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Abstract. Bacterial interactions heavily impact how a biofilm forms, and how

bacteria communicate impacts how they interact. One way that bacteria can com-

municate is through the production and sensing of quorum sensing molecules which

regulate certain genetic expressions. It was our focus to model and analyze the re-

lationship between quorum sensing regulated Type VI Secretion System (T6SS)

mediated killing in two strains of Agrobacterium tumefaciens and biofilm struc-

ture. We constructed a deterministic two dimensional model that held the rate

of quorum sensing molecule production constant in order to illustrate basic inter-

actions between two bacterial strains and the effect that such interactions have

on the biofilm’s development. By adding another dimension to our model we can

more realistically show the effects that quorum sensing regulated T6SS mediated

killing has on the biofilm’s structure based on the current state of the biofilm. This

work illustrates how quorum sensing T6SS mediated killing contributes to overall

biofilm structure.

1. Introduction

Biofilms are communities of bacteria that attach to surfaces. They can comprise

one or multiple species of bacteria. The bacteria that live in biofilms interact with

each other in a number of ways, varying by the type of bacteria: they can produce

public goods to aid other cells, or they can compete with one another for space

and access to nutrients [2]. Cells can also communicate with each other via quorum
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sensing. One way bacteria work to gain advantages for themselves is by killing

other nearby cells. A mechanism used for this purpose is the Type VI Secretion

System (T6SS), which is regulated in part by quorum sensing in many bacteria

[3, 11, 12, 13, 19, 22, 23]. One such species is Agrobacterium tumefaciens.

Agrobacterium tumefaciens is a species of bacteria that causes crown gall disease

in many different plant species. It forms a biofilm on the plant host it is infecting

[15]. We are interested in the interaction of different strains of this bacteria within

the biofilm, with a particular focus on T6SS-mediated killing and quorum sensing.

Quorum sensing is a method by which bacteria can communicate with each other.

This is done through the use of quorum sensing signaling molecules called autoin-

ducers produced by the bacteria. Each cell produces this molecule on its own. In low

numbers, the autoinducer has no effect, but as the number of bacteria in a biofilm

increases, so too does the amount of the autoinducer. Once a certain threshold con-

centration of autoinducer is reached, the gene expression of the bacteria changes.

Effects of this change in gene expression can include production of secreted toxins,

biofilm matrix components and public goods [1, 16]. A. tumefaciens uses an acylated

homoserine lactone (AHL) as its quorum sensing molecule [4]. The system that is of

interest to us that is regulated by quorum sensing is the Type VI Secretion System

in A. tumefaciens.

The Type VI Secretion System is a multi-protein complex that delivers effectors

into neighboring eukaryotic or prokaryotic cells [5, 10, 9]. The T6SS is regulated by

quorum sensing in many bacteria [3, 13, 22, 12, 11, 19, 23]. In addition to quorum

sensing regulation, there are other factors that play into T6SS killing. For instance,

there is a regulatory cascade of molecules that influence T6SS killing [6, 20]. In our

paper, we will only be focusing on the effects of quorum sensing on T6SS-mediated

killing.

Some other models of biofilms have examined the role of T6SS-mediated killing on

biofilm growth and structure, such as those in [14] and [21]. The models in [14] exam-

ine the role of T6SS-mediated killing as it relates to the competition between strains

of bacteria for shared goods. The model in [21] looks at the relationship between

T6SS-mediated killing and growth inhibitors. Both of these modelling projects found

that an initially well-mixed biofilm will form clusters of the same strain of bacteria.
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However, neither considered the role of quorum sensing regulated T6SS-mediated

killing in the development of the biofilm.

In our paper, we present a model that accurately describes the development of a

biofilm that consists of two different strains of A. tumefaciens. In particular, our

model incorporates bacterial growth, T6SS-mediated killing, and quorum sensing.

Our models are deterministic models as ordinary differential equations (ODEs). As

this is the first model that we’re aware of that incorporates T6SS-mediated killing as

it relates to quorum sensing, the deterministic model gives us more control over the

system to investigate the dynamics we are interested in. Some research questions we

are considering are the following:

• What effect does quorum sensing regulated T6SS-mediated killing by Agrobac-

terium tumefaciens have on biofilm structure?

• Why is it beneficial for different strains of Agrobacterium tumefaciens to

regulate T6SS-mediated killing through quorum sensing?

We analyze our models using phase plane analysis, stability analysis, sensitivity

analysis, and numerical simulation. We use MATLAB for our simulations.

2. Deterministic Models

Basic Assumptions. To better understand the relationship between quorum sensing

and T6SS-mediated killing and the impacts of this relationship on the biofilm, we

have developed several mathematical models. We are considering a biofilm composed

of two bacterial strains, A and B. Both strains are capable of T6SS-mediated killing,

so any bacterium has the potential to kill a bacterium of the other strain upon direct

cell-to-cell contact. Our models take into account bacterial growth, bacterial death,

T6SS-mediated killing, and quorum sensing’s influence on T6SS-mediated killing.

We are assuming that quorum sensing positively regulates the T6SS mechanism;

that is, quorum sensing induces activation of transcription factors that then initiate

construction of the T6SS apparatus. This assumption is consistent with [11, 13], and

[14]. Using this assumption, we expect to see more T6SS-mediated killing as the

concentration of the autoinducer increases.

We also assume that the production rate of the autoinducer is governed by the

local concentration of the autoinducer, as in [7]. The autoinducer is produced at

a baseline rate until a specific threshold concentration is reached, after which the
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production rate increases. Underlying this assumption is the idea that bacterial cells

switch from a down-regulated to an up-regulated state once the concentration of

the autoinducer is large enough, as [7] claims. A concentration of the autoinducer

that is greater than the threshold will signal bacteria to increase production of the

autoinducer.

Our final assumption is related to the movement of the biological components of

our models. A biofilm is a dense living environment. As a result, factors such as

cell-to-cell contact, cell-to-cell adhesion, and constriction caused by the extracellular

polymeric substance will no doubt have an effect on bacterial motility. However, we

follow the lead of [14] and [21] by assuming that density-dependent diffusion is a

reasonable way to approximate cell movement. The autoinducer is also assumed to

move solely through diffusion, as in [7].

2.1. Governing Equations. Putting our assumptions together, we have formu-

lated three distinct but related models for biofilm growth - one two-dimensional

ODE model, one three-dimensional ODE model, and one PDE model.

Our dependent variables are A, B, and Q, where A and B represent the volume

fraction of bacterial strain A and B respectively, and Q represents the concentra-

tion of the dissolved autoinducer (Note that Q is an independent variable in Model 1).

2.2. Model 1 - Simple ODE model for bacterial interaction. Our first model

closely resembles the system of ordinary differential equations set forth in [14]. We

include terms for bacterial growth, r1A and r2B; unlike [14], we allow for the possi-

bility of different growth rates. Bacterial death can happen as a result of interactions

between strains or within one strain; this type of bacterial morbidity is captured by

the terms s1A(A + B) and s2B(A + B). We deviate from [14] by allowing s1 6= s2.

