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Abstract. We have expanded on the standard epidemiological model to consider a popu-

lation that is divided into three groups. These groups are based on individuals’ occupation

and reflect overall economic status. By coupling this model with a model of the economy

we will investigate how economic factors play a role in the outcome of a pandemic. This

model indicates that while reducing consumption and production levels lessen the severity

of the epidemic, these reductions results in a far worse recession. We expect those with

lower economic status will see their health and economic situation altered to a greater de-

gree by extended social distancing guidelines during a pandemic. We plan to extend this

model further to examine whether or not public health policy can be effective in curbing an

epidemic and lessening its impact on different groups of population.

1. Introduction

As COVID-19 spreads across the world, many nations struggle to control the infection.

In the United States and many other countries, social distancing guidelines have been im-

plemented in order to reduce daily contact between individuals and attempt to slow the

spread of this disease. Additionally, many businesses have been ordered to close and indi-

viduals have been instructed to begin working from home, further limiting contact between

individuals in an attempt to decrease the rate of infection.

How do policies such as government mandated “stay at home” orders influence an in-

dividuals economic decisions? By coupling an epidemiological model with a model of the

economy, we will investigate how exactly economic choices impact the severity of a pandemic

and how social distancing policies affect the economy. The trade off between saving lives

and avoiding economic recession is investigated in detail by Eichenbaum et al [8]. They

found that while reducing consumption and production levels does lessen the severity of the

epidemic, the resulting recession is far worse. We extend this discussion by introducing a

model that divides the population into groups based on occupation and whether or not an
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individual can work from home. The National Bureau of Economic Research (NBER) found

that those who can telecommute tend to be less economically vulnerable, indicating that the

ability to participate in the economy while still limiting social interactions is a privilege not

everyone can afford. Our goal in dividing the population is to see exactly how the impact of

a pandemic and its resulting recession varies based on a person’s occupation and economic

status prior to disease outbreak.

2. Background

2.1. The Basic SIR and SIRD Model for Epidemics. Many basic epidemiological

models originate from the Simple Kermack-McKendrick Epidemic Model [5] which involves

a population of N individuals divided into three classes. Class S consists of individuals

who are susceptible to the disease. At the start of an epidemic, this is approximately the

entire population, N. Class I consists of individuals in the population who are infectious and,

through contact with those in Class S, can spread the disease. Having just one person in

Class I provides potential for the start of an epidemic. Class R is made up of individuals

who have recovered from the infection. They are presumed to no longer be infectious and

have immunity to the disease. In this model, it is assumed the population is fixed, and thus,

N = S + I +R.

We adapted this simple epidemic model to an SIRD model that considers the population

to be made of four classes. Classes S, I, and R are defined as in Kermack and McKendrick’s

model, and Class D is made up of the individuals in the population who die from the disease.

The population N, assumed to be known, is now fixed such that N = S + I + R −D. Our

model consists of the following four, first order ordinary differential equations relating S, I,

R, and D.

(1)
dS̃

dt̃
= −bS̃Ĩ − cS̃

(2)
dĨ

dt̃
= bS̃Ĩ − aĨ −mĨ

(3)
dR̃

dt̃
= aĨ + cS̃

(4)
dD̃

dt̃
= mĨ
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Time, t̃ ≥ 0 is measured in weeks. The parameters a, b, c, and d in this system allow us

to simulate how vaccines, treatments, and contact between individuals impact the behavior

of an epidemic.

First, c ≥ 0 corresponds to the rate at which those in the susceptible class are being

vaccinated, where cS is the number of susceptible individuals who move to the recovered

population after vaccination. Next, a ≥ 0 represents the rate of recovery from this disease,

and aI the number of infected individuals who gain immunity from the disease and enter the

recovered population. Third, the parameter m ≥ 0 corresponds to the disease’s mortality

rate, with mI being the number of individuals who die as a result of infection. Note that

for simplicity, our model does not consider population deaths from causes other than the

disease.

The last parameter to consider is b ≥ 0, which relates to the probability of random con-

tact between a susceptible and infected individual. The term bSI indicates the number of

susceptible individuals who become infectious due to contact with someone in the infected

population. Moving forward, we will expand the bSI term so it also considers that inter-

actions driven by economic decisions have different probabilities of occurring and spreading

infection throughout a population.

