ (0, νp), with right and left limits at 0 and νp
respectively. If νp ≥ 2/h1, then both f ′Z(νp + y) and f ′Z(νp − y) are non-decreasing in y,
hence h′ is non-decreasing. Then h′ at most one root and we are done in this case.

Suppose instead νp ∈ (ν0, 2/h1). Since νp > ν0 and fZ is unimodal, then fZ is decreasing
near νp and so h′ is negative near 0. On the other hand, limy→0+ f

′
Z(0) = h1h2. Since fZ is

concave on [0, 2/h1] and convex on (2/h1,∞), then f ′Z is minimized at 2/h1. Note that

f ′Z(2/h1) = −h2
2/2 > −h1h2 = − lim

y→0+
f ′Z(y)

which implies that h′ is positive near νp. By continuity, h′ has an odd number of roots in
(0, νp).

Now consider h′′(y) = f ′′Z(νp + y) − f ′′Z(νp − y), whenever it is defined, which includes a
neighborhood of 0. By concavity of fZ on [0, 2/h1], f ′Z(νp + y) < f ′Z(νp − y) near 0. If
h′′(y) > 0 near 0 (say ε-close), then the fundamental theorem of calculus gives∫ ε

0

f ′′Z(νp + y)dy >

∫ ε

0

f ′′Z(νp − y)dy =⇒ f ′Z(νp + ε) > −f ′Z(νp − ε).

But we showed above that h′ is negative near 0, contradiction. Thus h′′ is negative near 0.
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Note that f ′′Z is negative and linear on (0, 2/h1), zero on (2/h1, 2/h2), and postive and
linear on (2/h2, 2/h1 + 2/h2). Thus f ′′Z(νp − y) and f ′′Z(νp + y) intersect at most once, and if
they do intersect, it must occur in the interval (0, 2/h1 − νp). Moreover, because f ′′Z(νp − y)
is negative for all y < νp and because h′′ is negative near 0, then h′′ changes sign at most
once in (0, νp). It follows that h′ has at most two roots in this interval, but because it has
an odd number of roots, h′ has exactly one root. The same argument shows h has exactly
one root in (0, νp).

We have thus shown via h that Lemma 2.3 is satisfied, and so νp is increasing when νp > ν0

for any p ≥ 1. Since ν1 > ν0, then νp > ν0 for all p ≥ 1 by continuity of p 7→ νp. This
completes the proof. �

Appendix B. Proof of Results about Binomial

Proof of Lemma 8.5. Recall that the mode of binomial random variable X is b(n+ 1)λc and
b(n+ 1)λc−1 if (n+ 1)λ is an integer. Thus the two modes of X are k and k−1. Note that

k − 1 <
kn

n+ 1
< k

where kn
n+1

is the mean of X. �

Proof of Lemma 8.6. Recall that the mode of a unimodal binomial random variable X is
b(n+ 1)λc and that the mean of binomial random variable X is nλ. There are two cases.

Case 1: λ is of the form k
n

where k ∈ {1, . . .
⌊
n−1

2

⌋
}. In this case, we have that the mode

of X is

b(n+ 1)λc =

⌊
k(n+ 1)

n

⌋
= k

and the mean of X is

λn =
k

n
n = k

Therefore the mode is equal to the mean of X (is equal to k).
Case 2: 1

n
< λ < 1/2 otherwise.

λ < 1

nλ+ λ < nλ+ 1

b(n+ 1)λc < nλ

where b(n+ 1)λc is the mode of X and nλ is the mean. �
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[13] Schmüdgen, K. The moment problem, vol. 9. Springer, 2017.
[14] Versluis, C., and Straetmans, S. Skewness measures for the Weibull distribution. SSRN 2590356

(2015).
[15] Yu, Y. Stochastic ordering of exponential family distributions and their mixtures. Journal of Applied

Probability 46, 1 (2009), 244–254.

Illinois Institute of Technology
E-mail address: alexnegron18@gmail.com

Cornell University
E-mail address: cep87@cornell.edu

Columbia University
E-mail address: cyw2124@columbia.edu


	1. Introduction and Statement of Results
	2. Preliminary results
	3. Properties of p-means
	4. Examples: Lévy and Weibull distributions
	5. Transformations, Sums, and Products
	5.1. Transformations of Truly Skewed Random Variables
	5.2. Sums of Truly Skewed Random Variables
	5.3. Products of Truly Skewed Random Variables

	6. True Skewness under Weak Limits
	7. Criterion Using Logarithmic Derivatives
	8. True Skewness Beyond Continuous Univariate Distributions
	8.1. Bernoulli distribution
	8.2. A Discrete Analogue for Theorem 2.2
	8.3. True skewness of continuous multivariate distributions

	9. Metrics of Skewness
	Appendix A. Proof of Proposition 5.6
	Appendix B. Proof of Results about Binomial
	References