We decided to vary r and s between strains in order to compare our findings with ex-

isting models. Finally, we capture quorum sensing regulated T6SS-mediated killing

with the terms
Qn

τn +Qn
αABAB and

Qn

τn +Qn
αBAAB. The parameters αAB and αBA

represent the rate at which strain B kills strain A and the rate at which strain A

kills strain B, respectively. The coefficients
Qn

τn +Qn
and

Qn

τn +Qn
are included to
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represent the influence of quorum sensing on T6SS-mediated killing. A simple two-

dimensional ODE model is helpful for looking at the ways in which the variables and

parameters in our model affect one another, as well as the overall system. With this

model, we can easily conduct a sensitivity analysis to determine which parameters

have the greatest effect on the behavior of the system. Additionally, note that Q

is a parameter in Model 1, while it is a variable in Models 2 and 3. We have more

control over Q as a parameter, allowing us to clearly see the state of the system for

different concentrations of the autoinducer. The model reads as follows:

d

dt
A = A

(
r1 − s1(A+B)− Qn

τn +Qn
αABB

)
(1)

d

dt
B = B

(
r2 − s2(A+B)− Qn

τn +Qn
αBAA

)
(2)

The schematic diagram in Figure 1 illustrates the action of each term on the

relevant bacterial strain.

A B

r1A

s1A(A+B)

αAB
Qn

Qn+τn
AB

r2B

s2B(A+B)

αBA
Qn

Qn+τn
AB

Figure 1. Schematic diagram for the 2D ODE model

To non-dimensionalize this model we need only rescale time, so we let T = t
δ

where

T is dimensionless and δ is a scaling parameter. By substituting for t and multiplying
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by δ, the model now reads

d

dT
A = δ

(
r1A− s1A(A+B)− Qn

τn +Qn
αABAB

)
(3)

d

dT
B = δ

(
r2B − s2B(A+B)− Qn

τn +Qn
αBAAB

)
(4)

where δ =
1

r1 + r2
.

2.2.1. Boundary behavior. Since A and B are defined as volume fractions, we obtain

the restrictions 0 ≤ A,B ≤ 1. Thus, the set of positive real numbers of our state

space is given by Ω = {(A,B) ∈ R2|0 ≤ A ≤ 1, 0 ≤ B ≤ 1}. We analyze system (1)

- (2) on the A and B axes as well as the lines A = 1 and B = 1 in order to confirm

that solutions on the boundary always either stay on the boundary or point towards

the interior of the state space.

On the A-axis, we have B = 0, so d
dt
B = 0. Similarly, on the B-axis, we have

A = 0, so d
dt
A = 0. Therefore, solutions that lie on either the A-axis or B-axis will

stay on the boundary.

When B = 1, we obtain
d

dt
B = r2− s2(A+ 1)− αBAQnA

Qn + τn
. In order for solutions

on the line B = 1 to remain in the state space, we need
d

dt
B ≤ 0. Algebraic manip-

ulation yields the equivalent condition A ≥ r2 − s2
s2 + αBAQn

Qn+τn

. Now, observe that

(
0,
r2
s2

)

is a steady state of the system (more details about steady states are presented later,

in the results section), so we need to ensure that

(
0,
r2
s2

)
∈ Ω. Given that all

parameters are nonnegative, this occurs when
r2
s2
≤ 1, which we can rearrange to

yield r2 − s2 ≤ 0. Returning to the condition on A, we see that
r2 − s2

s2 + αBAQn

Qn+τn

has a

denominator that is always positive and a numerator that is less than or equal to

zero. Since A cannot be negative, we see that A ≥ r2 − s2
s2 + αBAQn

Qn+τn

always holds. Hence,

any solution on the line B = 1 will either stay on the boundary or point toward the

interior of the state space.
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Finally we examine the behavior of solutions on the line A = 1. We require that

solutions satisfy
d

dt
A|A=1 = r1 − s1(1 +B)− αABQ

nB

Qn + τn
≤ 0. Algebraic manipulation

yields the equivalent condition B ≥ r1 − s1
s1 + αABQn

Qn+τn

. Observe that

(
r1
s1
, 0

)
is a steady

state of the system. To ensure that the point

(
r1
s1
, 0

)
lies on the boundary, we need

r1
s1
≤ 1 to hold. Using an analogous argument as above, this condition implies that

r1− s1 ≤ 0, which in turn implies that
r1 − s1

s1 + αABQn

Qn+τn

≤ 0. Since B cannot be negative,

the condition B ≥ r1 − s1
s1 + αABQn

Qn+τn

always holds. Thus, any solution on the line A = 1

will either stay on the boundary or point toward the interior of the state space.

Thus having proved the following result

Theorem 2.1. The state space Ω is invariant with respect to all solutions of the

system (1)-(2) with initial conditions in Ω.

2.2.2. Phase plane analysis of the 2D model. We use a phase plane model to ana-

lyze our two-dimensional system. The phase plane plots a vector field on the A-B

plane, where the vector at (a, b) represents the derivatives evaluated at (a, b); that

is,

(
d

dt
A|(a,b),

d

dt
B|(a,b)

)
. We also plot the nullclines, which are the curves for which

either
d

dt
A = 0 or

d

dt
B = 0. The points at which the nullclines intersect are equilib-

rium points (also called steady states or rest points). By noting the signs of
d

dt
A and

d

dt
B on the nullclines and in the regions between the nullclines, we can determine

the “flow” of solutions.

For our phase plane analysis in Figure 2, we used the default parameters given

by r1 = r2 = 2, s1 = s2 = 2, Q = 100, τ = 30, and αAB = αBA = 0.5. With

these parameters, there is one coexistence equilibrium point that acts as a saddle.

We then varied r2, τ , and αBA on the following domains respectively: r2 ∈ [0.5, 3.5],

τ ∈ [10, 70], and αBA ∈ [0.2, 0.8]. Note that the behavior for r1 and αAB would

mirror the results for r2 and αBA. These results are presented on Table 1.
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Figure 2. Phase plane of Strain A and Strain B (left) and the time

plot (right). The time plot shows time in the past, as the solution

that goes through the initial conditions has unique values that would

lead to those initial conditions if the biofilm was growing in accordance

with the model up to that point.

For r2 ∈ (1.5, 2.5), the coexistence equilibrium exists, with an advantage for the

strain with the higher growth rate. Beyond that range, the strain with the lower

growth rate would be eradicated in any mixed environment.

The variation of τ has very little effect on the system. There is always a coexistence

equilibrium with equal values for each strain. The only observable change is that

the coexistence equilibrium values were slightly higher for each strain as the quorum

sensing threshold increased.

Varying αBA always maintains a coexistence equilibrium. The strain with the

higher killing rate has an advantage over the other strain, so the coexistence equilib-

rium is shifted towards the dominant strain.

2.2.3. Results for Model 1. The model (1)-(2) can have up to four equilibria, which

can be found by setting
dA

dt
= 0,

dB

dt
= 0. Three of these equilibria are located on the

boundary of our state space. There is a bacteria-free equilibrium at (A,B) = (0, 0).

There is also an equilibrium with only A present at

(
r1
s1
, 0

)
. Similarly, there is an
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Changed

Parameter

Value

Number

of Equi-

libria

Coexistence Equilib-

rium

Long Term Behavior

r2 = 0.5 3 Does not exist A dominates

r2 = 1 3 Does not exist A dominates

r2 = 1.5 3 Does not exist A dominates

r2 = 2 4 (0.44678, 0.44678) Higher ratio dominates

r2 = 2.5 3 Does not exist B dominates

r2 = 3 3 Does not exist B dominates

r2 = 3.5 3 Does not exist B dominates

τ = 10 4 (0.44460, 0.44460) Higher ratio dominates

τ = 20 4 (0.44531, 0.44531) Higher ratio dominates

τ = 30 4 (0.44678, 0.44678) Higher ratio dominates

τ = 40 4 (0.44903, 0.44903) Higher ratio dominates

τ = 50 4 (0.45199, 0.45199) Higher ratio dominates

τ = 60 4 (0.45548, 0.45548) Higher ratio dominates

τ = 70 4 (0.45928, 0.45928) Higher ratio dominates

αBA = 0.2 4 (0.66876, 0.26750) Higher ratio dominates

αBA = 0.3 4 (0.57374, 0.34424) Higher ratio dominates

αBA = 0.4 4 (0.50236, 0.40189) Higher ratio dominates

αBA = 0.5 4 (0.44678, 0.44678) Higher ratio dominates

αBA = 0.6 4 (0.40227, 0.48272) Higher ratio dominates

αBA = 0.7 4 (0.36582, 0.51215) Higher ratio dominates

αBA = 0.8 4 (0.33543, 0.53670) Higher ratio dominates

Table 1. One parameter was changed at a time, with the value listed.

