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Abstract. Integer partitions have long been of interest to number theorists, perhaps most
notably Ramanujan, and are related to many areas of mathematics including combinatorics,
modular forms, representation theory, analysis, and mathematical physics. Here, we focus
on partitions with gap conditions and partitions with parts coming from fixed residue classes.

Let ∆
(a,b)
d (n) = q

(a)
d (n) − Q

(b)
d (n) where q

(a)
d (n) counts the number of partitions of n

into parts with difference at least d and size at least a, and Q
(b)
d counts the number of

partitions into parts ≡ ±b (mod d + 3). In 1956, Alder conjectured that ∆
(1,1)
d (n) ≥ 0

for all positive n and d. This conjecture was proved partially by Andrews in 1971, by
Yee in 2008, and was fully resolved by Alfes, Jameson and Lemke Oliver in 2011. Alder’s
conjecture generalizes several well-known partition identities, including Euler’s theorem that
the number of partitions of n into odd parts equals the number of partitions of n into distinct
parts, as well as the first of the famous Rogers-Ramanujan identities.

In 2020, Kang and Park constructed an extension of Alder’s conjecture which relates

to the second Rogers-Ramanujan identity by considering ∆
(a,b,−)
d (n) = q

(a)
d (n) − Q

(b,−)
d (n)

where Q
(b,−)
d (n) counts the number of partitions into parts ≡ ±b (mod d + 3) excluding the

d + 3 − b part. Kang and Park conjectured that ∆
(2,2,−)
d (n) ≥ 0 for all d ≥ 1 and n ≥ 0,

and proved this for d = 2r − 2 and n even.
We prove Kang and Park’s conjecture for all but finitely many d. Toward proving the

remaining cases, we adapt work of Alfes, Jameson and Lemke Oliver to generate asymptotics
for the related functions. Finally, we present a more generalized conjecture for higher a = b
and prove it for infinite classes of n and d.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called
parts, that sum to n. Let p(n | condition) be the number of partitions of n satisfying a certain
condition. Euler famously proved that the number of partitions of a positive integer n into
odd parts equals the number of partitions of n into distinct parts.

Two other celebrated partition identities are those of Rogers and Ramanujan. The first
Rogers-Ramanujan identity states that the number of partitions of n into parts differing by
2 is equal to the number of partitions of n into parts that are congruent to ±1 (mod 5) and
the second Rogers-Ramanujan identity states that the number of partitions of n into parts
differing by 2 and with parts at least 2 is equal to the number of partitions of n into parts that
are congruent to ±2 (mod 5). Motivated by these identities, Schur found that the number
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of partitions of n into parts differing by 3 or more among which no two consecutive multiples
of 3 appear is equal to the number of partitions of n into parts congruent to ±1 (mod 6).

After showing that no other such partition identities can exist, in 1956 Alder [2, 1] made
a claim about a generalization of similar partition inequalities. Alder’s conjecture states
that the number of partitions of n into parts with difference of at least d is greater than or
equal to than the number of partitions of n into parts congruent to ±1 (mod d+ 3). Notice
that the Euler, first Rogers-Ramanujan, and Schur identities are special cases of Alder’s
Conjecture. In 1971, Andrews [4] proved Alder’s conjecture for n > 0 and d = 2r − 1,
r ≥ 4. In 2004 and 2008, Yee [13, 12] proved the conjecture for n > 0, d ≥ 32, and d = 7.
In 2011, Alfes, Jameson, and Lemke Oliver [3] proved Alder’s Conjecture for n > 0 and
4 ≤ d ≤ 30, d 6= 7, 15, thus completely resolving the conjecture.

In 2020, Kang and Park [7] investigated how to generalize Alder’s conjecture further by
incorporating the second Rogers-Ramanujan identity. Kang and Park compared the partition
functions

q
(a)
d (n) := p(n| parts ≥ a and parts differ by at least d),

Q
(b)
d (n) := p(n| parts ≡ ±b (mod d+ 3)),

by defining the difference function

∆
(a,b)
d (n) := q

(a)
d (n)−Q(b)

d (n),

∆
(a)
d (n) := ∆

(a,a)
d (n).

Remark 1.1. Notice that

Euler’s identity ⇐⇒ ∆
(1)
1 (n) = 0 for all n > 0

Rogers-Ramanujan (1st identity) ⇐⇒ ∆
(1)
2 (n) = 0 for all n > 0

Rogers-Ramanujan (2nd identity) ⇐⇒ ∆
(2)
2 (n) = 0 for all n > 0

Schur’s identity =⇒ ∆
(1)
3 (n) ≥ 0 for all n > 0.

Using Kang and Park’s notation, Alder’s conjecture can be stated as

(1) ∆
(1)
d (n) = q

(1)
d (n)−Q(1)

d (n) ≥ 0

for d, n > 0.
Kang and Park were interested in finding an analog of Alder’s conjecture for the second

Rogers-Ramanujan identity. However, by observing the data, they found that

∆
(2)
d (n) < 0 for some choices of d, n > 0.

In order to find a suitable analog, Kang and Park modified Q
(2)
d (n) by defining for d, n > 0,

Q
(2,−)
d (n) := p(n | parts ≡ ±2 (mod d+ 3) , excluding the part d+ 1),

∆
(2,−)
d (n) := ∆

(2,2,−)
d (n) := q

(2)
d (n)−Q(2,−)

d (n) ,

and presented the following conjecture.

Conjecture 1.2 (Kang, Park [7], 2020). For all d, n > 0,

∆
(2,−)
d (n) ≥ 0.
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Kang and Park [7] proved Conjecture 1.2 for d = 2 or d = 2s − 2 for any positive integer
s ≥ 5 and for any positive even integer n.

By developing a new way of comparing these partition functions, we prove the remaining
cases of Kang and Park’s conjecture except for d = 1 and 3 ≤ d ≤ 61 1.

Theorem 1.3. For d ≥ 62 and n > 0,

∆
(2,−)
d (n) ≥ 0.

It is natural to ask whether Conjecture 1.2 can be generalized to consider higher a = b.
We can think about a generalization of Kang and Park’s definitions for 1 ≤ b ≤ d+ 2, where

Q
(b,−)
d (n) := p(n | parts ≡ ±b (mod d+ 3) , excluding the part d+ 3− b),

∆
(a,b,−)
d (n) := q

(a)
d (n)−Q(b,−)

d (n) and ∆
(a,−)
d (n) := ∆

(a,a,−)
d (n) .

This allows us to present the following conjecture.

Conjecture 1.4. For all d, n > 0,

∆
(3,−)
d (n) ≥ 0.

But in general, ∆
(a,−)
d (n) is not always nonnegative for a ≥ 4. Surprisingly, removing just

one more possible part from the parts that can build partitions of n counted by Q
(a,−)
d (n)

allows us to completely generalize Conjecture 1.2. Define, where 1 ≤ b ≤ d+ 2,

Q
(b,−,−)
d (n) := p(n | parts ≡ ±b (mod d+ 3) , excluding the parts b and d+ 3− b),

∆
(a,b,−,−)
d (n) := q

(a)
d (n)−Q(b,−,−)

d (n) and ∆
(a,−,−)
d (n) := ∆

(a,a,−,−)
d (n) .

We posit the following conjecture2.

Conjecture 1.5. For all a, d, n > 0,

∆
(a,−,−)
d (n) ≥ 0.

Note that (1) implies Conjecture 1.5 for a = 1 and all d, n > 0 and Theorem 1.3 implies
Conjecture 1.5 for a = 2 where d ≥ 62 and n > 0.

Our methods used to prove Theorem 1.3 can be applied to prove the following partial
result toward Conjecture 1.5 for a ≥ 3.

Theorem 1.6. For a > 0, d ≥ 31a− 3, where d+ 3 is divisible by a, and any n > 0,

∆
(a,−,−)
d (n) ≥ 0.

Furthermore, by generalizing the methods of Andrews [4] and Yee [13], we prove the
following additional results toward Conjecture 1.5. First, given d, a > 0, define r (dependent
on d and a) to be the largest integer such that

(2) 2r − 2a−1 ≤ d.

Theorem 1.7. For any a, d, n > 0 where d = 2s − 2t, with s ≥ t+ 4 and t ≥ 0,

∆
(a,−,−)
d

(
2a−1n

)
≥ 0.

1The d = 2 case is simply the second Rogers-Ramanujan identity.
2For a discussion on why the exclusion of the b and d + 3− b parts are necessary see Section 7.
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Theorem 1.8. Let a ≥ 3, and d = 2a−1m where m ≥ 31 and m 6= 2r − 1. Then for all
n ≥ 23−ad+ 2r+1−a,

∆
(a,−,−)
d

(
2a−1n

)
≥ 0.

Finally, we investigate and generalize the asymptotic results of Andrews [4], and Alfes,
Jameson, and Lemke Oliver [3]. We conclude the following.

Theorem 1.9. Let a, n > 0 and d > 3 such that a < d+3
2

and a is relatively prime to d+ 3.
Then

lim
n→∞

∆
(a)
d (n) = +∞.

Remark 1.10. Notice that for all a, d, n > 0,

∆
(a,−,−)
d (n) ≥ ∆

(a,−)
d (n) ≥ ∆

(a)
d (n) .

In order to prove these theorems, we begin, in Section 2, by generalizing some theorems
from [4] along with establishing other useful lemmas. Then, in Section 3 we will prove
two different modified versions of Alder’s conjecture that we will use to prove Theorem 1.3,
Theorem 1.6, and Proposition 7.3. In Section 4 we prove Theorem 1.3 by considering four
cases based on the parity of n and d. Then, in Section 5, we modify the methods used
to prove Theorem 1.3 to prove Theorem 1.6 as well as adapt the methods of [4] and [13]
to prove Theorem 1.7 and Theorem 1.8, respectively. In Section 6, we prove Theorem 1.9
as well as analog the method of [3] to prove an explicit error term for the asymptotic of

∆
(a)
d (n) and remark on how asymptotics could be used to prove the remaining finite cases

of Theorem 1.3. Finally, in Section 7, we make remarks on the removal of parts to make a
suitable generalization of Alder’s conjecture and present a partial proof of a Conjecture 1.4.

2. Preliminaries

In this section, we develop generating functions for our partition functions that can be
used for computation and we also establish some important lemmas that we will employ in
later sections.

As in Yee [13], we denote the coefficient of qn in an infinite series s(q) as [qn](s(q)).

We now introduce q-Pochhammer notation which we will use for convenience.

(a; q)0 := 1

(a; q)n :=
n−1∏
k=0

(1− aqk)

(a; q)∞ :=
∞∏
k=0

(1− aqk)

For example, the generating function for the unrestricted partition function, p(n), is,

p(n) =
1

(q; q)∞
.



Generalizing Conjectures on Partitions with Congruence Relations and Difference Conditions 5

As another example, the Rogers-Ramanujan identities can also be stated in this notation.
The first Rogers-Ramanujan identity is

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

and the second Rogers-Ramanujan identity is

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
.

Now we construct generating functions for q
(a)
d (n), Q

(b)
d (n), Q

(b,−)
d (n), and Q

(b,−,−)
d (n).

Lemma 2.1. For a, d > 0, the generating function for q
(a)
d (n) is:

∞∑
n=0

q
(a)
d (n)qn =

∞∑
k=0

qd(
k
2)+ka

(q; q)k
.

This generating function appears in work of Alder [2], and the case where a = 1 is described
graphically in [8]. We provide the full details of the combinatorial proof for arbitrary a here.

Proof. First, we consider triangles of dots having an equal height and width. We take a
triangle of dots with height k and add d− 1 triangles to the right with height k − 1. Then
we shift all of the dots to be left justified and we see this gives us a Ferrers’ diagram of a
partition with parts having a difference of at least d.

Next, we add a − 1 columns of height k before the triangles and now we have a Ferrers’
diagram of a partition with parts that have a difference of at least d and the smallest part
is at least a.

From this base Ferrers’ diagram, we can add any Ferrers’ diagram of a partition with at
most k parts and left justify to construct infinitely many partitions satisfying the partition

condition counted by q
(a)
d (n). To illustrate this, take the example where k = 4, d = 2, and

a = 2. The d triangles are highlighted in blue, the addition of the a− 1 columns of height k
are highlighted in green, and the remaining possibilities of partitions with at most k parts
in represented by the red.

k

When the dots in the diagram are shifted to the left to fill in the gaps we will be left with a
Ferrer’s diagram that represents a partition with a gap of at least d and parts at least a.

Now we construct our generating function using each of the three parts of our argument.
The ‘blue’ part is the d triangles and to represent the choices of the number of dots we use

qd(
k
2)+k. The ‘green’ part is the a− 1 columns of height k and to represent these choices we

use qk(a−1). The ‘red’ part is used for the remaining possibilities of partitions with at most
k parts is represented by 1

(q;q)k
.
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Putting it all together we get
∞∑
n=0

q
(a)
d (n)qn =

∞∑
k=0

qd(
k
2)+kqk(a−1)

(q; q)k

=
∞∑
k=0

qd(
k
2)+ka

(q; q)k
.

�

As stated in Alfes, Jameson, and Lemke Oliver [3], the generating function for Q
(b)
d (n) is

∞∑
n=0

Q
(b)
d (n)qn =

1

(qd+3−b; qd+3)∞(qb; qd+3)∞
.

We can generalize this to obtain the generating function for Q
(b,−)
d (n).

Lemma 2.2. For b, d > 0, the generating function for Q
(b,−)
d (n) is given by:

∞∑
n=0

Q
(b,−)
d (n)qn =

{
1

(q2d+6−b;qd+3)∞
for b = d+3

2
,

1
(q2d+6−b;qd+3)∞(qb;qd+3)∞

otherwise.

Proof. Begin by considering the generating function for Q
(b)
d (n) which counts the number of

partitions of n into parts congruent to ±b (mod d+ 3). To get the generating function for

Q
(b,−)
d (n), we need to remove the (1− qd+3−b) term from the expansion of (qd+3−b; qd+3)∞ in

the denominator to get:
∞∑
n=0

Q
(b,−)
d (n)qn =

1

(q2d+6−b; qd+3)∞(qb; qd+3)∞
.