2.2. Non-dimensionalization of the SIRD Model. For simplicity, we nondimensional-

ized our SIRD model by letting t = at̃, S = S̃
N

, I = Ĩ
N
, R = R̃

N
, and D = D̃

N
. Time is now

relative to the rate at which individuals are recovering, and S, I, R, and D, all represent

fractions of the population. We redefine the parameters such that α = c
a
, β = bN

a
, and

δ = m
a

, where the variables a, b, c, and m are the rates as defined in our original SIRD model.

Our nondimensionalized model is now:

(5)
dS

dt
= −βSI − αS

(6)
dI

dt
= βSI − I − δI

(7)
dR

dt
= I + αS

(8)
dD

dt
= δI

(9) S(0) = S0, I(0) = R(0) = D(0) = 0, t ≥ 0

2.3. The Basic Reproduction Number and the Peak of Infection. The following

figures are simulated numerical solutions to the SIRD Model using parameters from the
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(a) Non-Dimensionalized SIRD
model with α = 0.0000, β = 5.7720,
δ = 0.0101, and R0 = 5.7143.
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(b) Non-Dimensionalized SIRD
model with α = 0.0000, β = 2.3829,
δ = 0.0101, and R0 = 2.3591.
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(c) Non-Dimensionalized SIRD
model with α = 0.0000, β = 0.9380,
δ = 0.0101, and R0 = 0.9286.

Figure 1. Simulation of SIRD Models

COVID-19 pandemic. Since a vaccine for the disease has not yet been developed at the

beginning of this epidemic, we set α = 0. No one in the population has had a chance to

gain immunity to the disease or to die of the disease yet, so the initial number of recovered

individuals and deceased individuals are both 0. According to Fernandez-Villaverde et al,

infection lasts an average of 15 days, or just over two weeks. The percentage of deaths

resulting from COVID is 1% [10] giving an estimated mortality rate of m = (0.01) 7
15

. We

then have a recovery rate of a = (1 − 0.01) 7
15

, and δ = 1
99

. We varied the value of b in these

three figures to illustrate the impact that decreasing the probability of contact between

individuals has on the outbreak of a disease.

The severity of a disease outbreak can be described in two ways using the parameters

of our SIRD model. The basic reproduction number, R0, represents the total number of
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infections caused by one infected individual when the rest of the population is susceptible.

Eichenbaum et al [8] describe the basic reproduction number in terms of the average rate

of infection, the recovery rate, and mortality rate. The rate of infection is considered to be

the ratio of newly infected to the total number of infected, and thus depends on the rate of

contact and probability of infection. Based on the terms in our model, we define the number

of newly infected individuals at some time t to be Tt = βStIt. Therefore the rate of infection

= Tt

It
= βSt. This allows us to define R0 as:

(10) R0 =
βS0

1 + δ

A higher rate of infection would be associated with a greater value of both βS0 and R0,

implying that the more quickly an illness spreads, the more severe an epidemic will be [8].

Similarly, R0 can be viewed as the transmission of the disease when there are no actions

being taken to prevent it from spreading [4] with R0 = 1 typically considered a threshold

value that can be used to characterize whether or not a disease will result in an epidemic.

For example, in Figure A, R0 = 5.7143 and every infected individual generates an average

of about 6 new infections. Meanwhile, in Figure C, R0 = 0.9286 and on average, every

infected individual generates less than one new infection. It is generally believed that, with

R0 < 1 disease will not spread rapidly enough to become a full blown epidemic. This is

evident in Figure C, as the number of infections does not increase. On the other hand, if

R0 ≥ 1 as in Figures A and B, the number of infections will increase for a period of time

before eventually approaching 0. When individuals generate one or more new infections on

average, the disease is predicted to have a high enough transmission rate that it is capable

of growing into an epidemic. In this situation, individuals are recovering and dying from the

disease more slowly than susceptible individuals are becoming infected.

Figure 2 also illustrates how a higher contact rate relates to a higher value of R0. If we

consider the point where each graph reaches its local maxima as a threshold point, or a

critical point at which dI
dS

= 0. And in fact, at this point is where R0 = 1. Therefore for any

outbreak in which the initial conditions fall on the right side of that point has the potential

for an epidemic. However, if the initial conditions fall on the left side of such point, then the

graph will monotonically decrease to 0, and no epidemic will occur.