All changes to growth and killing rate were in (2). To find values if the

corresponding parameters in (1) were changed, simply interchange the

A and B values of that trial. “Higher ratio dominates” means that the

strain of bacteria that has a greater proportion of the biomass than

what leads to the coexistence equilibrium dominates.
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equilibrium with only B present at

(
0,
r2
s2

)
. Additionally, there is a coexistence

equilibrium under certain conditions. The stability of these equilibria are shown

below.

Theorem 2.2. The following statements describe the stability of all equilibria except

the coexistence equilibrium:

(1) The bacteria-free equilibrium at (0, 0) is always unstable.

(2) The equilibrium with only A present at

(
r1
s1
, 0

)
is stable when

r2 <

(
s2 −

Qn

τn +Qn
αBA

)(
r1
s1

)
.

(3) The equilibrium with only B present at

(
0,
r2
s2

)
is stable when

r1 <

(
s1 −

Qn

τn +Qn
αAB

)(
r2
s2

)
.

Proof. By the Hartman-Grobman Theorem we can show that the stability of the

equilibria is similar to the one of its linearization, thus we proceed by linearizing

about each equilibrium. Notice that the Jacobian matrix J of the system (1)-(2) is

given by

J =

(
r1 − s1(2A+B)− Qn

τn+QnαABB −s1A− Qn

τn+QnαABA

−s2B − Qn

τn+QnαBAB r2 − s2(A+ 2B)− Qn

τn+QnαBAA

)
.

For the bacteria-free equilibrium, we can substitute A = 0, B = 0 into the matrix,

which yields,

J |(0,0) =

(
r1 0

0 r2

)
.

The eigenvalues of this matrix are

λ1 = r1 λ2 = r2.

Because our parameters r1, r2 are positive, we know that the equilibrium at (0, 0) is

an unstable source. Thus proving our first statement.
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Next, we substitute the equilibrium

(
r1
s1
, 0

)
into J . With simplification, this

yields

J |(r1/s1,0) =


−r1 −r1 − Qn

τn+QnαAB

(
r1
s1

)

0 r2 −
(
s2 − Qn

τn+QnαBA

)(
r1
s1

)

 .

The eigenvalues for this matrix are

λ1 = −r1 λ2 = r2 −
(
s2 −

Qn

τn +Qn
αBA

)(
r1
s1

)
.

When λ2 is negative, both eigenvalues are negative, so there is a stable sink. This

occurs when r2 <

(
s2 −

Qn

τn +Qn
αBA

)(
r1
s1

)
. Thus proving the second statement.

If λ2 is positive, the eigenvalues have opposite signs so there is an unstable saddle.

Substituting the equilibrium

(
0,
r2
s2

)
into J gives

J |(0,r2/s2) =


r1 −

(
s1 − Qn

τn+QnαAB

)(
r2
s2

)
0

−r2 − Qn

τn+QnαBA

(
r2
s2

)
−r2


 .

This matrix has the eigenvalues

λ1 = r1 −
(
s1 −

Qn

τn +Qn
αAB

)(
r2
s2

)
λ2 = −r2

When λ1 is positive, there is an unstable saddle. When r1 <

(
s1 −

Qn

τn +Qn
αAB

)(
r2
s2

)
,

λ1 is negative, and there is a stable sink. Thus proving the last statement of this

theorem. �
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Theorem 2.3. The system (1)-(6) has a positive coexistence equilibrium if the fol-

lowing conditions hold:

(1) 0 ≤ r1 ≤ s1
(2) 0 ≤ r2 ≤ s2

(3) Q is nonzero

(4) At least one of s1αBA, s2αAB, and αABαBA is nonzero.

Proof. Based on the governing equations of the model, a coexistence equilibrium (A*,

B*) will satisfy

r1−s1(A∗+B∗)−αABB∗
Qn

Qn + τn
= 0 and r2−s2(A∗+B∗)−αBAA∗

Qn

Qn + τn
= 0 ,

which can be written as the following linear system:

(5) M ·

[
A∗

B∗

]
=

[
r1
d1
r2
s2

]

Where

M =

[
s1
d1

1
d2
s2

1

]
,

d1 = s1 + αAB
Qn

Qn + τn
, and d2 = s2 + αBA

Qn

Qn + τn
. Recall that our domain is

Ω = {(A,B) ∈ R2 : 0 ≤ A ≤ 1, 0 ≤ B ≤ 1}. We want to formulate restrictions on

certain parameters in order to guarantee the existence and uniqueness of a positive

equilibrium within our domain. Consider the following two conditions:

(1) The four intercepts of linear system 5 lie on the boundary of our domain

(2) The matrix M is invertible

These two conditions are sufficient (though not necessary) to guarantee a unique

solution to the linear system that lies within our domain of interest. The conditions

can be expressed symbolically as follows:

(1) 0 ≤ r1
d1
≤ 1, 0 ≤ r1

s1
≤ 1, 0 ≤ r2

d2
≤ 1, 0 ≤ r2

s2
≤ 1

It should be clear to see that s1 ≤ s1 + αAB
Qn

Qn + τn
and that s2 ≤ s2 +

αBA
Qn

Qn + τn
because all parameters are non-negative. Thus, the condition
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that r1 ≤ s1 guarantees that r1 ≤ d1. Similarly, we know that if r2 ≤ s2, then

r2 ≤ d2 .

(2)

det(M) =
s1
d1
− d2
s2
6= 0

s1s2 6= d1d2

s1s2 6=
(
s1 + αAB

Qn

Qn + τn

)(
s2 + αBA

Qn

Qn + τn

)

0 6= s1αBA
Qn

Qn + τn
+ s2αAB

Qn

Qn + τn
+ αABαBA

(
Qn

Qn + τn

)2

�

Theorem 2.4. The positive equilibrium of the system (1)-(2) is stable when

max{r1, r2} < min{Re(λV0),Re(λV1)} ,

where λV0 and λV1 represent the eigenvalues of the matrix

V =

[
2s1A+ d1B d1A

d2B 2s2B + d2A

]
.

The positive equilibrium is unstable when

max{r1, r2} > min{Re(λV0),Re(λV1)} .

Proof. We can express the Jacobian of the system (1)-(2) as a difference of a diagonal

matrix and a positive real-valued matrix; we have J = D − V where

D =

[
r1 0

0 r2

]
and V =

[
2s1A+ d1B d1A

d2B 2s2B + d2A

]
.

We are interested in a positive equilibrium; in other words, 0 < A ≤ 1 and 0 < B ≤ 1.