However, in the case that 2b = d + 3, the above generating function double counts the use
of each part, thus we eliminate the duplicate Pochhammer symbol to obtain

∞∑
n=0

Q
(b,−)
d (n)qn =

1

(q2d+6−b; qd+3)∞
.

�

We employ a similar method to create the generating function for Q
(b,−,−)
d (n).

Lemma 2.3. For b, d > 0, the generating function for Q
(b,−,−)
d (n) is given by:

∞∑
n=0

Q
(b,−,−)
d (n)qn =

{
1

(q2d+6−b;qd+3)∞
for b = d+3

2
,

1
(q2d+6−b;qd+3)∞(qd+3+b;qd+3)∞

otherwise.

Proof. Modifying the generating function for Q
(b,−)
d (n), we need to remove the (1− qb) term

from the denominator. In the case where 2b = d + 3, this is already trivially taken care of.
For all other cases we get

∞∑
n=0

Q
(b,−,−)
d (n)qn =

1

(q2d+6−b; qd+3)∞(qd+3+b; qd+3)∞
.

�



Generalizing Conjectures on Partitions with Congruence Relations and Difference Conditions 7

In the proof of Theorem 1.8 we will need to use a theorem of Andrews [4]. Using notation
of Andrews [4], let βd(x) be the least positive residue of x modulo d, let b(x) be the number
of terms appearing in the binary representation of x, and let ν(x) be the least 2i in this
representation.

Let A = {a(1), . . . , a(s)} be a set of s distinct integers which satisfy
∑k−1

i=1 a(i) < a(k) for
1 ≤ k ≤ s and denote the set of sums of elements from A by A′ and the elements of A′ by
α(i). Let N be a positive integer such that N ≥ a(1) + a(2) + · · ·+ a(s). Finally, let AN be
the set of all integers congruent to some a(i) (mod N) and let A′N be the set of all integers
congruent to some α(i) (mod N). The following is a theorem from Andrews [5]:

Theorem 2.4 (Andrews [5], 1969). Let AN , A′N be defined as above, and let D(AN ;n)
denote the number of partitions of n into distinct parts taken from AN and let E(A′N ;n) be
the number of partitions of n into parts taken from A′N of the form n = λ1 + λ2 + · · · + λs
such that

(3) λi+1 − λi ≥ d · b(βd(λi)) + ν(βd(λi))− βd(λi).

Then D(AN ;n) = E(A′N ;n).

Andrews [4] also uses the following theorem in his proof of certain cases of Alder’s conjec-
ture. First, define

ρ(R;n) := p(n | parts from the set R).

Theorem 2.5 (Andrews [4], 1971 ). Let S = {xi}∞i=1 and T = {yi}∞i=1 be two strictly
increasing sequences of positive integers such that y1 = 1 and xi ≥ yi for all i. Then for all
n > 0,

ρ(T ;n) ≥ ρ(S;n).

Yee [13] employs this theorem, for which she gives a combinatorial proof, to obtain her
results on Alder’s conjecture. Kang and Park [7] present a generalization of Theorem 2.5
which we generalize further as follows.

Lemma 2.6. Let S = {xi}∞i=1 and T = {yi}∞i=1 be increasing sequences of positive integers
with each yi divisible by m > 0, such that y1 = m and xi ≥ yi for all i. Then for all n > 0,

ρ(T ;mn) ≥ ρ(S;mn).

Proof. Let S̃mn be the set of partitions of mn with parts coming from S, and T̃mn be the set
of partitions of mn with parts coming from T . We construct an injection, similar to that in
Yee [13], where

ϕ : S̃mn → T̃mn.

Let λ be a partition in S̃mn. Define ei as the number of times xi occurs in the partition
λ. We note that

∑∞
i=1 xi · ei = mn is clearly divisible by m. Also note that by assumption,

all yi are divisible by m. Thus,
∞∑
i=1

(xi − yi)ei

is divisible by m.
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We will define the sequence {fi}∞i=1 as follows

fi =

{
e1 + 1

m

∑∞
i=1(xi − yi)ei, i = 1

ei, i > 1,

We then define ϕ(λ) to be the partition consisting of each yi occurring fi times. We will
now verify that the desired properties are held by ϕ(λ).

First, we see
∑∞

i=1 fiyi = e1y1 +
∑∞

i=1(xi−yi)ei+
∑∞

i=2 yiei =
∑∞

i=1 xi = mn, which verifies
that ϕ(γ) is a partition of mn.

We now show ϕ is injective. Suppose λ and λ′ are partitions of mn such that xi appears
ei times in λ and xi appears gi times in λ′.

Suppose ϕ(λ) = ϕ(λ′). Then gi = ei ∀i ≥ 2 and

e1 +
1

m

∞∑
i=1

(xi − yi)ei = g1 +
1

m

∞∑
i=1

(xi − yi)gi.

From this, clearly e1 = g1. Thus λ = λ′.
Since ϕ is an injection, the result follows.

�

Lemma 2.6 will be used to prove Theorems 1.7 and 1.8.

We now present two lemmas that are useful in proving Theorem 1.3, Theorem 1.6, and
later Proposition 7.3.

Lemma 2.7. For all a, d, n > 0,

q
(a)
d (n) ≥ q

(1)

d dae
(⌈n
a

⌉)
.

Proof. Let d be the residue of d (mod a) , and let n be the residue of n (mod a) . Let q
(a)
d (n)∗

count the number of partitions with parts ≥ a and parts differing by at least d, with the
added restriction that one part, the largest part, is ≡ n (mod a) and every other part is
divisible by a. Also define

n̂ :=

{
a− n if a 6 | n
0 if a | n

and

d̂ :=

{
a− d if a 6 | d
0 if a | d

.

We define a map between a partition, λ = (λ1, . . . , λl), counted by q
(a)
d (n)∗ and a partition

counted by q
(1)

d dae
(⌈

n
a

⌉)
. Let λ1 be the largest part in the partition λ and define

f(λ) =

{
λi+n̂
a

if i = 1
λi
a

if i ≥ 2

We see that f(λ) is a partition of n+n̂
a

=
⌈
n
a

⌉
. We also have that the difference between

parts in the partition f(λ) is at least d+d̂
a

=
⌈
d
a

⌉
, thus f(λ) is indeed a partition counted by

q
(1)

d dae
(⌈

n
a

⌉)
. Furthermore we see that this map is bijective since we can recover the preimage
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of f(λ) by subtracting n̂
a

from the largest part and multiplying every part by a. Since, clearly,

q
(a)
d (n) ≥ q

(a)
d (n)∗, we have our desired result. �

Lemma 2.8. For a, d, n > 0 and d+ 3 and n both divisible by a,

Q
(a,−)
d (n) = Q

(1,−)
d+3
a
−3

(n
a

)
,

Q
(a,−,−)
d (n) = Q

(1,−,−)
d+3
a
−3

(n
a

)
.

Proof. First, we have

Q
(a,−)
d (n) = p(n| parts ≡ ±a (mod d+ 3) , parts 6= d+ 3− a)

= p

(
n

a

∣∣∣∣ parts ≡ ±1

(
mod

d+ 3

a

)
, parts 6= d+ 3

a
− 1

)
= Q

(1,−)
d+3
a
−3

(n
a

)
.

Similarly we have

Q
(a,−,−)
d (n) = p(n| parts ≡ ±a (mod d+ 3) , parts 6= a, d+ 3− a)

= p

(
n

a

∣∣∣∣ parts ≡ ±1

(
mod

d+ 3

a

)
, parts 6= 1,

d+ 3

a
− 1

)
= Q

(1,−,−)
d+3
a
−3

(n
a

)
.

�

3. A modification of Alder’s conjecture

To prove Theorem 1.3, and later Proposition 7.3, we will need a slightly modified version
of Alder’s conjecture.

Proposition 3.1. For any k ≥ 31, m > 0,

q
(1)
k (m) ≥ Q

(1,−)
k−2 (m) .

This proposition will be proved in the following three lemmas3, which we will prove by
adapting the methods of Andrews [4] and Yee [13]. We will write λx if the part λ appears x
times as a part in a partition. Now we begin by showing Proposition 3.1 for small m.

Lemma 3.2. For any k ≥ 20 and 0 < m ≤ 4k + 2r, where r is defined in (2) by letting
a = 1 and d = k,

q
(1)
k (m) ≥ Q

(1,−)
k−2 (m) .

Proof. Since r is the largest positive integer, such that 2r ≤ k + 1, we have that n is no

greater than 5k + 1. We will assume that q
(1)
k (m) is an increasing function. Following Yee

[13], we let

U = {1, k + 2, 2k + 1, 2k + 3, 3k + 2, 3k + 4, 4k + 3, 4k + 5, 5k + 4, · · · }

and note that Q
(1,−)
k−2 (m) counts the number of partitions of m into parts from U .

3See Section 6 for a comment on the cases when 1 ≤ k ≤ 31 for Proposition 3.1
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The lemma is trivially true for n < k + 2, for Q
(1,−)
k−2 (m) is at most 1 and q

(1)
k (m) ≥ 1.

For n = k + 2, note that Q
(1,−)
k−2 (k + 2) = 2, with the partitions of k + 2 being (1k+2) and

(k + 2). Also q
(1)
k (k + 2) ≥ 2, as it will have the partitions (k + 2) and (1, (k + 1)).

We now move to the case k+ 3 ≤ m ≤ 2k+ 2. We have that q
(1)
k (k + 3) ≥ 3 with the par-

titions (k+ 3), (2, (k+ 1)), and (1, (k+ 2)). Note that Q
(1,−)
k−2 (m) is at most 3 with partitions

(1m), (1m−k−2, (k+2)), and (1m−2k−1, (2k−1)). Since q
(1)
k (m) is increasing, we have this case.

For Q
(1,−)
k−2 (2k + 3) we can have the partitions (2k + 3), (12, (2k + 1)), (1k+1, (k + 2)) and

(12k+3). We also have that q
(1)
k (2k + 3) counts at least the partitions (k, (k+3)), (1, (2k+2)),

(2, (2k + 1)), (3, 2k), and (4, 2k − 1), so the lemma holds for (2k + 3).

We now consider 2k + 4 ≤ m ≤ 4k + 3. Using the floor function, we analyze the number
of partitions of 2k + 4 with only two parts, that is analyzing the partition

(y, (2k + 4− y))

with 0 ≤ y ≤
⌊
k
2

⌋
+ 2. Since k ≥ 20, q

(1)
k (m) ≥ 12. For Q

(1,−)
k−2 (m) we directly calculate

its maximum possible value by considering the contribution of the different parts to possible
partitions of m. For 2k + 4 ≤ m ≤ 4k + 3 we have that the part 4k + 3 can contribute to at
most one partition of m, which is of the form

(4k + 3).

The part 3k + 4 can contribute to at most one partition of m, which is of the form

((3k + 4), 1m−3k−4).

The part 3k + 2 can contribute to at most one partition of m, which is of the form

((3k + 2), 1m−3k−2).

The part 2k + 3 can contribute to at most two partitions of m, which are of the form

((2k + 3), (k + 2), 1m−3k−5).

((2k + 3), 1m−2k−3),

The part 2k + 1 can contribute to at most two partitions of m, which are of the form

((2k + 1), (k + 2), 1m−3k−3),

((2k + 1), 1m−2k−1).

The part k + 2 can contribute to at most three additional partitions of m, which are of the
form

((k + 2)3, 1m−3k−6),

((k + 2)2, 1m−2k−4),

((k + 2), 1m−k−2).

The part 1 can contribute to at most one additional partition of m, which is of the form

(1m).
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Noting that in some cases a part will not contribute to a partition of m at all, we have at

most that Q
(1,−)
k−2 (m) ≤ 11 ≤ 12 ≤ q

(1)
k (m).

We now proceed for 4k + 3 < n < 4k + 2r. We have from above that at n ≤ 5k + 1, thus
it’s sufficient to verify only in the range 4k+3 < n < 5k+1. We have that k+

⌊
k
2

⌋
+2 ≥ 32.

This implies that we have 32 values to choose for y to form the two part partitions of 4k+ 4

of the form (y, (4k + 4 − y)), implying q
(1)
k (m) ≥ 32. We now calculate the maximum of

Q
(1,−)
k−2 (m). We have that the part 4k+5 can contribute to at most one partition of m, which

is of the form
((4k + 5), 1m−4k−5).

The part 4k + 3 can contribute to at most one partition of m, which is of the form

((4k + 3), 1m−4k−3).

The part 3k + 4 can contribute to at most two partitions of m, which are of the form

((3k + 4), 1m−3k−4),

((3k + 4), (k + 2), 1m−4k−6).

The part 3k + 2 can contribute to at most two partitions of m, which are of the form

((3k + 2), (k + 2), 1m−4k−4),

((3k + 2), 1m−3k−2).

The part 2k + 3 can contribute to at most five partitions of m, which are of the form

((2k + 3)2, 1m−2k−6),

((2k + 3), (k + 2)2, 1m−4k−7),

((2k + 3), (k + 2), 1m−3k−5),

((2k + 3), (2k + 1), 1m−4k−4),

((2k + 3), 1m−2k−3).

The part 2k + 1 can contribute to at most four additional partitions of m, which are of the
form

((2k + 1)2, 1m−4k−4),

((2k + 1), 1m−2k−1),

((2k + 1), (k + 2)2, 1m−4k−5),

((2k + 1), (k + 2), 1m−3k−3).

The part k + 2 can contribute to at most four additional partitions of m, which are of the
form

((k + 2)4, 1m−4k−8),

((k + 2)3, 1m−3k−6)),

((k + 2)2, 1m−2k−4),

((k + 2), 1m−k−2)).

The part 1 can contribute to only one additional partition of m, which is of the form

(1m).

Thus, we have that Q
(1,−)
k−2 (m) ≤ 20 ≤ q

(1)
k (m) which finishes our proof. �
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To prove the remaining case of Proposition 3.1 we see from the work of [13] that we have

(4) q
(1)
k (m) ≥ [qm](g

(1)
k (q))

for m ≥ 4d+ 2r, where r is defined by (2) and k 6= 2r − 1, where

g
(1)
k (q) :=

(−qk+2r−1
; q2k)∞

(q1; q2k)∞(qk+2; q2k)∞ · · · (qk+2r−2 ; q2k)∞
.