Figures A and B illustrate the impact that decreasing the probability of contact between

individuals has on R0 and the dynamics of a disease outbreak. Figure A simulates a scenario

with a higher probability of contact, producing an R0 value of 5.7143 compared to the R0

value of 2.3591, associated with a lower rate of contact, seen in Figure B. Notice that with
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Figure 2. Phase Plane Portrait of S-I

a lower contact rate and smaller R0, the infected curve has been flattened, reaching a much

lower peak at a later point in time. This is further exemplified by Figure C, in which the

probability of contact is much lower and the value of R0 = 0.9286. It is clear now that

a higher contact rate results in a larger value of R0, which is associated with an infection

that spreads rapidly and infects a larger fraction of the entire population. We argue that

decreasing the contact rate, lowering R0, will be the most effective way to prevent an infection

from growing into an epidemic.

Another way to quantify the severity of an epidemic is to consider the critical time at

which infections reach their peak. This corresponds to some time, t∗ ≥ 0 at which dI
dt

= 0.

In terms of our model, this corresponds to the time at which

(11) S(t) =
1 + δ

β

In Figure A, t∗ = 0.9728 while in Figure B, t∗ = 2.1960. Given the rate of recovery for

COVID-19 is 15 days, these peaks are 2.1056 weeks and 4.7532 weeks after the start the

epidemic, respectively. This illustrates the effectiveness of lowering R0, as decreasing the

probability of contact from Figure A to Figure B delays the peak of infection by nearly 3

weeks. Additionally, the peak in Figure B is much smaller, with only around 25% of the
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population being infected at any given time. Comparatively, at the peak of the epidemic in

Figure A the fraction of the population that is infected reaches over 50% Figure C simulates

a disease with R0 < 1, for which t∗ = 0 indicating that the infectious population is highest

at the very beginning of the outbreak. However, we see that the infectious population

continuously declines and thus, an epidemic never occurs.

An epidemic with a smaller t∗, such as that simulated in Figure A, would likely result in

a greater number of deaths than the epidemic illustrated in Figure B, as the probability of

developing a vaccine or treatment within that short period of time is low. Additionally, if

a healthcare system is not equipped to treat a large number of infections at once, they will

have little time to prepare and ensure they have adequate supplies to care for the predicted

number of infected. In the case where the healthcare system becomes overwhelmed by the

number of infected individuals, it is possible they will not receive the care necessary to

recover, and the disease will have a higher fatality rate. One way to attempt to lower the

total number of deaths that occur over the course of an epidemic is to delay t∗ and lower

the peak number of infections, as illustrated in Figures B and C. Lowering the peak reduces

the chances of overwhelming our system with a number of infections they are not equipped

to care for at one time. Delaying t∗ would also provide the healthcare system with more

time to prepare and obtain the supplies necessary to adequately handle a large number of

infections. If t∗ is delayed long enough, there is the possibility that a successful vaccine or

treatment will be developed, further lowering both the number of infections and number of

deaths that result from a disease.

The question is, how can we lower the value of R0 and delay t∗ to lower the peak and

total number of infections? In many cases, the government can implement various strategies

aimed at “flattening the curve” [9]. For COVID-19, social distancing measures including;

maintaining a 6ft distance between yourself and others, wearing a mask or face covering,

and telecommuting if possible are all recommendations being made globally in an effort to

flatten the curve.

Telecommuting is a way to reduce the rate of contact between susceptible and infected

individuals by limiting social interactions that occur in the workplace. Suppose R0 = 5

and an infected individual who telecommutes only makes contact with three susceptible

individuals during their infectious period. At most, this individual can generate three new

infections. However, an infected individual who cannot telecommute will likely have to

interact with more than five susceptible individuals while they are infectious. This individual

then has the potential to create five or more new infections. So, having the ability as well

as making the choice to telecommute and follow social distancing guidelines can decrease



8 Devin Goodwin, Nga Yu Lo, Kristen Maggard, Miranda Reed

the probability of contact between susceptible and infected individuals. Consequently, social

distancing decreases the value of β and gives an individual the ability to both lower the

infection rate and value of R0 as defined in equation 10.