Let λV0 and λV1 represent the eigenvalues of matrix V , and let λJ0 and λJ1 represent

the eigenvalues of matrix J . We have that the real part of each of the eigenvalues of

J will lie in the following ranges as a result of adding a multiple of the corresponding

identity matrix:

min{r1, r2} − Re(λV0) ≤ Re(λJ0) ≤ max{r1, r2} − Re(λV0)

min{r1, r2} − Re(λV1) ≤ Re(λJ1) ≤ max{r1, r2} − Re(λV1).
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We wish to formulate a set of conditions on our parameters that will yield a stable or

unstable positive equilibrium. A stable positive equilibrium is guaranteed if the real

part of the corresponding eigenvalues of the Jacobian matrix are negative, that is,

Re(λJ0) < 0 and Re(λJ1) < 0, from the Hartman-Grobman theorem and the linear

stability of an autonomous dynamical system we know that the local stability of the

equilibria is that of their corresponding linearization. Assuming Re(λV0) and Re(λV1)

are non-negative, then the necessary set of conditions will be max{r1, r2}−Re(λV0) <

0 and max{r1, r2}−Re(λV1) < 0; more simply, these conditions can be expressed by

max{r1, r2} <min{Re(λV0),Re(λV1)}. So all that remains is to prove that Re(λV0)

and Re(λV1) are non-negative. The full expressions for λV0 and λV1 are as follows:

λV0 =
Ad2 +Bd1 + 2As1 + 2Bs2 +

√
d

2

λV1 =
Ad2 +Bd1 + 2As1 + 2Bs2 −

√
d

2
,

where

d =A2d2
2 − 4A2d2s1 + 4A2s1

2 + 2ABd1d2 + 4ABd1s1 + 4ABd2s2 − 8ABs1s2

+B2d1
2 − 4B2d1s2 + 4B2s2

2 .

If d < 0, it is immediate that Re(λV0) = Re(λV1) =
Ad2 +Bd1 + 2As1 + 2Bs2

2
≥ 0,

because all parameters are non-negative and A,B > 0. If d ≥ 0, it is clear that λV0
will be non-negative. So our final step is to prove that λV1 is non-negative, given

that
√
d is real. Symbolically, we aim to show that

Ad2 +Bd1 + 2As1 + 2Bs2 −
√
d ≥ 0, or

Ad2 +Bd1 + 2As1 + 2Bs2 ≥
√
d.

Squaring both sides and combining like terms, we arrive at the following:

6A2d2s1 + 6B2d1s2 + 2A2s1d2 + 4ABs1s2 + 2B2d1s2 + 12ABs1s2 ≥ 0

which must be true because all parameters are non-negative and A,B > 0.

Thus, the positive equilibrium of our 2D ODE system will be stable as long as

max{r1, r2} <min{Re(λV0),Re(λV1)}. Moreover, by an analogous argument we have

that the positive equilibrium is unstable if max{r1, r2} > min{Re(λV0),Re(λV1)}. �
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τ (A∗, B∗) min{λV0 , λV1}
10 (0.4446, 0.4446) 1.7784

20 (0.4453, 0.4453) 1.7812

30 (0.4468, 0.4468) 1.7871

40 (0.4490, 0.4490) 1.7961

50 (0.4520, 0.4520) 1.8079

60 (0.4555, 0.4555) 1.8219

70 (0.4593, 0.4593) 1.8371

Table 2. Positive equilibrium values of the 2D system and minimum

eigenvalues of V are given for various values of τ . Values have been

rounded to four decimal places. The minimum eigenvalues can be used

to evaluate the stability of the equilibrium using Theorem 2.4

For base values of our parameters (found in Table 3), we have max{r1, r2} =

max{2, 2} = 2. Table 2 shows the value of min{λV0 , λV1} for all the values of τ we

are considering. Since max{r1, r2} = 2 > min{λV0 , λV1} for all values of τ , Theorem

2.4 tells us that the positive equilibrium of the system (1)-(2) is always unstable.

Using the stability of the four equilibria, we are able to describe the end behavior of

solutions to the system (1)-(2).

Proposition 2.5. The system (1)-(2) is a competitive system.

Proof. This proposition follows from Definition 6.2, since the off-diagonal entries of

the Jacobian matrix are less than or equal to zero for all points in the state space

Ω. �

Theorem 2.6. The solution of the system (1)-(2) for any initial condition in the

state space converges to one of the four equilibria.

Proof. Consider an arbitrary point P ∈ Ω. If we view P as an initial condition

and the orbit of P as the corresponding solution to the 2D system, the Poincare-

Bendixson theorem tells us the following about this initial-value problem: either

(1) P is an equilibrium point,

(2) The solution to the initial value problem converges to an equilibrium, or
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(3) The solution to the initial value problem leads to a limit cycle.

We focus our attention on the third option; that is, we must show that all bounded

solutions of a competitive system converge to an equilibrium. We have that our state

space is a compact set; since Ω is in R2, it is closed and bounded. Thus all solutions

to the 2D system must converge to an equilibrium by Theorem 6.6. Using what we

have proved about the stability of the four equilibria, we know the following:

(1) Since the origin is an unstable source, only the initial condition (0,0) can

converge to the origin.

(2) Since the coexistence equilibrium is an unstable saddle point, there exists a

line of points that converge to this equilibrium. This line is the stable mani-

fold of the equilibrium, and splits the state space into two disjoint connected

sections.

(3) The single-strain equilibria are both stable, and both correspond to one of

the connected sections produced by the stable manifold of the coexistence

equilibrium. Loosely speaking, this implies that solutions starting in the

upper half of the state space will converge to the equilibrium at (0, B∗),

while solutions starting in the lower half of the state space will converge to

the equilibrium at (A∗, 0).

This proves that any solution to the 2D system that starts within the state space

will converge to one of the four equilibria. �
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Symbol Parameter Source Value Units

r1 basal growth rate of strain A [14] 2 d−1

r2 basal growth rate of strain B [14] 2 d−1

s1 mortality rate for strain A [14] 2 d−1

s2 mortality rate for strain B [14] 2 d−1

n degree of polymerization [8] 2.5 -

τ quorum sensing induction threshold [7] 10-70 nM

αAB
rate at which strain B kills strain A using

T6SS
[14] 0.5 d−1

αBA
rate at which strain A kills strain B using

T6SS
[14] 0.5 d−1

β1 constitutive autoinducer production rate [7] 0.5520 nMd−1

β2 induced autoinducer production rate [7] 5.520 nMd−1

δ biomass motility coefficient [7] 10−12 m2d−1

a biofilm diffusion exponent [7] 4 -

b biofilm diffusion exponent [7] 4 -

Table 3. Parameter values are drawn from [7], [8], and [14]. Time is

measured in days, concentrations are given in nanomoles, and space is

represented in meters.
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2.3. Model 2 - Extended ODE model with production of autoinducer.

2.3.1. Standard ODE model without Quorum Sensing degradation. Model 2 includes

a third differential equation for the production rate of the autoinducer. We used

ideas from [7] to formulate (8). The autoinducer is produced at a base rate β1 if

the local concentration is small relative to the induction threshold. The production

rate increases to β1 + β2 once the concentration exceeds the threshold. With Q as a

variable rather than a parameter, this model is able to demonstrate the effect of the

increasing concentration of the autoinducer. In other words, the regulatory effect of

quorum sensing on T6SS mediated killing is captured well in this three-dimensional

ODE model.

The model reads as follows:

d

dt
A = r1A− s1A(A+B)− Qn

τn +Qn
αABAB(6)

d

dt
B = r2B − s2B(A+B)− Qn

τn +Qn
αBAAB(7)

d

dt
Q =

(
β1 + β2

Qn

τn +Qn

)
(A+B)(8)

The schematic diagram in Figure 3 illustrates the interactions among the three

dependent variables - A,B, and Q - in Model 2.

A B Q

r1A

s1A(A+B)

A
(
β1 + β2

Qn

τn+Qn

)

r2B

s2B(A+B)

B
(
β1 + β2

Qn

τn+Qn

)

Figure 3. Schematic diagram for the 3D ODE model
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To non-dimensionalize this model we will rescale t and Q. Let T and q be dimen-

sionless variables such that T =
t

δ
and q =

Q

γ
, where δ and γ are scaling parameters.