Similarly, from the work of [4], we have that if k = 2s − 1 and s ≥ 5,

(5) q
(1)
k (m) ≥ L(1)

k (m),

where L(1)
k (m) = ρ(Ts;m) and ρ(Ts;m) counts the number of partitions with parts from the

set
Ts = {y|y ≡ 1, k + 21, ..., k + 2s−1 (mod 2k)}.

Now we can prove the following two lemmas.

Lemma 3.3. If k ≥ 31, k 6= 2r−1, where r is defined in (2) and m ≥ 4k+ 2r, then we have

q
(1)
k (m) ≥ Q

(1)
k−2 (m) .

Proof. Let r ≥ 5, since k ≥ 31. We define the sets S and Tr as follows:

S = {x|x ≡ 1,−1 (mod k + 1)} \ {k}
Tr = {y|y ≡ 1, k + 21, ..., k + 2r−2 (mod 2k)}.

We want to use Theorem 2.5 so we aim to show that xi ≥ yi for all i, where xi and yi
are the ith elements of S and Tr, respectively, when the elements of each set are arranged in
increasing order.

Remark 3.4. Notice that we only have to consider the set T5, where r = 5, since, if we
increase r, the S set remains unchanged but the Tr set will be given more residue classes
(mod 2k). Adding another residue class to the elements of Tr will imply that the ith element
of Tr, will be less than the ith element of T5.

Let

T5 = {y|y ≡ 1, k + 2, k + 4, k + 8 (mod 2k)}.
We derive the forms of each component, xi and yi, of S and T5.

i xi yi
1 1 1
2 (k + 1) + 1 k + 2
3 2(k + 1)− 1 k + 4
4 2(k + 1) + 1 k + 8
5 3(k + 1)− 1 2k + 1
6 3(k + 1) + 1 3k + 2
7 4(k + 1)− 1 3k + 4
8 4(k + 1) + 1 3k + 8
...

...
...
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Noting that xi = 1 = yi, we can consider the general forms of each xi and yi by considering
the congruence classes of i (mod 4):

i xi yi
i = 4α and α ≥ 1 (2α)(k + 1) + 1 k(2α) + 8− k
i = 4α + 1 and α ≥ 1 (2α + 1)(k + 1)− 1 k(2α) + 1
i = 4α + 2 (2α + 1)(k + 1) + 1 k(2α) + 2 + k
i = 4α + 3 (2α + 2)(k + 1)− 1 k(2α) + 4 + k

We now show that we have our desired inequalities for each i given that k ≥ 31.

(i) If i = 4α, xi − yi = (2α)(k + 1) + 1− (k(2α) + 8− k) = 2α + 1 + k − 8 ≥ 0.
(ii) If i = 4α + 1, xi − yi = (2α + 1)(k + 1)− 1− (k(2α) + 1) = 2α + k − 1 ≥ 0.

(iii) If i = 4α + 2, xi − yi = (2α + 1)(k + 1) + 1− (k(2α) + 2 + k) = 2α ≥ 0.
(iv) If i = 4α + 3, xi − yi = (2α + 2)(k + 1)− 1− (k(2α) + 22 + k) = 2α + k − 3 ≥ 0.

Thus, by Theorem 2.5 and (4), we have

q
(1)
k (m) ≥ [qm](g

(1)
k (q)) ≥ ρ(Tr;m) ≥ ρ(S;m) = Q

(1,−)
k−2 (m)

for k ≥ 31, k 6= 2r − 1 and m ≥ 4k + 2r. �

To complete the proof of Proposition 3.1 we show the following.

Lemma 3.5. If k = 2s − 1 for s ≥ 5, and m > 0, we have

q
(1)
k (m) ≥ Q

(1,−)
k−2 (m) .

Proof. We aim to prove that ρ(Ts;m) ≥ Q
(1,−)
k−2 (m) where Q

(1,−)
k−2 (m) = ρ(S;m) with Ts and

S is defined as

S = {x|x ≡ 1,−1 (mod k + 1)} \ {k}
Ts = {y|y ≡ 1, k + 21, ..., k + 2s−1 (mod 2k)}.

Using the argument from Remark 3.4, we only need to look at the case where s = 5.

T5 = {y|y ≡ 1, k + 2, k + 4, k + 8 (mod 2k)}
We see that these sets S and T5 match those from the proof of Lemma 3.3, thus we have
already shown that Theorem 2.5 and (4) implies our desired result. �

Lemmas 3.2, 3.3, and 3.5 prove Proposition 3.1.

We will also need another modification of Alder’s conjecture to prove Theorem 1.6.

Proposition 3.6. For any k ≥ 31, m > 0,

q
(1)
k (m) ≥ Q

(1,−,−)
k−3 (m) .

Again we will adapt [13] and [4] to prove the following three lemmas which will prove
Proposition 3.6. The proofs of these lemmas will follow similarly as above.

Lemma 3.7. For any k ≥ 26 and 0 < m ≤ 4k + 2r with r defined by (2),

q
(1)
k (m) ≥ Q

(1,−,−)
k−3 (m) .
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Proof. Again following Yee [13], we have the set

U = {k + 1, 2k − 1, 2k + 1, 3k − 1, 3k + 1, 4k − 1, 4k + 1, 5k − 1, · · · }

where Q
(1,−,−)
k−3 (m) counts the number of partitions of m into parts from U .

We note that m < k + 1 that the result is trivial, since Q
(1,−,−)
k−3 (m) = 0.

For k + 1 ≤ m < 2k − 1, note that the maximum size of Q
(1,−,−)
k−3 (m) is 1, with the only

partition being (k+ 1). We have that q
(1)
k (k + 1) ≥ 2 with the partitions (1k+1) and (k+ 1).

Th increasing property of q
(1)
k (k + 1) finishes this case.

For 2k − 1 ≤ m < 2k + 4 we note that for 2k − 1, that the following partitions (2k −
1), (12k−1), and (2k− 2, 1) are always counted, since k ≥ 26. Now we examine the maximum

possible value of Q
(1,−,−)
k−3 (m). The part 2k+ 1 can contribute to at most one partition of m,

which is of the form
(2k + 1).

The part 2k − 1 can contribute to at most one partition of m, which is of the form

(2k − 1).

The part k + 1 can contribute to at most one partition of m, which is of the form

(k + 1)2.

Thus the maximum that Q
(1,−,−)
k−3 (m) can be is 3, so this case is settled.

For 2k+4 ≤ m ≤ 4k+3, we have that q
(1)
k (2k + 4) ≥ 15, by examining two part partitions

of the form (y, (2k + 4 − y)), where 0 ≤ y ≤
⌊
k
2

⌋
+ 2 and k ≥ 26. We now calculate the

maximum size of Q
(1,−,−)
k−3 (m). We have that The part 4k + 1 can contribute to at most one

partition of m, which is of the form
(4k + 1).

The part 4k − 1 can contribute to at most one partition of m, which is of the form

(4k − 1).

The part 3k + 1 can contribute to at most two partitions of m to which are of the form

(3k + 1),

((3k + 1), (k + 1)).

The part 3k − 1 can contribute to at most two partitions of m, which are of the form

((3k − 1), (k + 1))

(3k − 1).

The part 2k + 1 can contribute to at most four partitions of m, which are of the form

((2k + 1), (k + 1)2),

((2k + 1)2,

(2k − 1), (2k + 1)),

((2k + 1), (k + 1)).
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The part 2k − 1 can contribute to at most four additional partitions of m, which are of the
form

((2k − 1)2),

((2k − 1), (k + 1)2),

((2k − 1), (k + 1)),

((2k − 1)2).

The part k + 1 can contribute to only one additional partition of m, which is of the form

((k + 1)3).

So, we see that Q
(1,−,−)
k−3 (m) can be at most 15 and thus this case is also settled.

We now verify that the inequality holds for 4k+4 ≤ m ≤ 4k+2r. Since 2r ≤ k+1, we have

that we simply need to verify 4k+4 ≤ m ≤ 5k+1. We have that q
(1)
k (4k + 4) ≥ 12 by again

considering only the two part partitions of the form (y, (4k+ k− y)) where 0 ≥ y ≥
⌊
k
2

⌋
+ 2

and k ≥ 26. Now we calculate the maximum possible value of Q
(1,−,−)
k−3 (m). The part 5k+ 1

can contribute to at most one partition of m, which is of the form

(5k + 1).

The part 5k − 1 can contribute to at most one partition of m, which is of the form

(5k − 1).

The part 4k + 1 can contribute to at most one partition of m which is of the form

(4k + 1).

The part 4k − 1 can contribute to at most one partition of m, which is of the form

((4k − 1), (k + 1)).

The part 3k + 1 contributes to at most one partition of m, which is of the form

((3k + 1), (2k − 1)).

The part 3k − 1 contributes to at most three partitions of m, which are of the form

((3k − 1), (k + 1)2),

((3k − 1), (2k + 1)),

((3k − 1), (2k − 1)).

The part 2k+ 1 contributes to at most two additional partitions of m, which are of the form

((2k + 1), (k + 1)2),

((2k + 1), (2k − 1), (k + 1)).

The part 2k − 1 contributes to at most one additional partition of m, which is of the form

((2k − 1)2, (k + 1)).

The part k + 1 contributes to at most one additional partition of m, which is of the form

((k + 1)4).

This implies that Q
(1,−,−)
k (m) ≤ 12 ≤ q

(1)
k (m). Thus, we have completed our proof.

�
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We can use (4) to also prove the following lemma.

Lemma 3.8. If k ≥ 31, k 6= 2r − 1 and m ≥ 4k + 2r with r defined in (2), then we have

q
(1)
k (m) ≥ Q

(1,−,−)
k−3 (m) .

Proof. The proof here follows similarly as above. Let r ≥ 5, since k ≥ 31. We define the sets
S and Tr as follows:

S = {x|x ≡ 1,−1 (mod k)} \ {k − 1, 1}
Tr = {y|y ≡ 1, k + 21, ..., k + 2r−2 (mod 2k)}.

By Remark 3.4, we need only consider the case when r = 5 so we define

T5 = {y|y ≡ 1, k + 2, k + 4, k + 8 (mod 2k)}.
We again derive the forms of each component, xi and yi, of S and T5.

i xi yi
1 k + 1 1
2 2k − 1 k + 2
3 2k + 1 k + 4
4 3k − 1 k + 8
5 3k + 1 2k + 1
6 4k − 1 3k + 2
7 4k + 1 3k + 4
8 5k − 1 3k + 8
...

...
...

Noting that yi = 1, we can consider the general forms of each xi and yi by considering the
congruence classes of i (mod 4):

i xi yi
i = 4α and α ≥ 1 (2α + 1)(k)− 1 k(2α) + 8− k
i = 4α + 1 and α ≥ 1 (2α + 1)(k) + 1 k(2α) + 1
i = 4α + 2 (2α + 2)(k)− 1 k(2α) + 2 + k
i = 4α + 3 (2α + 2)(k) + 1 k(2α) + 4 + k

We now show that we have our desired inequalities for each i given that k ≥ 31.

(i) If i = 4α, xi − yi = (2α + 1)(k)− 1− (k(2α) + 8− k) = 2k − 9 ≥ 0.
(ii) If i = 4α + 1, xi − yi = (2α + 1)(k) + 1− (k(2α) + 1) = k ≥ 0.

(iii) If i = 4α + 2, xi − yi = (2α + 2)(k)− 1− (k(2α) + 2 + k) = k − 3 ≥ 0.
(iv) If i = 4α + 3, xi − yi = (2α + 2)(k) + 1− (k(2α) + 4 + k) = k − 3 ≥ 0.

By Theorem 2.5 and (4), we have

q
(1)
k (m) ≥ [qm](g

(1)
k (q)) ≥ ρ(Tr;m) ≥ ρ(S;m) = Q

(1,−,−)
k−3 (m)

for k ≥ 31, where k 6= 2r − 1 and m ≥ 4k + 2r. �



Generalizing Conjectures on Partitions with Congruence Relations and Difference Conditions 17

Again, (5) can be used in the proof of the following.

Lemma 3.9. If k = 2s − 1 for s ≥ 5, and m > 0, we have

q
(1)
k (m) ≥ Q

(1,−,−)
k−3 (m) .

Proof. Similarly as above, we aim to prove that ρ(Ts;m) ≥ Q
(1,−,−)
k−3 (m) where Q

(1,−,−)
k−3 (m) =

ρ(S;m) with Ts and S is defined as

S = {x|x ≡ 1,−1 (mod k)} \ {k − 1, 1}
Ts = {y|y ≡ 1, k + 21, ..., k + 2s−1 (mod 2k)}.

From Remark 3.4, we only need to look at the case where s = 5.

T5 = {y|y ≡ 1, k + 2, k + 4, k + 8 (mod 2k)}
We see that these sets S and T5 also match those from the proof of Lemma 3.8, thus Theorem
2.5 and (5) implies our result. �

We see that Lemmas 3.7, 3.8, and 3.9 prove Proposition 3.6.

4. The proof of Kang and Park’s conjecture

We prove Theorem 1.3 in cases, by considering the parities of d and n.

Remark 4.1. The first case of Theorem 1.3, when both n > 0 and d > 0 are odd, is trivial.

This is because in these cases Q
(2,−)
d (n) = 0, as explained by Kang and Park [7].

Now we consider the cases not covered by Remark 4.1.

Lemma 4.2. For d ≥ 61, where d > 0 is odd and n > 0 is even,

q
(2)
d (n) ≥ Q

(2,−)
d (n) .

Proof. We prove this by establishing the following string of inequalities,

q
(2)
d (n) ≥ q

(1)
d+1
2

(n
2

)
≥ Q

(1,−)
d−3
2

(n
2

)
= Q

(2,−)
d (n) .