Social distancing policies such as Wearing masks and maintaining sufficient distance be-

tween oneself and others are aimed at lowering the rate of infection by reducing the proba-

bility of disease transmission. While these measures have been recommended specifically for

COVID-19, they may not effective in lowering the rate of infection for all illnesses. In gen-

eral, decreasing this probability means that any contact between a susceptible and infected

individual is less likely to result in a new infection, and thus each infected individual will

produce fewer infections. The smaller rate of infection means the infected population will

grow more slowly, resulting in a delayed critical time t∗ where the infections will hopefully

reach a smaller peak. Considering these implications, it is clear that if a large portion of

the population chooses to social distance and follow government recommendations made to

reduce transmission of a specific disease, the value of R0 will be reduced and the critical time

t∗ will be delayed, resulting in a less severe epidemic.

3. The Role of the Economy

Thus far, we’ve discussed at length the impact that social distancing can have on the

trajectory of an epidemic outbreak. However, with such extreme policies being recommended

for extended periods of time, are social distancing practices truly accessible to everyone? The

New York Times described the current pandemic situation as “a white-collar quarantine”,

and there is evidence suggesting economic factors such as access to health care or Internet,

education, and occupation do change how feasible these policies are for individuals to follow

[6] [12] [13]. Given that the economy and epidemic can influence one another, we will now

consider exactly how the economy plays a role in an individual’s ability to follow social

distancing policies and limit contact with others, thereby reducing that individual’s chance

of infection.

3.1. Dividing the Population. To examine how occupation type and social distancing in-

fluence one another in our model, we divided the population into three groups of individuals.

Two of these groups make up the entire working population, with division of all workers into

these two groups largely based on research from the National Bureau of Economic Research

(NBER) which classified individuals’ occupations using two measures to investigate “which

workers bear the burden of social distancing” [12]. The first is a measure of the capacity to

work from home for a given occupation, and the second is of physical proximity in the work-

place [12]. We let one group of our working population be the White Collar Workers, who are
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individuals that have the luxury of participating in the economy without engaging in social

interactions. They tend to have “high work-from-home” or “low physical-proximity” jobs

such as work performed in an office. The second group of our working population is the Blue

Collar Workers who do not have this privilege, and whose ability to contribute to the econ-

omy requires frequent social interactions. These individuals’ jobs may involve manufacturing

or manual labor and tend to be “low work-from-home (WFH)” or “high physical-proximity

(PP)”. The third group, our non-working group, consists of individuals who do not work

full-time, such as children under the age of 18, students, and adults who may be retired.

Mongey et al found that workers in low WFH jobs (Blue Collar) are economically more

vulnerable than those in high WFH jobs (White Collar) in a multitude of ways. They are less

likely to be white or have a college degree and are more likely to have unstable employment

and lack employer-provided healthcare [12]. This relationship also held true, but was not

quite as strong, when comparing high and low PP occupations. Individuals in high PP

occupations (Blue Collar) tended to be more at risk economically than those in low PP

occupations (White Collar). There was no systemic difference found in the age of workers

across various occupations. Individuals in high WFH and high PP occupations were more

likely to be women. This is attributed to the fact that education, a high WFH and high PP

occupation, is an occupation dominated by female employees.

We suppose that, in order to participate in the economy to the same degree, blue collar

workers will engage in more interactions and have more contacts than white collar work-

ers. Thus, we expect the epidemic will negatively affect blue collar workers much more

significantly. This is consistent with the conclusions made by Mongey et al that workers

in low WFH or high PP occupations (Blue Collar) are those most likely to be impacted by

social distancing policies, and these workers typically have traits associated with economic

vulnerability in the US.

3.2. Working Population and Employees’ Ability to Work Remotely. According to

the US Census Population Clock, the US population in 2019 was roughly 328 million people.