By substituting for the respective variables and applying the chain rule as needed,

the model now reads

d

dT
A = δ

(
r1A− s1A(A+B)− γnqn

τn + γnqn
αABAB

)
(9)

d

dT
B = δ

(
r2B − s2B(A+B)− γnqn

τn + γnqn
αBAAB

)
(10)

d

dT
q =

δ

γ

(
β1 + β2

γnqn

τn + γnqn

)
(A+B)(11)

where γ = τ and δ =
1

r1 + r2

2.3.2. Local stability of equilibria of the system (6)-(8).

Theorem 2.7. The following statements describe the equilibria of Model 2.

(1) The system (6)-(8) does not have a coexistence equilibrium.

(2) The Q-axis represents a collection of infinitely many non-hyperbolic equilibria.

Proof. Observe that when A and B are nonzero, d
dt
Q is positive and non-decreasing.

Thus it is impossible for the concentration of autoinducer molecules to achieve a

steady state. We conclude that there does not exist an equilibrium where A, B, and

Q are all positive. This proves Statement 1.

The Q-axis can be defined as the set of points {(A,B,Q) ∈ R3 : A = 0, B = 0, Q ∈
R}. Note that any point on the Q-axis results in

d

dt
A =

d

dt
B =

d

dt
Q = 0 and thus

represents an equilibrium of the system. Recall that a non-hyperbolic equilibrium is

characterized by a Jacobian matrix that has at least one eigenvalue with real part

equal to zero. On the Q-axis, the Jacobian matrix for the system becomes

J =




r1 0 0

0 r2 0

β1 + Qnβ2
Qn+τn

β1 + Qnβ2
Qn+τn

0


 .

The spectrum of J is {0, r1, r2}; it follows that any point on the Q-axis represents a

non-hyperbolic equilibrium. This proves Statement 2. �
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The inquiry for the non-degradation of Quorum Sensing (QS) can incite further

studies to its relationship to the extinction of both strain of bacteria through the

T6SS killing as the accumulation of QS molecules increases with respect of time. But

the possibility of chemical decay of QS through several processes is still an aspect to

be studied

2.3.3. Standard ODE model with Quorum Sensing degradation. Exact mechanisms

for the decay of autoinducer molecules is a current area of study. When a term

representing the decay of autoinducer molecules is included on (6)-(8), allows the

possibility of a positive equilibrium. The model now reads as follows:

d

dt
A = r1A− s1A(A+B)− Qn

τn +Qn
αABAB(12)

d

dt
B = r2B − s2B(A+B)− Qn

τn +Qn
αBAAB(13)

d

dt
Q =

(
β1 + β2

Qn

τn +Qn

)
(A+B)− λQ(14)

2.3.4. Equilibria of the system (12)-(14). The model (12)-(14) equilibria can be found

by finding the solutions to the nonlinear system
dA

dt
= 0,

dB

dt
= 0,

dQ

dt
= 0. Without

much effort we can observe that there is a bacteria-free equilibrium at A = 0, B = 0,

Q = 0. Nevertheless, a key difference with respect to the model (1)-(2), the single-

strain and coexistence equilibria depend on the positive solutions of the following

function of Q

(15)

{
β1 + β2

Qn

τn +Qn

}
P − λQ = 0

Where P ∈ (0, 1] on the single strain equilibria and P > 0 for the coexistence

equilibrium. First let us remark the following:

Corollary 2.8. The equation given in (15) has at least one positive solution if P ∈
(0, 1].

Proof. Let us notice since τ > 0 and n > 0 for most biologically relevant cases we

have that the solutions of (15) when P ∈ (0, 1]. Notice that the function f(Q) ={
β1 + β2

Qn

τn +Qn

}
P − λQ is continuous for any Q ≥ 0, its such that f(0) > 0 and
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f(t) < 0 for a sufficiently large t > 0, therefore by Bolzano’s theorem we know that

a root for f(Q) exists. �

The previous result allows us to observe that when A =
r1
s1

, B = 0 there is at

least one single-strain equilibrium for some Q > 0. A similar argument follows when

A = 0, B =
r2
s2

, and some Q > 0 holds a different single-strein equilibrium. Moreover

the possibility of a coexistence equilibrium, that is A,B,Q > 0, can be guaranteed

under the following conditions.

From this result, we can establish the following conjecture with respect to the

coexistence equilibrium solution of the system (12)-(14)

Conjecture 2.9. The existence of the coexistence equilibria depends on the param-

eters of the system (12)-(14) in sense of not only the solution of
d

dt
Q = 0 but that

such solution holds the conditions established in Theorem 2.3

The base of the previous conjecture relies on repeated numerical experimentation

where parameters were variated from the nominal values. The equilibria were ob-

tained on each case and during several occurences no coexistence equilibria were

found regardless of solving
d

dt
Q = 0 when A 6= 0 and B 6= 0.

2.3.5. Stability of the equilibria for the system (12)-(14). The stability of these equi-

libria are analyzed below.

Theorem 2.10. The following statements describe the stability of all boundary equi-

libria of the system (12)-(14):

(1) The bacteria-free equilibrium is always unstable.

(2) If r2s1(Q
n+ τn) > QnαBAr1, then the single-strain equilibrium where A dom-

inates is stable as long as

min

{
r1,

r1s2
s1

, λ

}
> max {λV0 , λV1 , λV2} .

If r2s1(Q
n + τn) > QnαBAr1, then this equilibrium will be unstable if

min

{
r1,

r1s2
s1

, λ

}
< max {λV0 , λV1 , λV2} .
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(3) If r1s2(Q
n+τn) > QnαABr2, then the single-strain equilibrium where B dom-

inates is stable as long as

min

{
r2s1
s2

, r2, λ

}
> max {λV0 , λV1 , λV2} .

If r1s2(Q
n + τn) > QnαABr2, then this equilibrium will be unstable if

min

{
r2s1
s2

, r2, λ

}
< max {λV0 , λV1 , λV2} .

Proof. We begin by analyzing the bacteria-free equilibrium. The Jacobian matrix of

the system evaluated at (0, 0, 0) is given by

J0 =




r1 0 0

0 r2 0

β1 + Qnβ2
Qn+τn

β1 + Qnβ2
Qn+τn

−λ


 .

The spectrum of J0 is {r1, r2,−λ}. Since r1 and r2 are positive, we know that the

equilibrium at (0, 0, 0) is an unstable node. This proves statement 1.

We now consider the single-strain equilibrium where A dominates, which occurs

at

(
r1
s1
, 0, Q

)
, where Q > 0. The Jacobian matrix of the system evaluated at such

equilibrium is given by

J =




−r1 −r1 − QnαABr1
s1(Qn+τn)

0

0 r2 − r1s2
s1
− QnαBAr1

s1(Qn+τn)
0

β1 + Qnβ2
Qn+τn

β1 + Qnβ2
Qn+τn

r1
s1

(
Qn−1β2n
Qn+τn

− Q2n−1β2n
(Qn+τn)2

)
− λ


 .