The first inequality is a simple consequence of Lemma 2.7. The second inequality is a con-
sequence of Proposition 3.1, as d+1

2
− d−3

2
= 2. Finally, the third inequality is a consequence

of Lemma 2.8. This completes the proof. �

Lemma 4.3. For d ≥ 62, where d > 0 is even and n > 0 is even,

q
(2)
d (n) ≥ Q

(2,−)
d (n) .

Proof. We prove this by establishing the following string of inequalities,

q
(2)
d (n) ≥ q

(1)
d
2

(n
2

)
≥ Q

(1,−)
d
2
−2

(n
2

)
= Q

(2,−)
d−1 (n) ≥ Q

(2,−)
d (n) .

The first inequality is again a simple consequence of Lemma 2.7. The second inequality
is a consequence of Proposition 3.1, as d

2
−
(
d
2
− 2
)

= 2. The equality follows from Lemma
2.8 if we replace d with d − 1 in the lemma since d − 1 + 3 is even. This leaves the fourth
inequality which we now show.

Let xi and yi be the ith terms of the sets

S = {x | x ≡ ±2 (mod d+ 3) , parts 6= d+ 1}
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and
T = {y | y ≡ ±2 (mod d+ 2) , parts 6= d}

where clearly Q
(2,−)
d (n) counts the partitions of n with parts from S and Q

(2)
d−1 (n) counts the

partitions of n with parts from T . The general forms of xi and yi are

i xi yi
i = 4α and α ≥ 1 (2α)(d+ 3) + 2 (2α)(d+ 2) + 2
i = 4α + 1 and α ≥ 1 (2α + 1)(d+ 3)− 2 (2α + 1)(d+ 2)− 2
i = 4α + 2 (2α + 1)(d+ 3) + 2 (2α + 1)(d+ 2) + 2
i = 4α + 3 (2α + 2)(d+ 3)− 2 (2α + 2)(d+ 2)− 2.

It is clear for all i that xi ≥ yi. Since d is even, yi is even for all i. Finally, given that
xi = 2 = yi, applying Lemma 2.6 gives our desired conclusion. �

Lemma 4.4. For d ≥ 62, where d > 0 is even and n > 0 is odd,

q
(2)
d (n) ≥ Q

(2,−)
d (n) .

Proof. Our ultimate goal is to show the following chain of inequalities

q
(2)
d (n) ≥ q

(1)
d
2

(
n+ 1

2

)
≥ Q

(1,−)
d
2
−2

(
n+ 1

2

)
= Q

(2,−)
d−1 (n+ 1) ≥ Q

(2)
d (n) .

The first inequality is a simple consequence of Lemma 2.7. The second inequality follows
from Proposition 3.1. Finally, the third equality can be shown using Lemma 2.8 if in the
lemma we replace d with d− 1, i.e. d− 1 + 3 is even, and replace n with n + 1 since n + 1

is even. It remains to show that for odd n and even d, Q
(2,−)
d−1 (n+ 1) ≥ Q

(2,−)
d (n). We prove

this below.
Let Q

(2,−)
d (n) count the number of partitions of n into parts from the set

V = {2, 2d+ 4, 2d+ 8, 3d+ 7, 3d+ 11, ...}

and let Q
(2,−)
d−1 (n+ 1) count the number of partitions of n into parts from the set

V ′ = {2, 2d+ 2, 2d+ 6, 3d+ 4, 3d+ 8, ...}.
Let ai, bi be the ith terms of V and V ′ respectively where the elements are arranged in

increasing order. Let γ = (γ1, ..., γr) be a partition counted by Q
(2,−)
d (n) where γj is the

jth part in the partition when the parts are arranged in non-increasing order. We note that
since n is odd, there must be an odd number of odd parts in γ.

We will construct a injection ϕ : V → V ′ to derive our inequality. We create a new
partition λ that is constructed from γ as follows:

If γj = 2, then replace it with one part of size 2 i.e. the part remains unchanged,

if γj = ai is even but 6= 2, replace it with one part of size bi and ai − bi parts of size 2,

if γj = ai is odd, replace it with one part of size bi,

and add β parts of size 2 where 2β = (
∑

(ai − bi)) + 1.

Then we rearrange the new parts of λ so that they are written in non-increasing order and
note that the new partition, λ is a partition of n + 1 and all parts in λ are congruent to
elements of V ′.
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We prove that the mapping is injective. Let γ, γ′ be two partitions counted by V . Assume
γ 6= γ′. If γ and γ′ have a different number of 2’s, then they must have at least one γj 6= γ′j
where γj and γ′j are not 2. This means that at least one bi in the image will be different so
the images of γ and γ′ are different.

If γ and γ′ the same number of 2’s then there must be at least one γj 6= γ′j, since we
assumed γ 6= γ′. Thus again there will be at least one bi in the image that differs so their
images are different and our map is injective. �

Now we see that Remark 4.1 and Lemmas 4.2, 4.3, and 4.4 prove Theorem 1.3.

5. The generalization of Kang and Park’s conjecture

Recall Conjecture 1.5. We will use three different methods to prove partial results for this
conjecture. We will begin by adapting some of the methods used to prove Theorem 1.3, then
we will use the methods of Andrews [4] and Yee [13].

5.1. An adaptation of the methods in Section 4.

Remark 5.1. We remark that in the case where d+ 3 is divisible by a and n is not divisible

by a, Conjecture 1.5 is trivially true, since Q
(a,−,−)
d (n) = 0 for all a.

Proof of Theorem 1.6. We aim to prove

q
(a)
d (n) ≥ q

(1)
d+3
a

(n
a

)
≥ Q

(1,−,−)
d+3
a
−3

(n
a

)
= Q

(a,−,−)
d (n) .

The first inequality is a simple consequence of Lemma 2.7. The second inequality is a
consequence of Proposition 3.6, as d+3

a
−
(
d+3
a
− 3
)

= 3. Finally, the third equality is a
consequence of Lemma 2.8. This, along with the Remark 5.1, proves the theorem. �

5.2. A generalization of the method of Andrews. We will utilize a method of Andrews
[4] to prove Theorem 1.7.

Lemma 5.2. Let s be the largest integer such that 2s − 2t ≤ d for s ≥ t + 4 ≥ 4

and let L(t)
d (n) count the number of partitions with distinct parts that are congruent to

2t, 2t+1, · · · , 2s−1 (mod d). Then

q
(a)
d (n) ≥ L(t)

d (n)

for n > 0.

Proof. In the notation of Theorem 2.4 set N = d and a(1) = 2t, a(2) = 2t+1, . . ., a(s− t) =

2s−1. We see that L(t)
d (n) = D(AN ;n). By Theorem 2.4, D(AN ;n) = E(A′N ;n) where

E(A′N ;n) has the following properties:

(i) n = λ1 + λ2 + · · ·+ λs

(ii) λi+1 − λi ≥ d · b(βd(λi)) + ν(βd(λi)) = βd(λi)

We now consider the case where λi is congruent to 2j (mod d) with t ≤ j ≤ s − 1. If
λi ≡ 2j (mod d), then we have

d · b(βd(λi)) + ν(βd(λi))− βd(λi) = d+ 2j − 2j = d.

If λi 6≡ 2j (mod d), then we have

d · b(βd(λi)) + ν(βd(λi))− βd(λi) ≥ 2d+ 2t − (2s − 2t) ≥ 2d+ 2t − d = d+ 2t.
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This implies that the minimum differences of parts of partitions in E(A′N ;n) is greater

than d, thus q
(a)
d (n) ≥ L(t)

d (n). �

Lemma 5.3. Let d = 2s−2t for some s ≥ t+4 ≥ 4. Let ρ(Ts;n) be the number of partitions
of n > 0 whose parts from the set T where

Ts := {2t, d+ 2t+1, d+ 2t+2, ..., d+ 2s−1 (mod 2d)}.

Then ρ(Ts;n) = L(t)
d (n) for all n divisible by 2t.

Proof. We have that

∞∑
n=0

L(t)
d (n)qn = (−q2t ; qd)∞(−q2t+1

; qd)∞ · · · (−q2s−1

; qd)∞

=
(−q2t ; qd)∞(q2t ; qd)∞

(q2t ; qd)∞
· · · (−q

2s−1
; qd)∞(q2s−1

; qd)∞
(q2s−1 ; qd)∞

=
(q2t+1

; qd)∞
(q2t ; q2d)∞(qd+2t ; q2d)∞

· · · (q2s ; qd)∞
(q2s−1 ; q2d)∞(qd+2s−1 ; q2d)∞

=
1

(q2t ; q2d)∞(qd+2t+1 ; q2d)∞ · · · (qd+2s−1 ; q2d)∞

=
∞∑
n=0

ρ(Ts;n)qn.

�

Proof of Theorem 1.7. Let d = 2s − 2t for some s ≥ t+ 4 and let n be divisible by 2t. From
Lemma 5.2 and Lemma 5.3 we know that

q
(a)
d (n) ≥ L(t)

d (n) = ρ(Ts;n).

Thus to prove our theorem we can use Theorem 2.6 to show that

L(t)
d (n) ≥ Q

(a,−,−)
d (n).

We define

S = {x|x ≡ a, d+ 3− a (mod d+ 3)} \ {a, d+ 3− a}
Ts = {y|y ≡ 2t, 2t+1 + d, 2t+2 + d, ..., 2s−1 + d (mod 2d)}

First note that ρ(S;n), which counts the number of partitions of n with parts from S, is

equivalent to Q
(a,−,−)
d (n). Observe that all yi ∈ Ts are divisible by 2t, since d is a multiple of

2t, and that the first element in Ts is 2t. To show ρ(Ts;n) ≥ ρ(S;n) it is thus sufficient to
show that xi ≥ yi for all i.

Using the same argument from Remark 3.4 we need only examine the case when s = t+ 4
case, where

Tt+4 = {y|y ≡ 2t, 2t+1 + d, 2t+2 + d, 2t+3 + d (mod 2d)}.

Below are the first few xi, yi terms
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i xi yi
1 (d+ 3) + a 2t

2 2(d+ 3)− a d+ 2t+1

3 2(d+ 3) + a d+ 2t+2

4 3(d+ 3)− a d+ 2t+3

5 3(d+ 3) + a 2d+ 2t

6 4(d+ 3)− a 3d+ 2t+1

7 4(d+ 3) + a 3d+ 2t+2

8 5(d+ 3)− a 3d+ 2t+3

...
...

...

We now generalize the xi and yi terms by considering i (mod 4).

i xi yi
i = 4α (2α + 1)(d+ 3)− a α(2d) + 2t+3 − d
i = 4α + 1 (2α + 1)(d+ 3) + a α(2d) + 2t

i = 4α + 2 (2α + 2)(d+ 3)− a α(2d) + 2t+1 + d
i = 4α + 3 (2α + 2)(d+ 3) + a α(2d) + 2t+2 + d

We now show xi ≥ yi, for all i given that d ≥ 2t+4 − 2t.

(i) If i = 4α, xi − yi = (2α+ 1)(d+ 3)− a− (α(2d) + 2t+3 − d) = 6α+ 2d+ 3− 2t+3 ≥
6α + 3 ≥ 0.

(ii) If i = 4α+1, xi−yi = (2α+1)(d+3)+a−(α(2d)+2t) = 6α+d+3−2t ≥ 6α+3 ≥ 0.
(iii) If i = 4α+ 2, xi− yi = ((2α+ 2)(d+ 3)−a− (α(2d) + 2t+1 +d) = d+ 6α+ 6− 2t+1 ≥

6α + 6 ≥ 0.
(iv) If i = 4α+ 3, xi− yi = (2α+ 2)(d+ 3) + a− (α(2d) + 2t+2 + d) = d+ 6α+ 6− 2t+1 ≥

6α + 6 ≥ 0.

Hence, we have

q
(a)
d (n) ≥ L(t)

d (n) = ρ(Ts;n) ≥ ρ(S;n) = Q
(a,−,−)
d (n)

which proves our theorem. �

5.3. A generalization of the method of Yee. Now we use a method of Yee [13] to prove
Theorem 1.8. Using (2) we will generalize the following generating functions of Yee [13] to
incorporate dependence on a, where a, d, n > 0.

f
(a)
d (q) :=

∞∑
n=0

L(a)
d (n)qn := (−q2a−1

; qd)∞(−q2a ; qd)∞ · · · (−q2r−1

; qd)∞.

k
(a)
d (q) :=

∞∑
n=0

K(a)
d (n)qn :=

1− qd+2a−1

1− q2a−1 (−qd+2a−1

; qd)∞(−qd+2a ; qd)∞ · · · (−qd+2r−1

; qd)∞.

g
(a)
d (q) :=

∞∑
n=0

G(a)
d (n)qn :=

(−qd+2r−1
; q2d)∞

(q2a−1 ; q2d)∞(qd+2a ; q2d)∞ · · · (qd+2r−2 ; q2d)∞
.

We prove the following lemmas which relate these generating functions.
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Lemma 5.4. By the definitions above, for a, d > 0, n > 0 divisible by 2a−1, and d 6= 2r−2a−1

where r is defined by (2),

L(a)
d (n) + L(a)

d (n− 2r) ≥ K(a)
d (n).

Proof. Let n be a multiple of 2a−1 and d 6= 2r − 2a−1. We see that

L(a)
d (n) + L(a)

d (n− 2r) = [qn]((1 + q2r)fd(q)).

Thus, it is sufficient to show

[qn]((1 + q2r)fd(q)) ≥ [qn](kd(q)) = K(a)
d (n).

So, we manipulate as follows:

(1 + q2r)(f
(a)
d (q))− k(a)

d (q)

= (1 + q2r)(−q2a−1

; qd)∞ · · · (−q2r−1

; qd)∞ −
1− qd+2a−1

1− q2a−1 (−qd+2a−1

; qd)∞ · · · (−qd+2r−1

; qd)∞

= (1 + q2a−1

) · · · (1 + q2r−1

)(1 + q2r)− (1 + q2a−1

+ q(2a−1)2 + q(2a−1)3 + · · ·+ qd) ≥ 0.

�

Lemma 5.5. For any a, d > 0 and n ≥ 4d+ 2r, where r is defined by (2), we have

K(a)
d (n) ≥ G(a)

d (n).