Data from the US Bureau of Labor Statistics estimates that 130 million people over the age of

18 were employed full time in 2019 [2]. Based on these numbers, we expect the non-working

group to make up about 60 percent of the entire population, indicating there are about 197

million unemployed workers, children, students, retirees, etc. in the United States who do

not work full time. Now, of the approximately 131 million Americans who do work full time

- how many have jobs that allow them to work from home? Dingel and Neiman’s research

found that in the US 37 percent of jobs can be entirely “work-from-home” if need be [7]. We

suppose then, that white collar workers make up about 37 percent of the population of full
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time employees, totaling around 48.5 million people, while blue collar workers make up the

remaining 73 percent or 82.5 million individuals. While the occupations of those who had

the ability to completely work from home were varied, it was found that workers in these

occupations typically earn more [7]. This is consistent with the findings of Mongey et al and

with our classification of the economic differences between individuals with blue collar and

white collar jobs.

3.3. A Model with Two Groups of Workers. To account for our now divided popu-

lation, we adapted our nondimensionalized SIRD model to be a matrix system consisting

of twelve ordinary differential equations. These equations relate the susceptible, infectious,

recovered, and deceased populations of both blue and white collar workers, as well as the

non-working individuals. This system will allow us to examine differences epidemic dynamics

that occur based on the type of work an individual does.

The system of equations we constructed can be written in the form:

(12)
dX

dt
= PX +Q(X)

(13) X(0) = X0, t ≥ 0

With the vectors

(14)
dX

dt
=



dSA

dt
dSB

dt
dSC

dt
dIA
dt
dIB
dt
dIC
dt

dRA

dt
dRB

dt
dRC

dt
dDA

dt
dDB

dt
dDC

dt



;X =



SA

SB

SC

IA

IB

IC

RA

RB

RC

DA

DB

DC


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The matrix

(15) P =



−α 0 0 0 0 0 0 0 0 0 0 0

0 −α 0 0 0 0 0 0 0 0 0 0

0 0 −α 0 0 0 0 0 0 0 0 0

0 0 0 −(1 + δ) 0 0 0 0 0 0 0 0

0 0 0 0 −(1 + δ) 0 0 0 0 0 0 0

0 0 0 0 0 −(1 + δ) 0 0 0 0 0 0

α 0 0 1 0 0 0 0 0 0 0 0

0 α 0 0 1 0 0 0 0 0 0 0

0 0 α 0 0 1 0 0 0 0 0 0

0 0 0 δ 0 0 0 0 0 0 0 0

0 0 0 0 δ 0 0 0 0 0 0 0

0 0 0 0 0 δ 0 0 0 0 0 0


and the vector

(16) Q(X) =



(−β1IA − β2IB − β(IA + IB + IC))SA

(−β3IA − β4IB − β(IA + IB + IC))SB

(−β(IA + IB + IC))SC

(β1IA + β2IB + β(IA + IB + IC))SA

(β3IA + β4IB + β(IA + IB + IC))SB

(β(IA + IB + IC))SC

0

0

0

0

0

0


This SIRD model has the following initial conditions given:

(17) SA(0) = SA0, SB(0) = SB0, SC(0) = SC0

(18) IA(0) = IB(0) = IC(0) = RA(0) = RB(0) = RC(0) = DA(0) = DB(0) = DC(0) = 0

We have S, I, R, and D denoting the fraction of the population, N , that is susceptible,

infected, recovered, and dead. The subscripts A, B, and C denote which group of workers

the fraction of population belongs to. For simplicity, we let A denote white collar workers, B
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denote blue collar workers, and C denote the non-workers in our population. So, SA denotes

the fraction of white collar workers who are susceptible, while RC represents non-working

individuals who have recovered from the disease, etc.

There are various interactions and movements that can occur between the twelve classes of

the population indicated in this model. The main idea is individuals remain in the same group

of workers throughout all interactions, i.e. those of SA must go to IA, not IB or IC , if they

become infected. However, any infected individual has the potential to transmit the disease

to any susceptible individual, regardless of the group they belong to. Members of SA may

come into contact with members of IA, IB or IC through random interactions. If an individual

in SA contracts the virus through this contact, they move to a subset of the infected class

made up of white collar workers only, IA. The same is true of susceptible blue collar workers

and non-workers. They can become infected through interactions with any individuals from

the infected population, and subsequently will belong to the portion of the infected class

consisting of only blue collar workers, IB, or non-workers, IC , respectively. Members of the

infected population will then move to the recovered or deceased class, remaining in their

respective white collar, blue collar, or non-working group.