We can rewrite J as a difference between a real-valued matrix V and a diagonal

matrix D so that J = V −D, where

V =




−r1 − QnαABr1
s1(Qn+τn)

0

0 r2 − QnαBAr1
s1(Qn+τn)

0

β1 + Qnβ2
Qn+τn

β1 + Qnβ2
Qn+τn

r1
s1

(
Qn−1β2n
Qn+τn

− Q2n−1β2n
(Qn+τn)2

)


 ,

and

D =



r1 0 0

0 r1s2
s1

0

0 0 λ


 .
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Let λV0 , λV1 , and λV2 represent the eigenvalues of matrix V , and let λJ0 , λJ1 , and

λJ2 represent the eigenvalues of matrix J . We have that the real part of each of the

eigenvalues of J will lie in the following ranges as a result of adding a multiple of the

corresponding identity matrix:

Re(λV0)−max

{
r1,

r1s2
s1

, λ

}
≤ Re(λJ0) ≤ Re(λV0)−max

{
r1,

r1s2
s1

, λ

}

Re(λV1)−max

{
r1,

r1s2
s1

, λ

}
≤ Re(λJ1) ≤ Re(λV1)−max

{
r1,

r1s2
s1

, λ

}

Re(λV1)−max

{
r1,

r1s2
s1

, λ

}
≤ Re(λJ1) ≤ Re(λV1)−max

{
r1,

r1s2
s1

, λ

}
.

We wish to formulate a set of conditions on our parameters that will yield a sta-

ble or unstable positive equilibrium. A stable positive equilibrium is guaranteed if

Re(λJ0) < 0, Re(λJ1) < 0, and Re(λJ2) < 0, from the Hartman-Grobman theorem

and the linear stability of an autonomous dynamical system. Assuming Re(λV0),

Re(λV1), Re(λV2) are non-negative, then the necessary set of conditions will be

Re(λV0)−min

{
r1,

r1s2
s1

, λ

}
< 0 ,

Re(λV1)−min

{
r1,

r1s2
s1

, λ

}
< 0 ,

and

Re(λV2)−min

{
r1,

r1s2
s1

, λ

}
< 0 ;

more simply, these conditions can be expressed as

min

{
r1,

r1s2
s1

, λ

}
> max{Re(λV0),Re(λV1),Re(λV2)} .

This condition rests upon the assumption that all eigenvalues of V are nonnegative.

The spectrum of V is given by
{

0,
Qnβ2nr1τ

n

Q2n+1s1 +Qs1τ 2n + 2Qn+1s1τn
,
Qnr2s1 −QnαBAr1 + r2s1τ

n

s1(Qn + τn)

}
.

Obviously 0 is nonnegative, and
Qnβ2nr1τ

n

Q2n+1s1 +Qs1τ 2n + 2Qn+1s1τn
must also be non-

negative since all parameter values are nonnegative. To ensure the third eigenvalue

is nonnegative, we need to have r2s1(Q
n+τn) ≥ QnαBAr1. If we consider biologically
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relevant values for these parameters (i.e. 1 ≤ r1, r2, s1, s2 ≤ 3, 0 ≤ αBA ≤ 1, n = 2.5,

10 ≤ τ ≤ 70), as well as a range for Q that is consistent with MATLAB equilibrium

simulations (0 < Q ≤ 2), then this condition on the third eigenvalue always holds.

We have shown that if r2s1(Q
n + τn) > QnαBAr1, then this single-strain equilibrium

is stable as long as

min

{
r1,

r1s2
s1

, λ

}
> max{λV0 , λV1 , λV2} .

By an analogous argument, the equilibrium will be unstable if

min

{
r1,

r1s2
s1

, λ

}
< max {λV0 , λV1 , λV2} .

This proves Statement 2.

Lastly we consider the single-strain equilibrium where B dominates, which occurs

at

(
0,
r2
s2
, Q

)
, where Q > 0. The Jacobian matrix of the system evaluated at

(
0,
r1
s1
, Q

)
is

J =




r1 − r2s1
s2
− QnαABr2

s2(Qn+τn)
0 0

−r2 − QnαBAr2
s2(Qn+τn)

−r2 0

β1 + Qnβ2
Qn+τn

β1 + Qnβ2
Qn+τn

r2
s2

(
Qn−1β2n
Qn+τn

− Q2n−1β2n
(Qn+τn)2

)
− λ


 .

We can rewrite J as a difference between a real-valued matrix V and a diagonal

matrix D so that J = V −D, where

V =




r1 − QnαABr2
s2(Qn+τn)

0 0

− QnαBAr2
s2(Qn+τn)

−r2 0

β1 + Qnβ2
Qn+τn

β1 + Qnβ2
Qn+τn

r2
s2

(
Qn−1β2n
Qn+τn

− Q2n−1β2n
(Qn+τn)2

)




and

D =



r2s1
s2

0 0

0 r2 0

0 0 λ


 .

Let λV0 , λV1 , and λV2 represent the eigenvalues of matrix V , and let λJ0 , λJ1 , and

λJ2 represent the eigenvalues of matrix J . We have that the real part of each of the
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eigenvalues of J will lie in the following ranges as a result of adding a multiple of the

corresponding identity matrix:

Re(λV0)−max

{
r2s1
s2

, r2, λ

}
≤ Re(λJ0) ≤ Re(λV0)−max

{
r2s1
s2

, r2, λ

}

Re(λV1)−max

{
r2s1
s2

, r2, λ

}
≤ Re(λJ1) ≤ Re(λV1)−max

{
r2s1
s2

, r2, λ

}

Re(λV1)−max

{
r2s1
s2

, r2, λ

}
≤ Re(λJ1) ≤ Re(λV1)−max

{
r2s1
s2

, r2, λ

}
.

We wish to formulate a set of conditions on our parameters that will yield a sta-

ble or unstable positive equilibrium. A stable positive equilibrium is guaranteed if

Re(λJ0) < 0, Re(λJ1) < 0, and Re(λJ2) < 0, from the Hartman-Grobman theorem

and the linear stability of an autonomous dynamical system. Assuming Re(λV0),

Re(λV1), and Re(λV2) are non-negative, then the necessary set of conditions will be

Re(λV0) − min

{
r2s1
s2

, r2, λ

}
< 0, Re(λV1) − min

{
r2s1
s2

, r2, λ

}
< 0, and Re(λV2) −

min

{
r2s1
s2

, r2, λ

}
< 0; more simply, these conditions can be expressed as

min

{
r2s1
s2

, r2, λ

}
> max {Re(λV0),Re(λV1),Re(λV2)} .

This condition rests upon the assumption that all eigenvalues of V are nonnegative.

The spectrum of V is given by
{

0,
Qnβ2nr2τ

n

Q2n+1s2 +Qs2τ 2n + 2Qn+1s2τn
,
Qnr1s2 −QnαABr2 + r1s2τ

n

s2(Qn + τn)

}
.

Obviously 0 is nonnegative, and
Qnβ2nr2τ

n

Q2n+1s2 +Qs2τ 2n + 2Qn+1s2τn
must also be non-

negative since all parameter values are nonnegative. To ensure the third eigenvalue is

nonnegative, we need to have r1s2(Q
n+τn) ≥ QnαABr2. Note that if we consider bio-

logically relevant values for these parameters (i.e. 1 ≤ r1, r2, s1, s2 ≤ 3, 0 ≤ αAB ≤ 1,

n = 2.5, 10 ≤ τ ≤ 70), as well as a range for Q that is consistent with MATLAB equi-

librium simulations (0 < Q ≤ 2), then this condition on the third eigenvalue always

holds. We have shown that if r1s2(Q
n+τn) ≥ QnαABr2 holds, then this single-strain

equilibrium is stable as long as min

{
r2s1
s2

, r2, λ

}
> max{Re(λV0), Re(λV1),Re(λV2)}.

By an analogous argument, if r1s2(Q
n + τn) ≥ QnαABr2 holds, then this equilibrium
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will be unstable if min

{
r2s1
s2

, r2, λ

}
< max{Re(λV0), Re(λV1),Re(λV2)}. This proves

Statement 3. �

Conjecture 2.11. The coexistence equilibrium for the system (12)-(14), when exists,

is unstable.