Proof. With some algebraic manipulations, we obtain

k
(a)
d (q) =

1− qd+2a−1

1− q2a−1 (−qd+2a−1

; qd)∞(−qd+2a ; qd)∞ · · · (−qd+2r−1

; qd)∞

=
1− qd+2a−1

1− q2a−1 ·
(q2d+2a ; q2d)∞
(qd+2a−1 ; qd)∞

· (q2d+2a+1
; q2d)∞

(qd+2a ; qd)∞
· · · · · (q2d+2r ; q2d)∞

(qd+2r−1 ; qd)∞

=
(q4d+2r ; q4d)∞(−qd+2r−1

; q2d)∞
(q2a−1 ; q2d)∞(q3d+2a−1 ; q2d)∞(qd+2a ; q2d)∞ · · · (qd+2r−2 ; q2d)∞

.

With this new form, we can interpret k
(a)
d (q) and K(a)

d (n) combinatorially. We define two
sets:

S+(n) :=


The set of partitions of n into:

distinct parts ≡ 4d+ 2r (mod 4d) where there is an even number of such parts,
and distinct parts ≡ d+ 2r−1 (mod 2d),

and (possibly repeated) parts ≡ 2a−1, 3d+ 2a−1, d+ 2a, ..., d+ 2r−2 (mod 2d).



S−(n) :=


The set of partitions of n into:

distinct parts ≡ 4d+ 2r (mod 4d) where there is an odd number of such parts,
and distinct parts ≡ d+ 2r−1 (mod 2d),

and (possibly repeated) parts ≡ 2a−1, 3d+ 2a−1, d+ 2a, ..., d+ 2r−2 (mod 2d).


This definition implies K(a)

d (n) = |S+| − |S−|. Equivalently, [qn](kd(n)) = |S+(n)| − |S−(n)|.
Additionally, denote S(n) = S+ ∪ S−. Now, we define the sign of a partition π in S(n) as

sgn(π) =

{
1 if π has an even number of parts ≡ 2r (mod 4d) (i.e. π ∈ S+(n))

−1 if π has an odd number of parts ≡ 2r (mod 4d)(i.e. π ∈ S−(n)).
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We see that if sgn(π) = 1 then π ∈ S+(n) and if sgn(π) = −1 then π ∈ S−(n). Next, let

T (n) denote the set of partitions of n generated by g
(a)
d (q). Observe that no partition in

T (n) has parts congruent to 4d + 2r (mod 4d) so we can say that T (n) ⊂ S+(n). In the
following work, we create a sign reversing function ϕ(π) : S(n)→ S(n) that fixes T (n).

Following the notation of [13], we write πi ∈ π if πi is a part of π and write πxi if πi occurs
x times as a part in a partition. Also, let mπi be the number of times πi occurs as a part of
π. Finally, let α = d+ 2r − 2a−1 with r defined by (2). We define the following:

x := smallest integer i such that 2r−(a−1)id+ 2r ∈ π
y := smallest integer j such that (2r−(a−1)j − 1)d+ 2a−1 ∈ π
z := smallest l > y such that mld+2a−1 ≥ 2r−(a−1)

If there are no such x, y, z, we set x =∞, y =∞, or z =∞. Let ϕa−1 be defined by
2r−(a−1)xd+ 2r → (2r−(a−1)x− 1)d+ 2a−1, (2a−1)

α
2a−1 if x ≤ y and x <∞,

(2r−(a+1)y − 1)d+ 2a−1, (2a−1)
α

2a−1 → 2r−(a+1)yd+ 2r if x > y, y <∞, and m2a−1 ≥ α
2a−1 ,

2r−(a+1)xd+ 2r → (xd+ 2a−1)2r−(a−1)
, if x > y, x <∞, m2a−1 < α

2a−1 , and x ≤ z,

(zd+ 2a−1)2r−(a−1) → 2r−(a−1)zd+ 2r, if x > y, m2a−1 < α
2a−1 , x > z, and z <∞

and ϕa−1(π) = π otherwise.
We notice that ϕ2

a−1(π) = π, and sgn(π) · sgn(ϕa−1(π)) = −1 if ϕa−1(π) 6= π. Define

Sa−1(n) = {π ∈ S(n)|ϕa−1(π) 6= π}
Ta−1(n) = S(n) \ Sa−1(n)

and notice that for any π ∈ Ta(n), π has no part ≡ 2r
(
mod 2r−(a−1)d

)
. Also m2a−1 < α

2a−1

and z =∞ if y <∞, in other words π has a part ≡ (2r−2 − 2a−1)d+ 2a−1
(
mod 2r−(a−1)d

)
.

We now establish an involution on Ta−1(n). Let π ∈ Ta−1(n), and define

u := smallest integer p such that (2r−ap− 1)d+ 2a−1 ∈ π
x := smallest odd integer i such that 2r−aid+ 2r−a ∈ π
y := smallest odd integer j such that (2r−aj − 1)d+ 2a−1 ∈ π
w := smallest odd integer l such that mld+2a ≥ 2r−a

z := smallest odd integer l > y such that mld+2a ≥ 2r−a,

If no such u, x, y, w, and z exist, denote u = ∞, x = ∞, y = ∞, w = ∞, or z = ∞. Let
ϕa(π) be defined by replacing

2r−axd+ 2r → (xd+ 2a)2r−a if u <∞, x <∞, x ≤ w

(wd+ 2a)2r−a → 2r−awd+ 2r if u <∞, x > w

2r−axd+ 2r → (2r−ax− 1)d+ 2a−1, (2a−1)
α

2a−1 if u =∞, x ≤ y, x <∞
(2r−ay − 1)d+ 2a−1, (2a−1)

α
2a−1 → 2r−ayd+ 2r if u =∞, x > y, y <∞,m2a−1 ≥ α

2a−1

2r−axd+ 2r → (xd+ 2a)2r−a if u =∞, x > y, x <∞,m2a−1 < α
2a−1 , x ≤ z

(zd+ 2a)2r−a → 2r−azd+ 2r if u =∞, x > y,m2a−1 < α
2a−1 , x > z, z <∞
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Again we see, ϕ2
a(π) = π and sgn(π) · sgn(ϕa(π)) = −1 if ϕa(π) 6= π. Now, define

Sa(n) = {π ∈ Ta−1(n)|ϕa(π) 6= π}
Ta(n) = Ta−1(n) \ Sa(n).

For any π ∈ Ta(n), π has no part ≡ 2r (mod 2r−ad) with r defined by (2) and m2a−1 < α
2a−1

if π has a part ≡ (2r−a − 2a−1)d+ 2a−1 (mod 2r−ad).
Now define ϕt, St, and Tt for a+ 1 ≤ t ≤ r − 2. For any π ∈ Tt−1(n), define

u := smallest integer p such that (2r−t+1p− 1)d+ 2a−1 ∈ π
x := smallest odd integer i such that 2r−tid+ 2r ∈ π
y := smallest odd integer j such that (2r−tj − 1)d+ 2a−1 ∈ π
w := smallest odd integer l such that mld+2t ≥ 2r−t

z := smallest odd integer l > y such that mld+2t ≥ 2r−t

We define ϕt(π) by

2r−txd+ 2r → (xd+ 2t)2r−t if u <∞, x <∞, x ≤ w

(wd+ 2t)2r−t → 2r−twd+ 2r if u <∞, x > w

2r−txd+ 2r → (2r−tx− 1)d+ 2a−1, (2a−1)
α

2a−1 if u =∞, x ≤ y, x <∞
(2r−ty − 1)d+ 2a−1, (2a−1)

α
2a−1 → 2r−tyd+ 2r if u =∞, x > y, y <∞,m2a−1 ≥ α

2a−1

2r−txd+ 2r → (xd+ 2t)2r−t if u =∞, x > y, x <∞,m2a−1 < α
2a−1 , x ≤ z

(zd+ 2t)2r−t → 2r−tzd+ 2r if u =∞, x > y,m2a−1 < α
2a−1 , x > z, z <∞

and define ϕt(π) = π otherwise.
From the definition of ϕt, we again have ϕ2

t (π) = π, and sgn(π)·sgn(ϕt(π)) = −1 if ϕt(π) 6=
π. Let,

St(n) = {π ∈ Tt−1(n)|ϕt(π) 6= π}
Tt(n) = Tt−1(n) \ St(n)

Thus, using ϕt, we see that any partitions in St(n) have parts congruent to 2r with r
defined as (2) or (2r−t − 2a−1)d + 2a−1 (mod 2r−td). Thus T (n) ⊂ Tt(n). Also, note that
for any π ∈ Tr−2(n), π has no part ≡ 2r (mod 4d), and m2a−1 < α

2a−1 if π has a part
≡ 3d + 2a−1 (mod 2d). Since any partition in Tr−2(n) has no parts ≡ 2r (mod 4d), we see
that the sign of partitions in Tr−2(n) is 1. Thus Tr−2(n) ⊂ S+(n). Note that

S(n) = Sa−1(n) ∪ Sa(n) ∪ · · · ∪ Sr−2(n) ∪ Tr−2(n)

with Si(n)∩Sj(n) = ∅ for a− 1 ≤ i < j ≤ r− 2 and Si ∩Tr−2(n) = ∅ for a− 1 ≤ i ≤ r− 2.
Finally, we define ϕ on S(n) by

ϕ(π) =

{
ϕt(π) if π ∈ St(n) for some t, a− 1 ≤ t ≤ r − 2,

π otherwise.

From the definition of ϕt, we see that ϕ is a sign reversing involution. We provide a brief
overview on how ϕa−1 affects sgn(π). In each case, we have that a part congruent to
2r (mod 4d) is being decomposed into parts not congruent to 2r (mod 4d) or that some
parts that are not congruent to 2r (mod 4d) are being combined to create a part congru-
ent to 2r (mod 4d). This changes sgn(π), but leaves the total sum of the parts the same.
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Furthermore, when there is no part in π that is congruent to 2r (mod 4d), then ϕa−1 is the
identity map. Since partitions in T (n) have no parts congruent to 2r or 3d+ 2a−1 (mod 2d),
we see that T (n) ⊂ Tr−2(n). Thus all partitions in T (n) are fixed under ϕ. This shows that
|T (n)| ≤ |S+(n)| − |S−(n)| for any n ≥ 0, which completes the proof. �

Now we will prove some inequalities that relate q
(a)
d (n) with L(a)

d (n) and Q
(a,−,−)
d (n) with

G(a)
d (n).

Lemma 5.6. For a > 0, n > 0 divisible by 2a−1, and d ≥ 2a−1 · 31 also divisible by 2a−1,

G(a)
d (n) ≥ Q

(a,−,−)
d (n) .

Proof. Let n and d be divisible by 2a−1 where d ≥ 2a−1 · 31. Note that this implies that
r ≥ a+ 4. Define

S := {x|x ≡ a, d+ 3− a (mod d+ 3)} \ {a, d+ 3− a}

Tr := {y|y ≡ 2a−1, d+ 2a, ..., d+ 2r−2 (mod 2d)}
Once again, by the same argument in Remark 3.4, we need only consider the case r = a+ 4,
where

Ta+4 = {y|y ≡ 2a−1, d+ 2a, d+ 2a+1, d+ 2a+2 (mod 2d)}
Let xi and yi be the ith smallest elements of S and T, respectively. Then notice that

i xi yi
i = 4α and α ≥ 1 (2α + 1)(d+ 3)− a α(2d) + 2a+2 − d
i = 4α + 1 (2α + 1)(d+ 3) + a α(2d) + 2a−1

i = 4α + 2 (2α + 2)(d+ 3)− a α(2d) + 2a + d
i = 4α + 3 (2α + 1)(d+ 3) + a α(2d) + 2a+2 − d

Note that all yi are divisible by 2a−1 since d is divisible by 2a−1 and the first element of
T5 is 2a−1. We now show that xi ≥ yi for each i given that d ≥ 2a−1 · 31.

(i) If i = 4α, (2α+1)(d+3)−a−(α(2d)+2a+2−d) = 6α+3+2d−a−2a+1 ≥ 6α+3 ≥ 0.
(ii) If i = 4α+ 1, xi− yi = (2α+ 1)(d+ 3) + a− (α(2d) + 2a−1) = 6α+ 3 + a+ d− 2a−1 ≥

6α + 3 + a ≥ 0.
(iii) If i = 4α+2, xi−yi = (2α+2)(d+3)−a− (α(2d)+2a+d) = 6α+6+d−a−2a−1 ≥

6α + 6 ≥ 0.
(iv) If i = 4α+3, xi−yi = (2α+1)(d+3)+a−(α(2d)+2a+2−d) = 6α+3+a+2d−2a+2 ≥

6α + 3 + a ≥ 0.

Thus, by Theorem 2.6, we obtain

G(a)
d (n) ≥ ρ(T ;n) ≥ ρ(S;n) = Q

(a,−,−)
d (n).

�

We need to introduce some more terminology which we modify from [13]. Let

A
(a)
d = {x | x ≡ 2i (mod d) , a− 1 ≤ i ≤ r − 1}

and
A

(a)′

d = {y | y ≡ i (mod d) , 2a−1 ≤ i ≤ 2r − 2a−1}.
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We see that these sets satisfy Theorem 2.4, so we see that

L(a)
d (n) = D(A

(a)
d ;n) = E(A

(a)′

d ;n).

Now we proceed to prove the following lemma.

Lemma 5.7. For a, d, n > 0, where d 6= 2r − 2a−1 with r defined by (2),

q
(a)
d (n) ≥ L(a)

d (n) + L(a)
d (n− 2r).

Proof. We wish to construct an injective map and we can do so by using the injection from
the proof of Lemma 2.7 in [13], with the caveat that we must check that the additional

restriction on q
(a)
d (n), that parts are at least a, is also satisfied and modify one part of the

injection slightly.

By setting t = a in Lemma 5.2 we see that q
(a)
d (n) ≥ L(a)

d (n) and from Theorem 2.4 we
see that this lemma holds if

q
(a)
d (n)− E(A

(a)′

d ;n) ≥ E(A
(a)′

d ;n− 2r).