Many of the parameters in this model are the same as those discussed for the previous,

four equation SIRD Model. However, we now must consider that there are 4 additional

specific types of interactions that can occur between susceptible and infected workers due

to their participation in the economy. While all susceptible and infected individuals still

have a random probability of contact related to the parameter β, we now have to consider

interactions that occur from a working individual’s production or consumption. It seems

that, economic driven interactions between workers of the same group will have a much

higher chance of occurring and spreading infection amongst the population. To account for

this, we now have 4 different parameters β ≥ 0, each related to the probability that a specific

type of contact will occur and result in the susceptible individual becoming infected. The

terms β1SAIA and β4SBIB correspond to contact between workers of the same group, white

collar and blue collar respectively. The remaining terms, β2SAIB and β3SBIA, are related to

the interactions of individual workers in different groups. The former represents susceptible

white collar workers being infected by blue collar workers, while the latter is susceptible blue

collar workers being infected by white collar workers.

Given that white collar workers, by our classifications, will primarily be able to work from

home during an epidemic, we predict the probability of contact between susceptible and

infected individuals of this group will be smaller than that of random contact, β1 ≤ β. On

the other hand, blue collar workers will engage in more interactions if they wish to continue
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working. Subsequently, we expect there will be more contacts between the susceptible and

infected workers of this group and β4 ≥ β. If we consider β2 and β3, it seems reasonable to

assume that the associated contacts between members of different groups are likely to occur

just as frequently as random encounters. These terms βi all correspond to contact between

susceptible and infected individuals that are driven by economic factors. As such, we will

test our predictions by estimating these parameters using our economic model to consider

factors such as number of hours worked and consumption of individuals.

3.4. A Stationary Model of the Economy. Going forward we will first consider how a

prescribed, time independent economy impacts the behavior of an epidemic given a popula-

tion is divided into white collar workers, blue collar workers, and non-working individuals.

In this scenario, the epidemic will respond to the economy while the economy itself remains

fixed, or changes very slowly in comparison to the epidemic. This will serve as a baseline

for the next case, in which economy is time dependent and will respond to changes in the

epidemic as they occur.

Our stationary model was based on the Leontief Input-Output model of the economy [11]

and relates the total amount of money in the economy to consumption levels and production

levels. Suppose the total amount of money in the economy circulates between individuals

and industries. We denote the total amount of money in the economy by X and let

X = xi + xj

where xi is the money of the individuals while xj is money of the industries.

At any moment in time, We have the follow equation illustrating the flow of money entering

each group.

(19)

[
xi

xj

]
=

(
I +

[
−νij νji

ν
′
ij −ν ′

ji

])[
xi

xj

]
+

[
E1

E2

]
where the ν’s represent some rate at which money is transferred between the two agents.

And E1, E2 denote the flow of money from other sources such as investments, economic

incentives, and resources.

Our model assumes that money primarily flows between the two groups through the con-

sumption and production of goods, and we let the E terms indicate other ways that money

may enter the economy. Individuals gain money from industries by working for them to

produce goods and services. They lose money by consuming those same goods. Likewise,
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industries gain money from individuals by selling them goods, and they lose money to pro-

duction costs, including the cost of labor. With these assumptions, we have the following

terms defined:

• νijxi= total consumption costs for individuals

• ν ′
ijxi= total revenue for industries

• νjixj= total earnings for individuals

• ν ′
jixj= total production costs for industries

Note:

(1) νijxi = ν
′
ijxi without taxes

(2) νjixj < ν
′
jixj otherwise

Let yc represents total amount of money spent on consumption before taxation. Suppose

we want to divide consumption for m different groups of people, as we believe income levels

may impact the degree of an individuals’ consumption. We have

(20) yc =
m∑
k=1

ck = νijxi, ck ≥ ckmin

where ck denotes the consumption of the group k. We suggest that there is a minimum

consumption, such as standard living costs for each group such that individuals must always

be consuming in some capacity. Likewise, we can picture total gross income without income

tax earned by the individuals as

(21) yw =
m∑
k=1

wknk = vjixj

where m denotes the different groups of people, and w, n denote the weekly wage and the

number of workers in each group respectively.