As previously mentioned, repeated numerical experimentation were effectuated

and when the existence of a positive equilibrium was established the corresponding

eigenvalues of the Jacobian matrix were obtained. On each case, the existence of a

positive eigenvalue was encountered, thus aiming for the conjecture above.

2.4. Computational Realizations for model 2. We solve Model 2 using ODE-

solving software in MATLAB. MATLAB contains a number of different ODE solvers

which are designed to accommodate different types of systems. The ode45 solver

has medium accuracy and is generally a good first choice. However, using ode45

produced oscillations in the solution curve for strain B which were not consistent

with the biology underlying our model. This suggests that we might have a stiff

model, where “stiff” is used to describe an ODE problem that is difficult to evaluate

for some reason. An example of a stiff problem is one in which the equations in the

system vary on drastically different time scales. Based on our issues with ode45, we

decided to use ode23s, which is better suited to stiff problems.

2.4.1. Effect of quorum sensing regulated T6SS killing. Figure 4 shows the relation-

ship between different values of τ and various other aspects of Model 2. In figures

4a and 4b the fractional volume of the biofilm for each bacterial strain is shown with

respect to time and different values for τ . When τ is larger the time it takes for the

two strains to reach equilibrium is longer. In figure 4c the effects of varying τ on

various measures of T6SS related killing can be seen, where the larger the value of

τ is the longer it takes for T6SS killing to reach its full expression. Lastly 4d shows

that as the value of τ increases, the concentration of the autoinducer is slower to

increase.
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Figure 4. Solutions of Model 2 using McNally’s parameters with

varying τ
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Figure 5. Solutions of Model 2 using McNally’s parameters with

varying density dependant mortality values

2.4.2. Effect of density dependent T6SS killing. Figure 5 shows the effects of density

dependant mortality (DDM) on the biofilm. DDM is the death rate of the two

bacterial strains caused by factors that relate to the current volume of the biofilm

that is occupied which is expressed by the s1 and s2 terms in Model 2. Some forms of

death in DDM are expressed T6SS killing and natural death rates. Figure 5a shows

the effects on bacterial strains A and B when s1 = s2 and the value of the rates

range from 1.7 to 2.3. Figure 5b deals with the same s1 and s2 as in 5a and tracks

the different amount of killing done by DDM in the biofilm. In Figure 5c and 5d we
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hold s2 constant at 2 and vary s1 between 1.7 and 2.3 to see the effects that this has

on the strains A and B and the amount of DDM related killing respectively.

3. Discussion

The novelty of this project lies in its ability to capture the effect of quorum sensing

on T6SS-mediated killing in the bacterial species Agrobacterium tumefaciens. To

this end, we have constructed two ODE models that reflect the interplay of these

biological processes in order to discern possible benefits to the biofilm and effects on

the biofilm structure.

The 2D Model

The two-dimensional ODE system models the volume fractions of strains A and B

over time, with Q included as a constant. In this sense, the 2D model can be viewed

as a snapshot of a specific point in the quorum sensing process.

The value of the quorum sensing threshold τ had negligible effect on the behavior of

the system. This makes sense because the quorum sensing term
Qn

Qn + τn
is composed

of constants, so it does not change with time. Thus the quorum sensing term is

effectively absorbed into the killing rate, increasing the amount of T6SS-mediated

killing. If we had defined the quorum sensing term differently, or chosen a different

value for Q, perhaps we would have observed different behavior.

Conversely, the growth and density-dependent mortality rates of the strains had

very large impacts on the system. As Table 1 shows, growth rates that differ by

more than 0.5 result in a guaranteed single-strain equilibrium. Plot (d) in Figure 5

illustrates that density-dependent mortality rates that differ by as little as 0.1 can

result in significantly greater biomass loss for the strain with higher mortality. Since

two strains of the same bacterial species are more likely to have similar growth and

mortality rates than two completely different species, this suggests that a biofilm

composed of multiple strains of the same bacterial species may be more likely to

achieve a state of coexistence than a biofilm that consists of completely different

bacterial species.

To reiterate, the 2D model provides a snapshot in time, so it cannot help us answer

questions about the development of the biofilm over time, or about the effects of

quorum sensing on the structure and life cycle of the biofilm. However, the simplicity

of the model allows us to observe the effects of individual parameters. We can use
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this knowledge as we construct our 3D ODE model, which is more complex but more

biologically relevant than the 2D model.

The 3D Model

In our 3D model, quorum sensing was treated as a dependent variable rather than

an independent variable, increasing the complexity of the system. All other factors

were unchanged from the 2D model.

Similar to the 2D model, the coexistence equilibrium of the system is unstable. It

is important to clarify what an unstable equilibrium means for a biological system.

An unstable equilibrium does not imply that all solutions will move away from the

equilibrium; there exists a section of the domain such that solutions in this section

will converge to the equilibrium. However, to ensure the existence and stability

of the positive equilibrium, we found that the model parameters must have very

specific relationships. This suggests that in reality, the coexistence equilibrium will

rarely be achieved. The instability of the positive equilibrium, combined with the

complicated parameter conditions, indicates that we are unlikely to have a single

positive coordinate of volume fractions (A∗, B∗) that endures over time.

With the addition of a separate differential equation modeling quorum sensing,

the quorum sensing threshold began to have a much more noticeable effect on the

behavior of the system. When we varied τ in the 2D system, it had a negligible effect

on the system; however, varying τ in the 3D system markedly changed the trajectories

of the solution curves. Increasing the quorum sensing threshold decreased the amount

of T6SS-mediated killing and increased the time for solutions to reach equilibrium.

By controlling the time it takes the biofilm to experience the full effects of T6SS

killing, quorum sensing plays a significant regulatory role in the development of the

biofilm. The quorum sensing threshold works as a control on the system; increasing

τ means there is more time for the strains to grow without the full influence of the

T6SS killing, while decreasing τ means that killing will reach its full expression early

in the growth phase, and so the complete eradication of one strain is more likely.

It seems that manipulating the quorum sensing process (by either decreasing the

quorum sensing threshold or increasing the production rate of the autoinducer) is an

effective way to reduce a multi-strain/multi-species biofilm to a mono-strain/mono-

species biofilm. Once the biofilm has been reduced to a single strain or species, it is

easier to eradicate the whole biofilm. Different bacterial strains or species may have
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different tolerances to an antibiotic treatment, so a multi-strain/multi-species biofilm

could require multiple different treatments. On the other hand, a mono-strain/mono-

species biofilm could be wiped out with just one antibiotic treatment. Our research

findings suggest that exploiting quorum sensing regulation of T6SS-mediated killing

is a natural, low-cost way to remove harmful biofilms from plant hosts.

While changing τ affects the time it takes the system to reach its full expression

of T6SS killing, we did not find any evidence that τ is a bifurcation parameter; that

is, varying τ within a biologically relevant range (provided by [7]) did not affect the

existence or stability of any of our equilibria. This indicates that quorum sensing

regulation of T6SS killing is a robust mechanism that transcends specific details of

the quorum sensing process.

The biggest drawback of our models is the lack of experimental data with which

to compare our findings. However, we can consult existing published results to

corroborate the accuracy of our results. One relevant result comes from Gallique,

et. al. ([9]). The researchers concluded that T6SS-mediated killing can serve as an

indirect form of communication and social interaction, in the sense that the amount

of T6SS killing can provide an overall view of bacterial density. Our results support

and clarify Gallique’s conclusion; indeed, T6SS can be viewed as an indirect form

of cell-to-cell communication, and it is made possible by the direct response of the

bacterial cells to increasing concentrations of the autoinducer.