The rest of the proof follows as in the proof Lemma 2.7 in [13] so we omit most of the
details from [13], that the injections do indeed satisfy the necessary requirements, and check
that the smallest part is ≥ a in each case below.

Let Xn = q
(a)
d (n) and Yn = E(A

(a)′

d ;n). Then we construct an injection ψ : Yn−2r → Xn\Yn
for any n > 4d+ 2r. Let λ be a partition in Yn, let λi be the parts of λ written in increasing
order, and let l(λ) be the number of parts of λ and define λl(λ)+1 =∞. Let

ri =

{
β(λi), if i ≤ l(λ),

∞, if i = l(λ) + 1,

and

ui =

{
λi = ri, if i ≤ l(λ),

∞, if i = l(λ) + 1.

Let Zn−2r be a subset of Yn−2r whose partitions satisfy

(6) λi+1 − λi ≥ 2d and ri + 2r ≤ d

for some i. For λ ∈ Zn−2r let s be the smallest i such that (6) is satisfied. Let µ := ψ(λ)
by

µj =

{
λj + 2r, if j = s,

λj, if j 6= s.

Then by the definition of A
(a)′

d , µj ≥ a for all j.
Now subtract Zn−2r and its image under ψ to redefine ψ from Yn−2r \Zn−2r to (Xn \ Yn) \

ψ(Zn−2r) and split into three cases.
Case I: λ1 ≥ 2d. We define µ := ψ1(λ) by

µj =

{
2r, if j = 1,

λj−1, if j ≥ 2.

Where clearly, by the definition of A
(a)′

d , µj ≥ a for all j.
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Case II: d ≤ λ1 < 2d. Let s now be the smallest integer i such that ui + 2d ≤ ui+1 and
define µ := ψ2(λ) by

µj =


r1, if j = 1,

uj−1 + rj, if 2 ≤ j ≤ s,

uj−1 + 2r, if j = s+ 1,

λj−1, if j ≥ s+ 2.

Once again, by the definition of A
(a)′

d , all µj ≥ a.
Case III: λ1 < d. This case is partitioned into five sub-cases.

Subcase (i): u2 ≥ 6d. We define µ := ψ3,1(λ) by

µj =


2r − 1, if j = 1,

2d+ r1, if j = 2,

λj−1 − 2d+ 1, if j = 3,

λj−1, if j ≥ 4.

Since r ≥ a+ 4 so µj ≥ a for all j.

Subcase (ii): u2 = 4d or 5d. We define µ := ψ3,2(λ) by

µj =


r1, if j = 1,

d+ 2r − 1, if j = 2,

λj−1 − d+ 1, if j = 3,

λj−1, if j ≥ 4.

By the definition of A
(a)′

d , µj ≥ a for all j.

Subcase (iii): u2 = 3d. Here we make slight modification’s to the injection in [13] and show
that the modification still satisfies all the necessary requirements. We define µ := ψ3,3(λ) by

µj =



2a−1 − 1, if j = 1,

d+ r1 + 1, if j = 2,

λj−1 − d+ 2r − 2a−1, if j = 3,

λj−1, if j = 4,

λj−1, if j ≥ 5.

Clearly, µj ≥ a for all j so we check that µ satisfies the difference condition. First we know
that since u2 = 3d, b(r1) ≤ 3 so 2a−1 ≤ r1 ≤ 2r−a + 2r−a−1 + 2r−a−2 with r defined by (2)
and 2a−1 ≤ ri for any i. We see

µ1 + d = 2a−1 − 1 + d < d+ 2a−1 + 1 ≤ d+ r1 + 1 = µ2.
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Suppose r1 = 2r−a + 2r−a−1 + 2t for some t ≤ r − a − 2, then r2 ≤ 2t. We also have
2r−a + 2r−a−1 = 2r−a+1 − 2r−a−1 and 2r−a+1 − 2r−a−1 + 2t + 1 ≤ 2r so

µ2 + d = 2d+ r1 + 1

= 2d+ 2r−1 + 2r−a−1 + 2t + 1

= 2d+ 2r−a+1 − 2r−a−1 + 2t + 1

≤ 2d+ 2r

≤ 2d+ r2 + 2r − 2a−1

= µ3.

Now suppose r1 ≤ 2r−a + 2r−a−1 then we have

µ2 + d = 2d+ r1 + 1

≤ 2d+ rr−a + 2r−a−1 + 1

= 2d+ 2r−a+1 − 2r−a−1 + 1

≤ 2d+ 2r

≤ 2d+ r2 + 2r − 2a−1

= µ3.

Also, by definition, we know λ2 + d ≤ λ3 so,

µ3 + d = 2d+ r2 + 2r − 2a−1

≤ 3d+ r2 + 2r − 2a−1

≤ 3d+ r2 + d

= λ2 + d

≤ λ3 = µ4.

Clearly, by definition, µi + d ≤ µi+1 for all i ≥ 4. Since 2a−1 − 1 6∈ A
(a)′

d we see that
µ 6∈ Yn ∪ Zn and, by definition, ψ3,3 is injective. Also it is obvious that if Wk is the set of
µ mapped to by ψk then W3,3 ∩Wl = ∅ for l = 1, 2, (3, 1), (3, 2), (3, 5), and (3, 6). Since
r1 6= 2r − 2a−1 we see that W3,3 ∩W3,4 = ∅ as well.

Subcase (iv): u2 = 2d. We define µ := ψ3,4(λ) by

µj =


2r − r1 − 1, if j = 1,

λj, if 2 ≤ j < l(λ),

λj + 2r1 + 1, if j = l(λ).

Since u2 = 2d and the fact that λ satisfies (3), b(r1) ≤ 2 so µj ≥ a for all j.
Subcase (v): u2 = d. Let s be the smallest integer i such that ui + 2d ≤ ui+1. Let

x =

{
5, if rs−1 6= 1 and 4,

10, if rs−1 = 1 and 4.
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We define µ := ψ3,5(λ) by

µj =


λj, if j < s− 1,

λj + x, if j = s− 1, s,

λj, if s < j < l(λ),

λj + 2r − 2x, if j = l(λ).

Finally, by the definition of A
(a)′

d , µj ≥ a for all j.
�

Using Lemma 5.4, 5.5, 5.6, and 5.7 we have

(7) q
(a)
d (n) ≥ L(a)

d (n) + L(a)
d (n− 2r) ≥ K(a)

d (n) ≥ G(a)
d (n) ≥ Q

(a,−,−)
d (n)

for d and n divisible by 2a−1 where d ≥ 2a−1 · 31, d 6= 2r− 2a−1 and n > 4d+ 2r. This proves
Theorem 1.8.

Remark 5.8. It is also possible to use similar generalizations of work of Yee [13] and An-
drews [4] to prove certain cases of Theorem 1.3, however, such a generalization wouldn’t be
able to prove all of the remaining cases so we omit it.

6. Asymptotic results

In this section we provide asymptotic bounds for the partition functions q
(a)
d (n) and

Q
(a)
d (n), which in theory could be used to computationally prove the remaining finite cases

of Theorem 1.3. First, we prove the asymptotic result in Theorem 1.9 for ∆
(a)
d (n) analogous

to Andrews’ [4] result on Alder’s Conjecture.

Proof of Theorem 1.9. We begin by considering the asymptotic formulas for q
(a)
d (n) and

Q
(a)
d (n) separately.
By work of Meinardus [10, Theorems 2 and 3], making the substitutions k = 1, l = d, αl =

α, Ad = A, m = a, and C(1, l,m) = C(d, a), we have

q
(a)
d (n) ∼ C(d, a)n−

3
4 e2
√
An,

where

C(d, a) :=
1

2
√
π
A

1
4

(
αd+1−2a · (d(α)d−1 + 1)

)− 1
2 ,

A :=
d

2
log2 α +

∞∑
r=1

(α)rd

r2
,

and α ∈ [0, 1] is the positive real number such that αd + α− 1 = 0. We can say

log q
(a)
d (n) ∼ log

(
C(d, a)n−

3
4

)
+ 2
√
An ∼ 2

√
An.

Using Andrews [6, Ch. 6, Example 1, pg. 97] we have

Q
(a)
d (n) ∼

csc( πa
d+3

)

(4π)3
1
4 (d+ 3)

1
4

n−
3
4 e2π
√

n
3d+9
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for a < d+3
2

and a relatively prime to d+ 3. This gives us

logQ
(a)
d (n) ∼ log

(
csc( πa

d+3
)

(4π)3
1
4 (d+ 3)

1
4

n−
3
4

)
+ 2π

√
n

3d+ 9
∼ 2π

√
n

3d+ 9
.

From Andrews [4, proof of Theorem 2] we have

A >
π2

3d+ 9

which implies that

lim
n→∞

(
log q

(a)
d (n)− logQ

(a)
d (n)

)
= +∞.

Thus,

lim
n→∞

∆
(a)
d (n) = lim

n→∞
q

(a)
d (n)

(
1− Q

(a)
d (n)

q
(a)
d (n)

)
= +∞.

�

Remark 1.10, when n is large enough, directly implies the following corollaries.

Corollary 6.1. Let a > 0 and d ≥ 4 such that a < d+3
2

and a is relatively prime to d + 3
then

lim
n→∞

∆
(a,−)
d (n) = +∞.

Proof. Notice that for all d and n, Q
(b)
d (n) ≥ Q

(b,−)
d (n). Thus, ∆

(a,−)
d (n) will only grow faster

than ∆
(a)
d (n) as n goes to ∞. �

Corollary 6.2. Let a > 0, and d ≥ 4 such that a < d+3
2

and a is relatively prime to d + 3
then

lim
n→∞

∆
(a,−,−)
d (n) = +∞.

Proof. Similarly, for all d and n, Q
(b)
d (n) ≥ Q

(b,−,−)
d (n). Thus, ∆

(a,−,−)
d (n) will grow faster

than ∆
(a)
d (n) as n goes to ∞. �

The asymptotic formulas for q
(a)
d (n) and Q

(a)
d (n) given by Meinardus [9, 10] and Andrews

[6], while allowing us to examine the asymptotic behavior of ∆
(a)
d (n), can be made more

explicit by closely following methods of Alfes, Jameson, and Lemke Oliver [3]. In the fol-
lowing, we draw heavily on their work, only making minor modifications to achieve explicit
asymptotic results for arbitrary a > 0.

6.1. The asymptotics of Q
(a)
d (n). First we state a theorem due to Xia [11].

Theorem 6.3 (Xia [11], 2011). If d > 0, 0 < a < d+3
2

, and a is coprime to d + 3 then for
n > 0,

Q
(1)
d (n) ≥ Q

(a)
d (n) .

Given Theorem 6.3, we see that under the given hypotheses, Q
(1)
d (n) bounds Q

(a)
d (n)

from above, thus the asymptotic upper bounds from Alfes, Jameson, and Lemke Oliver [3,

Theorem 2.1] for Q
(1)
d (n) also bound Q

(a)
d (n) for any a ≥ 1 with the given hypotheses. Thus

we obtain immediately the following result.
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Theorem 6.4. If d ≥ 4, n > 0, 0 < a < d+3
2

, and a is coprime to d+ 3, then

Q
(a)
d (n) ≤ (3d+ 9)−

1
4

4 sin
(

π
d+3

)n− 3
4 exp

(
n

1
2

2π√
3(d+ 3)

)
+R(n)

where R(n) is an explicitly bounded function given in [3, equation (2.10)].

6.2. The asymptotics of q
(a)
d (n). In this section we will analog the asymptotics given by

Alfes, Jameson and Lemke Oliver [3, Theorem 3.1] for q
(1)
d (n).

Let α be the unique real number in [0, 1] satisfying αd +α− 1 = 0, and let A := d
2

log2 α+∑∞
r=1

αrd

r2
.

Theorem 6.5. If n > 0, then

q
(a)
d (n) =

A1/4

2
√
παd+1−2a(dαd−1 + 1)

n−3/4e2
√
An + rd(n)

where |rd(n)| can be bounded explicitly.

Remark 6.6. We get the main term from a direct application of [10, Theorem 2] using
k = 1,m = a, l = d, µ = n. We will derive rd(n) by following the method of Alfes, Jameson
and Lemke Oliver [3].

We first establish some preliminary facts. For a fixed d ≥ 4, we have

f(z) :=
∞∑
n=0

q
(a)
d (n)e−nz(8)

with z = x + iy. Hence, through the Fourier expansion and other manipulations, we have
that

q
(a)
d (n) =

1

2π

∫ π

−π
f(z)enzdy.(9)

Thus we see that to establish asymptotics for q
(a)
d (n) we need strong estimates for f(z).

Letting ρ := 1− α, we define the following two functions, modified from Meinardus [10],

H(w, z) :=
∞∏
n=0

(1− we−(n+a)z)−1(10)

Θ(w, z) :=
∞∑

n=−∞

e−
d
2
n(n−1)zw−n,(11)

where R(z) > 0, 0 < |w| < eaR(z). Then, by the Cauchy Integral Theorem

f(z) =
1

2πi

∫
C
H(w, z)Θ(w, z)

dw

w
,(12)

where C is a circle centered at the origin of radius ρ.
In the following lemma we aim to estimate H(w, z) and Θ(w, z).
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Lemma 6.7. Let ρ = αd = 1 − α, and let that w = ρeiϕ with −π ≤ ϕ < π. Then for
|y| ≤ x1+ε and x < β where

β := min

(
−π

log p
ξ,

2α2−d

πd
,

1

2d
+ p

(
1

2
− π2

24

)) 1
ε

,

we have

H(w, z) = exp

(
1

z

∞∑
r=1

wr

r2
+

(
a− 1

2

)
log (1− w) + f1(w, z)

)
(13)

and

Θ(w, z) =

√
2π

dz
exp

(
log2w

2dz
− 1

2
logw

)
(1 + f2(w, z)),(14)

where, as x→ 0, f1(w, z) = O(x1/2) and f2(w, z) = O
(
x+ exp

(
− c0

x
(π − |ϕ|) + c1x

ε−1
))

are
explicitly bounded functions.