3.5. Time Dependent Model. Let xi represent the total amount of money had by in-

dividuals and let xj be the total amount of money in industries. This is the money that

each agent gets to spend. We model the circulation of money between these groups by the

following equation.

(22)

[
dxi

dxj

]
=

[
−νij νji

ν
′
ij ν

′
ji

][
xi

xj

]
dt+

[
E1

E2

]
dt

Suppose m is the number of different income levels. Let νij =
∑m

1 ck where each ck is the

consumption rate (0 < ck < 1), measured over time, for each kth group of people.
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• ck may be a function of the distribution of money and the standard living cost for

each group based on income level

• ck is the amount of money each group spends relative to the total amount of money

of the individuals.

• Then vij is some total rate of consumption

Similarly, suppose r is the number of different industries. Let ν
′
ji =

∑r
1 pk where each pk

is the production cost rate (0 < pk < 1), measured over time, for each kth industry.

• pk may be a function of the workforce, including wages, number of workers, and

supplies.

• The number of workers and the availability of supplies may vary over time. Hence,

pk could vary over time as well.

We consider the consumption function c(xi), which can be written as:

(23) c(xi) = bi + crdrxi

In this function, bi represents the base dollar amount that individuals will spend on goods

and services regardless of changes within the economy, and is essentially the cost of living.

The term dr represents the percentage of an individuals total income that is disposable, with

disposable income being the income of an individual which is not spent on taxes. Then,

cr represents the percentage of disposable income that individuals will spend on goods and

services. The percentage of disposable income that is not used for consumption is either

saved or invested.

When considering our two groups, white collar workers and blue collar workers, we note

that each group will likely have different marginal propensities to consume.

Next, we consider the production function p(xj), with land, labor, capital, and entrepreneur-

ship being the components contributing to an economy. In our model, we will hold these

components to be constant. We define labor as the employed portion of the labor force, which

includes both employed and unemployed individuals. For our purposes, the labor force only

changes when a member of it becomes deceased as a result of infection, while the number of

employed individuals changes with time. Production in a healthy economy results in more

goods and services being produced than individuals are consuming. The goods remaining

after consumption are considered investments which help to grow the economy later. Given

these assumptions, we define our production function, p(xj), as follows:

(24) p(xj) = bj + wepxj
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bj represents the fixed operation costs an industry pays to produce goods and services.

These costs are related to land, capital, and entrepreneurship. The remaining money spent

by industries is paid to the employed population, denoted ep. We assume in our model an

individual can enter the population ep by leaving the unemployed population. An individual

can exit ep by entering the unemployed population or becoming deceased as a result of

infection. The total amount an industry pays to all employees will depend on ep as well as

individual’s weekly wage, w, and totals to be w(ep). Thus, the percentage of total money of

industries that industries pay to the employed population can be represented by wep = w(ep)

xj
,

where xj is the total money of the industries. The sum presented in the production function

then represents the total costs for industries, both assumed fixed costs and labor.

3.6. Stochastic Modeling of the Economy. We wish to modify the stationary model of

the economy to be a time dependent model of the economy that can vary with our SIRD

model. We begin by including a random factor to account for any unknown variables and

errors.

In our time-dependent model, we expect that variables indicating human activities like

consumption, C, number of workers n, and hours of work, h to change with respect to time.

Any changes in wage and and taxation can be accounted for by the random variable.

One primary factor affecting consumption is the level at which individuals social distance.

A population may not change their consumption habits at all during an epidemic. Social

distancing strategies could be implemented to prevent the spread of infection, allowing a

population to continue consuming as usual. If non-essential firms close, such as during a

government mandated lockdown, consumption will greatly decrease overall, but with social

distancing guidelines, essential firms may experience consumption at similar levels as before

an epidemic.

We also consider those factors which affect the number of workers working during an

epidemic. Workers may be laid off from their job during an epidemic due to a large decrease

in consumption that affects industries’ income and thus their ability to continue production

at a sustainable rate. Government mandates or firm policies may require non-essential

employees to transition to working from home, and if that is not possible, those workers

will become unemployed. The infectious workers who do not recover permanently exit the

workforce.