4. Future Directions

The most natural extension of this research project would be an analysis of our

PDE model. We initially developed a system of partial differential equations by

adding a diffusion term to each equation in our 3D ODE model. However, com-

putational difficulties prohibited us from doing a full mathematical analysis of this

model. Since the PDE model is able to capture the spatial distribution of A, B, and

Q within the biofilm, it can provide insight that our ODE models cannot. One of our

motivating research questions was related to the physical structure and development

of the biofilm; in this sense, analysis of a PDE model would be a very valuable ad-

dition to this research project. Perhaps simulations of the PDE model could reveal

spatial patterns or trends over time that help explain or clarify the results that we

derived from our two ODE models.
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Another immediate concern that has arisen upon completion of this project is re-

lated to experimental data. The base parameter values presented in Table 3 are all

supported by existing literature; however, we varied these values when we conducted

a sensitivity analysis on Model 1 and when we performed simulations of Model 2.

We defined the domains on which we varied the base parameter values, so support-

ing evidence is needed to prove that these domains are biologically reasonable. In

a broader sense, we could not find any published experimental results that were di-

rectly relevant to our project. Although much research has been done on biofilms,

the relationship between quorum sensing and T6SS-mediated killing has not been

extensively studied. In addition, because we restricted our focus to Agrobacterium

tumefaciens, there are no experimental papers that we know of that speak to our

specific research question. Although the absence of relevant experimental data means

that our conclusions must be mostly speculative, this does not imply that our results

are not valuable. Experimental studies related to quorum sensing in bacteria are no-

toriously time-consuming and expensive, so experimenters could benefit from looking

to mathematical modeling results like ours in order to pose more well-informed re-

search questions.

5. Conclusion

By constructing mathematical models that capture the effect of quorum sensing on

T6SS-mediated killing in the bacterial species Agrobacterium tumefaciens, we were

able to show that when using biologically relevant parameter values an unstable

coexistence equilibrium will occur. The instability of this equilibrium suggests that

T6SS-mediated killing controlled by quorum sensing drives competition in multi

strain or multi specie biofilms. Even though T6SS-mediated killing seems to drive

competition it is still possible that during the growth stage of the biofilm both strains

could amass at similar rates and together reach an unstable coexistence. Because

of the type of equilibrium that our models show, in a real world setting it may be

expected that a single strain will out compete the other and drive it to extinction

within the biofilm rather than ever reaching any type of cooperation.
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6. Appendix

6.1. Relevant Theorems.

Theorem 6.1 (Hartman-Grobman Theorem). Consider the autonomous system

of ordinary differential equations

(16) x′ = f(x)

where f is continuously differentiable in an open subset D ⊂ Rn. If x0 is a hyperbolic

rest point for the autonomous differential equation ( 16) then there is an open set U

containing x0 and a homeomorphism H with domain U such that the orbits of the

differential equation 16 are mapped by H to orbits of the linearized system x′ =

Df(x0)(x− x0) in the set U .

Definition 6.2. Cooperative and Competitive Systems A dynamical system

is cooperative if
∂fi
∂xj

(x) ≥ 0, i 6= j, x ∈ D. We say the system is competitive if

∂fi
∂xj

(x) ≤ 0, i 6= j, x ∈ D.

Definition 6.3 (Kamke condition cf. [17] p. 32). Given the system (16) we say

that f is of type K in D if for each i, fi(a) ≤ fi(b) for any two points a and b in D

satisfying a ≤ b and ai = bi.

Theorem 6.4 (Kamke’s Theorem cf. [17], p. 32). Let f be type K on D and

x0, y0 ∈ D. Let <r denote one any of the relations ≤, < or <<. If x0 <r y0, t > 0

and φt(x0) and φt(y0) are defined, then φt(x0) <r φt(y0).

Theorem 6.5 (cf. [18], p.268). Let π(x, t) denote the dynamical system generated

by the autonomous system of differential equations ( 16). If ( 16) is cooperative in D,

then π is a monotone dynamical system with respect to ≤ in D. If ( 16) is cooperative

and irreducible in D, then π is a strongly monotone system with respect to ≤ in D.

Theorem 6.6 (cf. [17], p. 35). All bounded solutions of a cooperative system in R2

converge to an equilibrium point.

Theorem 6.7. Generalized Poincaré-Bendixson Theorem Let M be a posi-

tively invariant region for the vector field generated by ( 16) in R2 and where the
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vector field has a finite number of fixed points. Let p ∈M , and consider ω(p). Then

one of the following possibilities holds.

• ω(p) is a fixed point;

• ω(p) is a closed orbit;

• ω(p) consists of a finite number of fixed points p1, . . . , pn and orbits γ with

α(ω) = pi and ω(γ) = pj.

References

[1] Rhea G Abisado, Saida Benomar, Jennifer R Klaus, Ajai A Dandekar, and

Josephine R Chandler. Bacterial quorum sensing and microbial community

interactions. MBio, 9(3), 2018.

[2] Luke P Allsopp, Patricia Bernal, Laura M Nolan, and Alain Filloux. Causali-

ties of war: The connection between type vi secretion system and microbiota.

Cellular microbiology, 22(3):e13153, 2020.

[3] Christophe S Bernard, Yannick R Brunet, Erwan Gueguen, and Eric Cascales.

Nooks and crannies in type vi secretion regulation. Journal of bacteriology,

192(15):3850–3860, 2010.

[4] Graciela Brelles-Marino and Eulogio J Bedmar. Detection, purification and

characterisation of quorum-sensing signal molecules in plant-associated bacteria.

Journal of Biotechnology, 91(2-3):197–209, 2001.

[5] Yassin Cherrak, Nicolas Flaugnatti, Eric Durand, Laure Journet, and Eric Cas-

cales. Structure and activity of the type vi secretion system. Protein Secretion

in Bacteria, pages 329–342, 2019.

[6] Chandrani Das, Anirban Dutta, Hannah Rajasingh, and Sharmila S Mande.

Understanding the sequential activation of type iii and type vi secretion systems

in salmonella typhimurium using boolean modeling. Gut pathogens, 5(1):28,

2013.

[7] Blessing O Emerenini, Burkhard A Hense, Christina Kuttler, and Hermann J

Eberl. A mathematical model of quorum sensing induced biofilm detachment.

PloS one, 10(7):e0132385, 2015.

[8] Mallory R Frederick, Christina Kuttler, Burkhard A Hense, and Hermann J

Eberl. A mathematical model of quorum sensing regulated eps production in

biofilm communities. Theoretical Biology and Medical Modelling, 8(1):8, 2011.



Modeling effects of QS-regulated T6SS killing on biofilm 35

[9] Mathias Gallique, Mathilde Bouteiller, and Annabelle Merieau. The type vi

secretion system: a dynamic system for bacterial communication? Frontiers in

microbiology, 8:1454, 2017.

[10] Mathias Gallique, Victorien Decoin, Corinne Barbey, Thibaut Rosay, Marc GJ

Feuilloley, Nicole Orange, and Annabelle Merieau. Contribution of the pseu-

domonas fluorescens mfe01 type vi secretion system to biofilm formation. PLoS

One, 12(1):e0170770, 2017.

[11] Bijay K Khajanchi, Jian Sha, Elena V Kozlova, Tatiana E Erova, Giovanni

Suarez, Johanna C Sierra, Vsevolod L Popov, Amy J Horneman, and Ashok K

Chopra. N-acylhomoserine lactones involved in quorum sensing control the type

vi secretion system, biofilm formation, protease production, and in vivo virulence

in a clinical isolate of aeromonas hydrophila. Microbiology, 155(Pt 11):3518,

2009.
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