Proof. By Meinardus [10, equation (18)] and the inverse Mellin transform,

logH(w, z) =
1

2πi

∫ 2+i∞

2−i∞
z−sΓ(s)ζ(s, a)D(s+ 1, w)ds,(15)

where ζ(s, a) =
∑∞

n=0(n+ a)−s is the Hurtwitz zeta function, s = σ+ it, Γ(s) is the Gamma
function, and D(s, w) :=

∑
r≥1

wr

rs
, which is defined as a function of s for all fixed w with

|w| < 1. We remark that ζ(s, a) converges for σ > 1.
Note that if θ0 := arctanxε, then

|z1/2 − it| ≤ |z|1/2eθ0|t| ≤ (1 + x2ε)1/4x1/2eθ0|t|.

Also, note that ζ(0, a) = 1
2
−a. We change the curve of integration and account for the poles

at s = 0 and s = 1, to get

logH(w, z) =
1

z

∞∑
r=1

wr

r2
+

(
a− 1

2

)
log(1− w) + f1(w, z)

where

|f1(w, z)| = 1

2πi

∫ −1/2+i∞

−1/2−i∞
z−sΓ(s)ζ(s, a)D(s+ 1, w)ds

≤ (1 + x2ε)
1
4 2−

5
2π−

3
2 ζ

(
3

2
, a

)
ρ

1− ρ
4

π
2
− θ0

x
1
2 := f1(x).

Since x2ε and θ0 both tend toward 0 as x→ 0, we have proved the first part of our lemma.
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The remainder of the proof, which covers the bound of Θ(x, z) follows directly from Alfes,
Jameson and Lemke Oliver [3, Lemma 3.5] where

f2(ϕ, z) :=f 0
2 (z) + fϕ2 (z)exp

(
2π

dx(1 + x2ε)

)
(16)

:=e
d|z|
8

e dx√1+x2ε

8 − 1 + 2
exp
(
− 4π2(1−ξ)
dx(1+x2ε

)
1− exp

(
− 2π2(1−ξ)
dx(1+x2ε

)


+ 2 exp

(
2π

dx(1 + x2ε)
− 2π log ρ

d
xε−1 +

d|z|
8

)
.

�

Lemma 6.8. Assuming the notation above, for |y| ≤ x1+ε and x < β where ρ := 1− α and
0 < ξ < 1 is a constant, we have that

f(z) = (αd+1−2a(dαd−1 + 1))−
1
2 e

A
z (1 + ferr(z)),

where ferr(z) = o(1) is an explicitly bounded function.

Proof. Recall equation (12). We decompose this integral into two components of a circle of
radius ρ. Let ϕ0 = xc with 3

8
< c < 1

2
. We have

f(z) =
1

2πi

∫ ρeiϕ0

−ρeiϕ0
H(w, z)Θ(w, z)

dw

w
+

1

2πi

∫
B
H(w, z)Θ(w, z)

dw

w
(17)

with B being the circle without the arc of −ρeiϕ0 to ρeiϕ0 . We start with bounding the
second integral involving B by using explicit bounds on |H(w, z)Θ(w, z)|. We now provide
a brief explanation of bounds for |Θ(w, z)| and |H(w, z)|. First,

|Θ(w, z)| ≤

√
2π

d|z|
ρ−

1
2 exp

(
x log2 ρ− ϕ2x

2d(x2 + y2)
+

yϕ log ρ

d(x2 + y2

)
(1 + |f2(w, z)|).(18)

This quantity is derived from an application of the triangle inequality, 1
ρ
≥ 1, and applica-

tion of the norm to z. Alfes, Jameson and Lemke Oliver [3] note Meinardus’ [10] error of not
considering the contribution of yϕ log p

d(x2+y2)
. Since Θ(w, z) is not dependent on a we can simply

employ the result of Alfes, Jameson and Lemke Oliver [3] for the bound of this function,
including the correction of Meinardus’ [10] error.

The bound provided for |H(w, z)| is a simple application of |1− w| ≤ (1+ρ) and reducing
the logarithm and exponential. Thus we have

|H(w, z)| ≤ exp(|f1(w, z)|)(1 + ρ)a−
1
2 exp

(
<

(
1

z

∞∑
r=1

wr

r2

))
.(19)
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Noting that 1
z

= z̄
|z|2 , and evaluating the geometric series we have

<

(
1

z

∞∑
r=1

wr

r2

)
=

x

x2 + y2

∞∑
r=1

ρr

r2
+

x

x2 + y2

∞∑
r=1

ρr

r2
(cos(rϕ)− 1)− yϕ log (1− ρ)

x2 + y2
(20)

+
y

x2 + y2

∞∑
r=1

ρr

r2
(sin(rϕ)− rϕ) .

Further noting that p = αd, (1− ρ) = α, and multiplying out everything from our bounds
on |Θ(w, z)| and |H(w, z)| yields

|H(w, z)Θ(w, z)| ≤

√
2π

d|z|
(1 + ρ)a−

1
2

ρ1/2
(21)

· exp

(
|f1(w, z)|+ Ax

x2 + y2
− ϕ2

x2 + y2

·

[
1

2d
− y

ϕ2x

∞∑
r=1

ρr

r2
(sin(rϕ)− rϕ) +

1

ϕ2

∞∑
r=1

ρr

r2
(cos(rϕ)− 1)

])
· (1 + |f2(w, z)|).

Using this notation, we have

∣∣∣∣∫
B
H(w, z)Θ(w, z)

dw

w

∣∣∣∣ ≤
√

2π

d|z|
(1 + ρ)a−1/2

ρ1/2
exp

(
f1(x) +

Ax

x2 + y2

)
(22)

·
[
(1 + f 0

2 (z))

∫
B
e−ψ(ϕ,z)dϕ

+ fϕ2 (z)

∫
B

exp

(
−ψ(ϕ, z) +

2π|ϕ|
dx(1 + x2ε)

)]
with

ψ(w, z) :=
ϕ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(cos(rϕ)− 1)− y

x2 + y2

∞∑
r=1

ρr

r2
(sin(rϕ)− rϕ) .

(23)

The two integrals in (22) do not depend on a so we refer the reader to Alfes, Jameson, and
Lemke Oliver [3] for those bounds and define EB(z) to be the bound of the second integral
obtained from (22) and [3, equations (3.15), (3.17), and (3.18)].

Following [10, Equations (29) and (30)], the first integral of (17) is given by

(24) I :=
1

2πi

∫ ρeiϕ0

ρe−iϕ0
H(w, z)Θ(w, z)

dw

w
=

exp
(
A
z

+
(
a− 1+d

2

)
logα

)
√

2πdz
(Imain + Ierror),

where

(25) Imain :=

∫ ϕ0

−ϕ0

exp

(
− ϕ2

2dz
(dαd−1 + 1)

)
dϕ,
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and

(26) Ierror :=

∫ ϕ0

−ϕ0

(
exp

(
log

(
1− ρeiϕ

1− ρ

)
+ f3(w, z) + f1(w, z)

)
(1 + f2(w, z))− 1

)
· exp

(
− ϕ2

2dz
(dαd−1 + 1)

)
dϕ

with |f3(w, z)| ≤ ρe
6(1−ρe)2ϕ

3.

Since Imain and Ierror do not depend on a, we refer to [3] for their bounds and conclude
that

(27) I =
α(a− 1+d

2 )

dαd−1 + 1
exp

(
A

z

)
+ Êϕ0(z)

where
|Êϕ0(z)| ≤ Eϕ0(z)

and Eϕ0(z) is defined as

Eϕ0(z) :=
α(a− 1+d

2 )√
2πd|z|

e
Ax

x2+y2 ·
[

(2πd|z|) 1
2

ϕ0(dαd−1 + 1)
1
2

exp

(
−(ϕ2

0)x(dαd−1 + 1)

2d(x2 + y2)

)
+(28)

2ϕ0

(
1− ρ cosϕ0

1− ρ
exp

(
f1(x) +

ρe

6(1− ρe)2
ϕ3

0

)
(1 + f2(ϕ0, z))− 1)

)]
.

Thus we see that

(29) |ferr(z)| ≤ (Eϕ0(z) + EB(z))(αd+1−2a(dαd−1))
1
2 exp

(
−Ax
x2 + y2

)
.

�

Lemma 6.9. For x < β and x1+ε < |y| ≤ π where f1, f2 are functions defined in Lemma
6.7 and η is an explicitly derived constant, we have

|f(x+ iy)| ≤
√

2π

dx
e−ηρx

2ε−1

(1 + f2(ρ, x))exp

(
A

x
+

(
a−

(
1

2
+ d

))
log(α) + f1(ρ, x)

)
.

Proof. From the definition of Θ(w, z) we see that |Θ(w, z)| ≤ Θ(ρ, x). From how H(w, z) is
defined, we have that

log |H(w, z)| ≤ log(H(ρ, x)) + <
{
w
∞∑
n≥1

e−(n+a)x

}
− ρ

∞∑
n≥1

e−(n+a)x.

To show this consider the bounds on the norm of log(H(w, z). We know that log |H(w, z)| =
<{log(H(w, z)}, since log(z) = log(|z|) + iArg(z) and by applying < to both sides.

We now analyze the expression <{logH(w, z)}. We have from the definition

H(w, z) =
∞∏
n=1

(1− we−(n+a)z)−1.

Note that log(1− z) has the following power series

log(1− z) =
∞∑
m=1

zm

m
.
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Applying the complex logarithm and the above power series results in the following chain
of equalities:

<{log(H(w, z))} = <
{ ∞∑

n=0

log (1− we−(n+a)z)−1

}
= <

{ ∞∑
n=0

∞∑
m=1

(we−(n+a)z)m

m

}

= <
{ ∞∑

n=0

∞∑
m=2

(we−(n+a)z)m

m

}
+ <

{ ∞∑
n≥0

we−(n+a)z

}

= <
{ ∞∑

n=0

∞∑
m=2

(ρeiϕe−(n+a)xe−(n+a)iy)m

m

}
+ <

{ ∞∑
n≥1

we−(n+a)z

}
.

We will denote <
{∑∞

n≥1we
−(n+a)z

}
as <{z1}. Employing Euler’s formula eiϕ = cos(ϕ) +

sin(ϕ) yields

∞∑
n=0

∞∑
m=2

(ρ cos(ϕ)e−(n+a)x cos(−y(n+ a))m

m
+ <(z1) ≤

∞∑
n=0

∞∑
m=2

(ρe−(n+a)x)m

m
+ <(z1)

=
∞∑
n=0

∞∑
m=1

(ρe−(n+a)x)m

m
+ <{z1} − ρ

∞∑
n=0

e−(n+a)z

= log(H(ρ, x)) + <{z1} − ρ
∞∑
n=0

e−(n+a)z

as desired.
We now derive η. We do this by deriving an upper bound on the expression

<
{ ∞∑

n=0

we−(n+a)z

}
− ρ

∞∑
n=0

e−(n+a)x.

We first derive a closed form <
∑∞

n−0we
−(n+a)z. With some index manipulation, we have

<
{
w

∞∑
n=0

e−(n+a)z

}

= <
{
e−(a−1)zw

∞∑
n=1

e−nz
}

= e−(a−1)x cos((a− 1)y)<
{
w

∞∑
n=1

e−nz
}

≤ e−(a−1)x<
{
w

∞∑
n=1

e−nz
}
.

In a similar fashion, we have that

−ρ
∞∑
n=0

e−(n+a)x = −ρe−(a−1)x

∞∑
n=1

e−nx.
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This results in

<
{ ∞∑

n=0

we−(n+a)z

}
− ρ

∞∑
n=0

e−(n+a)x ≤ e−(a−1)x

(
<
{
w
∞∑
n=1

e−nz
}

+−ρ
∞∑
n=1

e−nx

)
Using the estimation in [3] for the part in parentheses we get

e−(a−1)x(<{w
∑∞

n=1 e
−nz}+−ρ

∑∞
n=1 e

−nx)

−ρx2ε−1

≥ e−(a−1)xx1−2εe−ax

(
1

1− ex
− 1√

1− 2e−x cos(x1+ε) + e−2x

)

≥ e−(a−1)xβ1−2εe−aβ

(
1

1− eβ
− 1√

1− 2e−β cos(x1+ε) + e−2β

)
:= η.

Using these estimations we can derive the explicit bound on |f(x+ iy)| which proves the
lemma. �

We now we can use Lemmas 6.8, 6.9 to prove Theorem 6.5.

Proof of Theorem 6.5. Recall that in preliminary facts, we deduced

q
(a)
d (n) =

1

2π

∫ π

−π
f(z)enzdy.

Now, let q
(a)
d (n) = I1 + I2 where

I1 :=
1

2π

∫ x1+ε

−x1+ε
f(z)enzdy and I2 :=

1

2π

(∫ −x1+ε
−π

+

∫ π

x1+ε

)
f(z)enzdy.

In this proof, we let x =
√

A
n

. Next, we split I1 into the following integrals

I1 = E1 + E2 + E3

such that

γ :=
1

2π
√
αd+1−2a(dαd−1 + 1)

E1 := γe
2A
x

∫ x1+ε

−x1+ε
e
−y2A
x3 dy

E2 := γe
2A
x

∫ x1+ε

−x1+ε
e
−y2A
x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

E3 := γe
2A
x

∫ x1+ε

−x1+ε
e
A

(
−xy2+iy3

x2(x2+y2)

)
ferr(z)dy.

We can rewrite E1 as follows:

E1 = γe
2A
x

∫ x1+ε

−x1+ε
e
−y2A
x3 dy = γe

2A
x

√
πx3

A
+ E ′1(30)
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where

|E ′1| ≤
γ

A
√

2
x2−εe

2A
x
−Ax2ε−1

.(31)

For E2 we split futher to get

E2 =γe
2A
x

∫
|y|≤x1+ε2

e
−y2A
x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

+ γe
2A
x

∫
x1+ε2≤|y|≤x1+ε

e
−y2A
x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

where ε2 > ε and ε2 >
1
3
. Then, as in Alfes, Jameson, and Lemke Oliver [3],∣∣∣∣∣γe 2A

x

∫
|y|≤x1+ε2

e
−y2A
x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

∣∣∣∣∣ ≤ γe
2A
x (exp

(
Ax3ε2−1

)
− 1)

√
πx3

A

and ∣∣∣∣∣γe 2A
x

∫
x1+ε2≤|y|≤x1+ε

e
−y2A
x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

∣∣∣∣∣
≤ γexp

(
2A

x
− Axε2−2

1 + x2ε

)
x3(1 + x2ε) +

γx3

A
exp

(
2A

x
− Axε2−2

)
.