The hours worked may be reduced by industries in order to prevent the spread of the

infection. For example, some industries may opt for employees to work on alternating sched-

ules, such as working every other week. Hours worked may also be reduced when employees

become infected, as those who are infectious will stay at home through the duration of illness,
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returning to their job upon recovery. Weekly wages may or may not be reduced based on

the number of hours worked. If the wage is reduced, employees earn less while firms produce

less. If the wage is not reduced, employees earn the same amount of income while firms

produce less.

(25)

[
dxi

dxj

]
=

[
νij νji

ν
′
ij ν

′
ji

][
xi

xj

]
dt+

[
E1

E2

]
dt+ σdW

3.7. Moving Forward. To continue our research, we will couple our SIRD model and sto-

chastic model of the economy. We will gather necessary data and test multiple parameter

inputs to measure how blue and white collar workers are affected by policies that shut down

the economy or allow it to continue functioning during an epidemic. Upon developing a

functioning coupled model and after testing its robustness, our goal is to show that white

collar workers are less at risk to get infected and less affected by economic shut downs during

an epidemic. On the other hand, blue collar workers may be greatly impacted by these shut

downs and a vigorous economy. We want to review government policies aimed at reduc-

ing contact between individuals, and specifically analyze how various plans to reopen the

economy and how different plans to reopen the economy effect the livelihood of individuals.

Finally, we will incorporate data gathered during March 2020 and August 2020 relating to

the spread of COVID-19 in the United States strategies implemented to slow it down. Us-

ing this data with our model we will compare the total death outcome resulting from the

strategies currently being used to the possible total death outcome that would have occurred

following a total economic shut down.



18 Devin Goodwin, Nga Yu Lo, Kristen Maggard, Miranda Reed

Acknowledgement

We would like to thank Dr. Juan Restrepo for advising us throughout this project and pro-

viding us with the materials and guidance to investigate such an interesting question. We’d

also like to thank Dr. Holly Swisher for organizing Oregon State University’s Mathematics

and Theoretical Computer Science REU Program and the National Science Foundation for

funding it.

References

[1] Using the occupational classification system manual (ocsm), Oct 2001.

[2] Employed and unemployed full- and part-time workers by age, sex, race, and hispanic or latino ethnicity,

Jan 2020.

[3] Sectors 31, 32, and 33 - manufacturing - may 2019 oes industry-specific occupational employment and

wage estimates, Mar 2020.

[4] Andrew G. Atkeson. What will be the economic impact of covid-19 in the us? rough estimates of disease

scenarios. Labor: Demographics & Economics of the Family eJournal, 2020.

[5] Fred Brauer, Carlos Castillo-Chavez, and Carlos Castillo-Chavez. Mathematical models in population

biology and epidemiology, volume 2. Springer, 2012.

[6] Lesley Chiou and Catherine Tucker. Social distancing, internet access and inequality. Working Paper

26982, National Bureau of Economic Research, April 2020.

[7] Jonathan I. Dingel and Brent Neiman. How many jobs can be done at home? Labor: Supply & Demand

eJournal, 2020.

[8] Martin S Eichenbaum, Sergio Rebelo, and Mathias Trabandt. The macroeconomics of epidemics. Tech-

nical report, National Bureau of Economic Research, 2020.

[9] Zhilan Feng, John W. Glasser, and Andrew N. Hill. On the benefits of flattening the curve: A perspective.

Mathematical Biosciences, 326:108389 – 108389, 2020.

[10] Charles I. Jones Jesus Fernandez-Villaverde. Estimating and simulating a sird model of covid-19 for

many countries, states, and cities. 2020.

[11] David C Lay. Linear Algebra and its applications 5th edition, volume 5. Pearson, 2016.

[12] Simon Mongey, Laura Pilossoph, and Alex Weinberg. Which workers bear the burden of social distancing

policies? Working Paper 27085, National Bureau of Economic Research, May 2020.

[13] N Scheiber, ND Schwartz, and T Hsu. White collar quarantine over virus spotlights class divide. The

New York Times, 2020.



Economic Drivers in Modeling Pandemics 19

Oregon State University

E-mail address: goodwide@oregonstate.edu

Macaulay Honors College

E-mail address: nga-yu.lo@macaulay.cuny.edu

University of Virginia

E-mail address: maggardk@oregonstate.edu

Western Washington University

E-mail address: reedm9@wwu.edu