For E3, using ferr as defined in Lemma 6.8,

|E3| ≤ γe
2A
x |fmax

err |(πx3(1 + x2ε))
1
2 .(32)

To bound I2, we apply Lemma 6.9 to find that

|I2| ≤
√

2π

dx
e−ηρx

2ε−1

(1 + f2(ρ, x))exp

(
nx+

A

x
+

(
a− (

1

2
+ d)

)
log(α) + f1(ρ, x)

)
.(33)

Finally we obtain

q
(a)
d (n) =

A1/4

2
√
παd+1−2a(dαd−1 + 1)

n−3/4e2
√
An + E ′1 + E2 + E3 + I2

where |E ′1 + E2 + E3 + I2| is bounded using the expressions from above. The result follows
with |rd(n)| ≤ |E ′1|+ |E2|+ |E3|+ |I2|. �

Now we can show the asymptotic result for ∆
(a)
d (n) which we analog from Alfes, Jameson,

and Lemke Oliver [3, Theorem 1.2].

Theorem 6.10. For a, d, n > 0 with a < d+3
2

and a coprime to d+ 3, we have

∆
(a)
d (n) = q

(a)
d (n)−Q(a)

d (n) =
A1/4

2
√
παd+1−2a(dαd−1 + 1)

n−3/4e2
√
An + Ed(n)

where Ed(n) = rd(n)−Q(a)
d (n).
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Proof. From Theorem 6.4 we get that Q
(a)
d (n) = O

(
2π√
3d+9

n1/2 + c0n
1/6
)

where c0 is a posi-

tive constant. From Theorem 6.5, we examine the error term to see that

E ′1 = O(n−
5
6 e2
√
An)

E2 = O(n−
3
2
ε2− 1

4 e2
√
An)

E3 = O(n−
15
16 e2

√
An)

I2 = O(n
1
4 e2
√
An−ηρx2ε−1

).

Choosing ε2 ≥ 7
18

gives us our result.
�

6.3. A potential method of proving the remaining cases of Conjecture 1.2. Given

the asymptotic bounds for ∆
(a)
d (n) it appears possible to use the method of Alfes, Jameson,

and Lemke Oliver [3] to prove the remaining finite cases of d by computation. One way this

could be done is by taking the asymptotic bounds for q
(2)
d (n) and Q

(2)
d (n) and calculating

the smallest n0, for a fixed d, for which these bounds imply ∆
(2)
d (n) ≥ 0 for all n > n0. By

Remark 1.10, this would also imply ∆
(2,−)
d (n) ≥ 0 for all n > n0. Then one could check that

∆
(2,−)
d (n) ≥ 0 for all smaller n and each d < 62 where d + 3 is coprime to 2. However, this

would still not resolve the odd d < 61 cases. Alternatively, one could take the asymptotic

bounds for q
(1)
d (n) and Q

(1)
d (n) given by Alfes, Jameson, and Lemke Oliver [3], and using

the same procedure outlined above, but also substituting d − 2 for d in the asymptotic of

Q
(1)
d (n), one could prove the finite cases of Proposition 3.1 which would consequently prove

the remaining cases of Conjecture 1.2. It is worth noting that this procedure, while in theory
would produce the result, has its own computational challenges.

7. Discussion on the exclusion of parts

When considering the values of ∆
(a)
d (n) for a > 1 it is not hard to find that there are

many examples where ∆
(a)
d (n) < 0. Kang and Park introduce the notion of the ‘dash,’ which

indicates a removal of a part from the set of allowed parts, in an attempt to generalize Alder’s
conjecture to include the second Rogers-Ramanujan identity. We introduce a second ‘dash’
to indicate a removal of a second part in order to generalize Conjecture 1.2 for arbitrary a.
While at first the removal of the d + 3− a and a term indicated by the dashes may appear
to be an artificial modification meant to clean up the results, we argue that its use is in fact
quite natural.

One way to consider how the removal of the d+ 3− a and the a term is natural is to look

specifically at the values of q
(a)
d (n) and Q

(a)
d (n) when ∆

(a)
d (n) is negative. In the following we

prove some examples of when ∆
(a)
d (n) < 0.

Proposition 7.1. For b ≥ 4 and r ≥ 0, we have

∆
(b,b)
b−2+r (2b+ 1 + r) < 0.

Proof. First let’s look at q
(b)
b−2+r (2b− 1 + r). Since b < 2b + 1 + r we have at least one

partition, 2b + 1 + r itself. Suppose there is a second partition, which obviously must have
at least two parts. The smallest option we have is b+ (b+ b− 2 + r) = 3b− 2 + r, however,
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since b ≥ 4, 3b − 2 + r > 2b + 1 + r so this can’t be a partition of 2b + 1 + r. Thus

q
(b)
b−2+r (2b+ 1 + r) = 1 for all b ≥ 4 and r ≥ 0.

Now, examining Q
(b)
b−2+r (2b+ 1 + r) we see that the possible choices for parts are (1 +

r), b, (b+2+2r), (2b+1+r), (2b+3+3r), (3b+2+2r), . . . ). We can obviously construct the

partitions (2b+1+r) and b+b+(1+r) from this list. Thus we know Q
(b)
b−2+r (2b+ 1 + r) ≥ 2

for all b ≥ 4 and r ≥ 0.
Finally we can conclude that ∆

(b,b)
b−2+r (2b+ 1 + r) < 0 for all b ≥ 4 and r ≥ 0. �

Proposition 7.2. We have the following:

(1) ∆
(2k,2k,−)
3k−3 (4k) = −1 for k ≥ 2,

(2) ∆
(2k,2k,−)
3k−3 (6k) = −1 for k ≥ 4,

(3) ∆
(2k,2k,−)
5k−3 (8k) = −1 for k ≥ 4,

(4) ∆
(3k,3k,−)
4k−3 (9k) = −1 for k ≥ 4,

(5) ∆
(4k,4k,−)
5k−3 (12k) = −1 for k ≥ 4.

Proof of (1). First we will prove that q
(2k)
3k−3 (4k) = 1 for k ≥ 2. Since 4k > 2k for k ≥ 2,

we will have the partition 4k of 4k. Suppose we wanted to construct a partition of 4k with
more than one part we could, using the smallest available parts, take 2k + (2k + (3k − 3)).
However, 2k + (2k + (3k − 3)) = 7k − 3 and, since k ≥ 2, 7k − 3 > 4k, this cannot be a

partition of 4k. Thus q
(2k)
3k−3 (4k) = 1 for all k ≥ 2.

Second we will show that Q
(2k,−)
3k−3 (4k) = 2 for all k ≥ 2. We are looking for partitions of

4k which come from parts ≡ ±2k (mod 3k) and not the part −2k + 3k. Enumerated, this
is the set of parts 2k, 4k, 5k, 7k, 8k, . . .. We see clearly that the only ways to construct a

partition of 4k into parts from this list are 4k and 2k + 2k. Thus Q
(2k,−)
3k−3 (4k) = 2.

Therefore we have shown that ∆
(2k,2k,−)
3k−3 (4k) = −1 for k ≥ 2.

�

Proof of (2). First we will prove that q
(2k)
3k−3 (6k) = 1 for k ≥ 4. Since 6k > 2k for k ≥ 4,

we will have the partition 6k of 6k. Suppose we wanted to construct a partition of 6k with
more than one part we could, using the smallest available parts, take 2k + (2k + (3k − 3)).
However, 2k + (2k + (3k − 3)) = 7k − 3 and, since k ≥ 4, 7k − 3 > 6k, this cannot be a

partition of 6k. Thus q
(2k)
3k−3 (6k) = 1 for all k ≥ 4.

Second we will show that Q
(2k,−)
3k−3 (6k) = 2 for all k ≥ 4. We are looking for partitions of

6k which come from parts ≡ ±2k (mod 3k) and not the part −2k + 3k. Enumerated, this
is the set of parts 2k, 4k, 5k, 7k, 8k, . . .. We see that the only ways to construct a partition

of 6k into parts from this list are 4k + 2k and 2k + 2k + 2k. Thus Q
(2k,−)
3k−3 (6k) = 2.

Therefore we have shown that ∆
(2k,2k,−)
3k−3 (6k) = −1 for k ≥ 4.

�

Proof of (3). First we will prove that q
(2k)
5k−3 (8k) = 1 for k ≥ 4. Since 8k > 2k for k ≥ 4,

we will have the partition 8k of 8k. Suppose we wanted to construct a partition of 8k with
more than one part, we could using the smallest available parts, take 2k + (2k + (5k − 3)).
However, 2k + (2k + (5k − 3)) = 9k − 3 and, since k ≥ 4, we have 9k − 3 > 8k, this cannot

be a partition of 8k. Thus q
(2k)
5k−3 (8k) = 1 for all k ≥ 4.
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Second we will show that Q
(2k,−)
5k−3 (8k) = 2 for all k ≥ 4. We are looking for partitions of

8k which come from parts ≡ ±2k (mod 5k) and not the part −2k+ 5k. Enumerated, this is
the set of parts 2k, 7k, 8k, 12k, 13k, . . .. We see that the only ways to construct a partition

of 8k into parts from this list are 8k and 2k + 2k + 2k + 2k. Thus Q
(2k,−)
5k−3 (8k) = 2.

Therefore we have shown that ∆
(2k,2k,−)
5k−3 (8k) = −1 for k ≥ 4. �

Proof of (4). First we will prove that q
(3k)
4k−3 (9k) = 1 for k ≥ 4. Since 9k > 3k for k ≥ 4,

we will have the partition 9k of 9k. Suppose we wanted to construct a partition of 9k with
more than one part we could, using the smallest available parts, take 3k + (3k + (4k − 3)).
However, 3k + (3k + (4k − 3)) = 10k − 3 and, since k ≥ 4, 10k − 3 > 9k so this cannot be a

partition of 9k. Thus q
(3k)
4k−3 (9k) = 1 for all k ≥ 4.

Second we will show that Q
(3k,−)
4k−3 (9k) = 2 for all k ≥ 4. We are looking for partitions of

9k which come from parts ≡ ±3k (mod 4k) and not the part −3k + 4k. Enumerated, this
is the set of parts 3k, 5k, 7k, 9k, 11k, . . .. We see that the only ways to construct a partition

of 9k into parts from this list are 9k and 3k + 3k + 3k. Thus Q
(3k,−)
4k−3 (9k) = 2.

Therefore we have shown that ∆
(3k,3k,−)
4k−3 (9k) = −1 for k ≥ 4. �

Proof of (5). First we will prove that q
(4k)
5k−3 (12k) = 1 for k ≥ 4. Since 12k > 4k for k ≥ 4, we

will have the partition 12k of 12k. Suppose we wanted to construct a partition of 12k with
more than one part we could, using the smallest available parts, take 4k + (4k + (5k − 3)).
However, 4k + (4k + (5k − 3)) = 13k − 3 and, since k ≥ 4, 13k − 3 > 12k so this cannot be

a partition of 12k. Thus q
(4k)
5k−3 (12k) = 1 for all k ≥ 4.

Second we will show that Q
(4k,−)
5k−3 (12k) = 2 for all k ≥ 4. We are looking for partitions of

12k which come from parts ≡ ±4k (mod 5k) and not the part k. Enumerated, this is the set
of parts 4k, 6k, 9k, 11k, 14k, . . .. We see clearly that the only ways to construct a partition

of 12k into parts from this list are 6k + 6k and 4k + 4k + 4k. Thus Q
(4k,−)
5k−3 (12k) = 2.

Therefore we have shown that ∆
(4k,4k,−)
5k−3 (12k) = −1 for k ≥ 4. �

By examining the cases in Propositions 7.1 and 7.2, we find that the offending parts which

yield more partitions for Q
(a)
d (n) than q

(a)
d (n) are precisely the parts equal to d+ 3− a and

a. Roughly speaking, when n is less than 2a + d, q
(a)
d (n) is bounded at 1. However the a

and d + 3 − a parts are small enough that they can contribute to partitions of n counted

by Q
(a)
d (n), especially when n is a multiple of a. This contribution of the parts d + 3 − a

and a to the partitions of small n is problematic since a is simply too large to allow any

possibilities of nontrivial partitions of n that are counted by q
(a)
d (n). By removing the ‘small’

parts d + 3 − a and a from the possibilities of parts of partitions counted by Q
(a)
d (n), we

are rebalancing the scales to give ‘equal opportunity’ for nontrivial partitions of n. In other
words, the removal of these parts for large n is unnecessary to maintain the nonnegativity of

∆
(a)
d (n), which is further evidenced by the proof of Theorem 1.9. Furthermore, for arbitrary

a ≥ 3, we only need to remove these two parts and no others to computationally observe

that ∆
(a,−,−)
d (n) ≥ 0.

7.1. A generalization of Kang and Park’s conjecture for a = 3. We now will use the
methods of Section 4 to prove a partial result regarding Conjecture 1.4.
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We note that if d is divisible by 3, but n is not divisible by 3, then Q
(3,−)
d (n) = 0 so

∆
(3,−)
d (n) is trivially nonnegative.
We prove a nontrivial case of Conjecture 1.4 below.

Proposition 7.3. For d ≥ 31 and n > 0,

q
(3)
3d (3n) ≥ Q

(3,−)
3d (3n) .

Proof. We aim to prove the following string of inequalities

q
(3)
3d (3n) ≥ q

(1)
d (n) ≥ Q

(1,−)
d−2 (n) = Q

(3,−)
3d (3n) .

The first inequality follows from Lemma 2.7. The second inequality is a consequence of
Proposition 3.1. Finally, the third inequality is a consequence of Lemma 2.8. �
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